aops.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452
  1. /* -*- mode: c; c-basic-offset: 8; -*-
  2. * vim: noexpandtab sw=8 ts=8 sts=0:
  3. *
  4. * Copyright (C) 2002, 2004 Oracle. All rights reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public
  17. * License along with this program; if not, write to the
  18. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19. * Boston, MA 021110-1307, USA.
  20. */
  21. #include <linux/fs.h>
  22. #include <linux/slab.h>
  23. #include <linux/highmem.h>
  24. #include <linux/pagemap.h>
  25. #include <asm/byteorder.h>
  26. #include <linux/swap.h>
  27. #include <linux/pipe_fs_i.h>
  28. #include <linux/mpage.h>
  29. #include <linux/quotaops.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/uio.h>
  32. #include <cluster/masklog.h>
  33. #include "ocfs2.h"
  34. #include "alloc.h"
  35. #include "aops.h"
  36. #include "dlmglue.h"
  37. #include "extent_map.h"
  38. #include "file.h"
  39. #include "inode.h"
  40. #include "journal.h"
  41. #include "suballoc.h"
  42. #include "super.h"
  43. #include "symlink.h"
  44. #include "refcounttree.h"
  45. #include "ocfs2_trace.h"
  46. #include "buffer_head_io.h"
  47. #include "dir.h"
  48. #include "namei.h"
  49. #include "sysfile.h"
  50. static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  51. struct buffer_head *bh_result, int create)
  52. {
  53. int err = -EIO;
  54. int status;
  55. struct ocfs2_dinode *fe = NULL;
  56. struct buffer_head *bh = NULL;
  57. struct buffer_head *buffer_cache_bh = NULL;
  58. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  59. void *kaddr;
  60. trace_ocfs2_symlink_get_block(
  61. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  62. (unsigned long long)iblock, bh_result, create);
  63. BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  64. if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  65. mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  66. (unsigned long long)iblock);
  67. goto bail;
  68. }
  69. status = ocfs2_read_inode_block(inode, &bh);
  70. if (status < 0) {
  71. mlog_errno(status);
  72. goto bail;
  73. }
  74. fe = (struct ocfs2_dinode *) bh->b_data;
  75. if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  76. le32_to_cpu(fe->i_clusters))) {
  77. err = -ENOMEM;
  78. mlog(ML_ERROR, "block offset is outside the allocated size: "
  79. "%llu\n", (unsigned long long)iblock);
  80. goto bail;
  81. }
  82. /* We don't use the page cache to create symlink data, so if
  83. * need be, copy it over from the buffer cache. */
  84. if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  85. u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  86. iblock;
  87. buffer_cache_bh = sb_getblk(osb->sb, blkno);
  88. if (!buffer_cache_bh) {
  89. err = -ENOMEM;
  90. mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  91. goto bail;
  92. }
  93. /* we haven't locked out transactions, so a commit
  94. * could've happened. Since we've got a reference on
  95. * the bh, even if it commits while we're doing the
  96. * copy, the data is still good. */
  97. if (buffer_jbd(buffer_cache_bh)
  98. && ocfs2_inode_is_new(inode)) {
  99. kaddr = kmap_atomic(bh_result->b_page);
  100. if (!kaddr) {
  101. mlog(ML_ERROR, "couldn't kmap!\n");
  102. goto bail;
  103. }
  104. memcpy(kaddr + (bh_result->b_size * iblock),
  105. buffer_cache_bh->b_data,
  106. bh_result->b_size);
  107. kunmap_atomic(kaddr);
  108. set_buffer_uptodate(bh_result);
  109. }
  110. brelse(buffer_cache_bh);
  111. }
  112. map_bh(bh_result, inode->i_sb,
  113. le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
  114. err = 0;
  115. bail:
  116. brelse(bh);
  117. return err;
  118. }
  119. static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
  120. struct buffer_head *bh_result, int create)
  121. {
  122. int ret = 0;
  123. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  124. down_read(&oi->ip_alloc_sem);
  125. ret = ocfs2_get_block(inode, iblock, bh_result, create);
  126. up_read(&oi->ip_alloc_sem);
  127. return ret;
  128. }
  129. int ocfs2_get_block(struct inode *inode, sector_t iblock,
  130. struct buffer_head *bh_result, int create)
  131. {
  132. int err = 0;
  133. unsigned int ext_flags;
  134. u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
  135. u64 p_blkno, count, past_eof;
  136. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  137. trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
  138. (unsigned long long)iblock, bh_result, create);
  139. if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
  140. mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
  141. inode, inode->i_ino);
  142. if (S_ISLNK(inode->i_mode)) {
  143. /* this always does I/O for some reason. */
  144. err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
  145. goto bail;
  146. }
  147. err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
  148. &ext_flags);
  149. if (err) {
  150. mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
  151. "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
  152. (unsigned long long)p_blkno);
  153. goto bail;
  154. }
  155. if (max_blocks < count)
  156. count = max_blocks;
  157. /*
  158. * ocfs2 never allocates in this function - the only time we
  159. * need to use BH_New is when we're extending i_size on a file
  160. * system which doesn't support holes, in which case BH_New
  161. * allows __block_write_begin() to zero.
  162. *
  163. * If we see this on a sparse file system, then a truncate has
  164. * raced us and removed the cluster. In this case, we clear
  165. * the buffers dirty and uptodate bits and let the buffer code
  166. * ignore it as a hole.
  167. */
  168. if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
  169. clear_buffer_dirty(bh_result);
  170. clear_buffer_uptodate(bh_result);
  171. goto bail;
  172. }
  173. /* Treat the unwritten extent as a hole for zeroing purposes. */
  174. if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
  175. map_bh(bh_result, inode->i_sb, p_blkno);
  176. bh_result->b_size = count << inode->i_blkbits;
  177. if (!ocfs2_sparse_alloc(osb)) {
  178. if (p_blkno == 0) {
  179. err = -EIO;
  180. mlog(ML_ERROR,
  181. "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
  182. (unsigned long long)iblock,
  183. (unsigned long long)p_blkno,
  184. (unsigned long long)OCFS2_I(inode)->ip_blkno);
  185. mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
  186. dump_stack();
  187. goto bail;
  188. }
  189. }
  190. past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
  191. trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
  192. (unsigned long long)past_eof);
  193. if (create && (iblock >= past_eof))
  194. set_buffer_new(bh_result);
  195. bail:
  196. if (err < 0)
  197. err = -EIO;
  198. return err;
  199. }
  200. int ocfs2_read_inline_data(struct inode *inode, struct page *page,
  201. struct buffer_head *di_bh)
  202. {
  203. void *kaddr;
  204. loff_t size;
  205. struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
  206. if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
  207. ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
  208. (unsigned long long)OCFS2_I(inode)->ip_blkno);
  209. return -EROFS;
  210. }
  211. size = i_size_read(inode);
  212. if (size > PAGE_SIZE ||
  213. size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
  214. ocfs2_error(inode->i_sb,
  215. "Inode %llu has with inline data has bad size: %Lu\n",
  216. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  217. (unsigned long long)size);
  218. return -EROFS;
  219. }
  220. kaddr = kmap_atomic(page);
  221. if (size)
  222. memcpy(kaddr, di->id2.i_data.id_data, size);
  223. /* Clear the remaining part of the page */
  224. memset(kaddr + size, 0, PAGE_SIZE - size);
  225. flush_dcache_page(page);
  226. kunmap_atomic(kaddr);
  227. SetPageUptodate(page);
  228. return 0;
  229. }
  230. static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
  231. {
  232. int ret;
  233. struct buffer_head *di_bh = NULL;
  234. BUG_ON(!PageLocked(page));
  235. BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
  236. ret = ocfs2_read_inode_block(inode, &di_bh);
  237. if (ret) {
  238. mlog_errno(ret);
  239. goto out;
  240. }
  241. ret = ocfs2_read_inline_data(inode, page, di_bh);
  242. out:
  243. unlock_page(page);
  244. brelse(di_bh);
  245. return ret;
  246. }
  247. static int ocfs2_readpage(struct file *file, struct page *page)
  248. {
  249. struct inode *inode = page->mapping->host;
  250. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  251. loff_t start = (loff_t)page->index << PAGE_SHIFT;
  252. int ret, unlock = 1;
  253. trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
  254. (page ? page->index : 0));
  255. ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
  256. if (ret != 0) {
  257. if (ret == AOP_TRUNCATED_PAGE)
  258. unlock = 0;
  259. mlog_errno(ret);
  260. goto out;
  261. }
  262. if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
  263. /*
  264. * Unlock the page and cycle ip_alloc_sem so that we don't
  265. * busyloop waiting for ip_alloc_sem to unlock
  266. */
  267. ret = AOP_TRUNCATED_PAGE;
  268. unlock_page(page);
  269. unlock = 0;
  270. down_read(&oi->ip_alloc_sem);
  271. up_read(&oi->ip_alloc_sem);
  272. goto out_inode_unlock;
  273. }
  274. /*
  275. * i_size might have just been updated as we grabed the meta lock. We
  276. * might now be discovering a truncate that hit on another node.
  277. * block_read_full_page->get_block freaks out if it is asked to read
  278. * beyond the end of a file, so we check here. Callers
  279. * (generic_file_read, vm_ops->fault) are clever enough to check i_size
  280. * and notice that the page they just read isn't needed.
  281. *
  282. * XXX sys_readahead() seems to get that wrong?
  283. */
  284. if (start >= i_size_read(inode)) {
  285. zero_user(page, 0, PAGE_SIZE);
  286. SetPageUptodate(page);
  287. ret = 0;
  288. goto out_alloc;
  289. }
  290. if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
  291. ret = ocfs2_readpage_inline(inode, page);
  292. else
  293. ret = block_read_full_page(page, ocfs2_get_block);
  294. unlock = 0;
  295. out_alloc:
  296. up_read(&OCFS2_I(inode)->ip_alloc_sem);
  297. out_inode_unlock:
  298. ocfs2_inode_unlock(inode, 0);
  299. out:
  300. if (unlock)
  301. unlock_page(page);
  302. return ret;
  303. }
  304. /*
  305. * This is used only for read-ahead. Failures or difficult to handle
  306. * situations are safe to ignore.
  307. *
  308. * Right now, we don't bother with BH_Boundary - in-inode extent lists
  309. * are quite large (243 extents on 4k blocks), so most inodes don't
  310. * grow out to a tree. If need be, detecting boundary extents could
  311. * trivially be added in a future version of ocfs2_get_block().
  312. */
  313. static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
  314. struct list_head *pages, unsigned nr_pages)
  315. {
  316. int ret, err = -EIO;
  317. struct inode *inode = mapping->host;
  318. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  319. loff_t start;
  320. struct page *last;
  321. /*
  322. * Use the nonblocking flag for the dlm code to avoid page
  323. * lock inversion, but don't bother with retrying.
  324. */
  325. ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
  326. if (ret)
  327. return err;
  328. if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
  329. ocfs2_inode_unlock(inode, 0);
  330. return err;
  331. }
  332. /*
  333. * Don't bother with inline-data. There isn't anything
  334. * to read-ahead in that case anyway...
  335. */
  336. if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
  337. goto out_unlock;
  338. /*
  339. * Check whether a remote node truncated this file - we just
  340. * drop out in that case as it's not worth handling here.
  341. */
  342. last = list_entry(pages->prev, struct page, lru);
  343. start = (loff_t)last->index << PAGE_SHIFT;
  344. if (start >= i_size_read(inode))
  345. goto out_unlock;
  346. err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
  347. out_unlock:
  348. up_read(&oi->ip_alloc_sem);
  349. ocfs2_inode_unlock(inode, 0);
  350. return err;
  351. }
  352. /* Note: Because we don't support holes, our allocation has
  353. * already happened (allocation writes zeros to the file data)
  354. * so we don't have to worry about ordered writes in
  355. * ocfs2_writepage.
  356. *
  357. * ->writepage is called during the process of invalidating the page cache
  358. * during blocked lock processing. It can't block on any cluster locks
  359. * to during block mapping. It's relying on the fact that the block
  360. * mapping can't have disappeared under the dirty pages that it is
  361. * being asked to write back.
  362. */
  363. static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
  364. {
  365. trace_ocfs2_writepage(
  366. (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
  367. page->index);
  368. return block_write_full_page(page, ocfs2_get_block, wbc);
  369. }
  370. /* Taken from ext3. We don't necessarily need the full blown
  371. * functionality yet, but IMHO it's better to cut and paste the whole
  372. * thing so we can avoid introducing our own bugs (and easily pick up
  373. * their fixes when they happen) --Mark */
  374. int walk_page_buffers( handle_t *handle,
  375. struct buffer_head *head,
  376. unsigned from,
  377. unsigned to,
  378. int *partial,
  379. int (*fn)( handle_t *handle,
  380. struct buffer_head *bh))
  381. {
  382. struct buffer_head *bh;
  383. unsigned block_start, block_end;
  384. unsigned blocksize = head->b_size;
  385. int err, ret = 0;
  386. struct buffer_head *next;
  387. for ( bh = head, block_start = 0;
  388. ret == 0 && (bh != head || !block_start);
  389. block_start = block_end, bh = next)
  390. {
  391. next = bh->b_this_page;
  392. block_end = block_start + blocksize;
  393. if (block_end <= from || block_start >= to) {
  394. if (partial && !buffer_uptodate(bh))
  395. *partial = 1;
  396. continue;
  397. }
  398. err = (*fn)(handle, bh);
  399. if (!ret)
  400. ret = err;
  401. }
  402. return ret;
  403. }
  404. static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
  405. {
  406. sector_t status;
  407. u64 p_blkno = 0;
  408. int err = 0;
  409. struct inode *inode = mapping->host;
  410. trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
  411. (unsigned long long)block);
  412. /* We don't need to lock journal system files, since they aren't
  413. * accessed concurrently from multiple nodes.
  414. */
  415. if (!INODE_JOURNAL(inode)) {
  416. err = ocfs2_inode_lock(inode, NULL, 0);
  417. if (err) {
  418. if (err != -ENOENT)
  419. mlog_errno(err);
  420. goto bail;
  421. }
  422. down_read(&OCFS2_I(inode)->ip_alloc_sem);
  423. }
  424. if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
  425. err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
  426. NULL);
  427. if (!INODE_JOURNAL(inode)) {
  428. up_read(&OCFS2_I(inode)->ip_alloc_sem);
  429. ocfs2_inode_unlock(inode, 0);
  430. }
  431. if (err) {
  432. mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
  433. (unsigned long long)block);
  434. mlog_errno(err);
  435. goto bail;
  436. }
  437. bail:
  438. status = err ? 0 : p_blkno;
  439. return status;
  440. }
  441. static int ocfs2_releasepage(struct page *page, gfp_t wait)
  442. {
  443. if (!page_has_buffers(page))
  444. return 0;
  445. return try_to_free_buffers(page);
  446. }
  447. static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
  448. u32 cpos,
  449. unsigned int *start,
  450. unsigned int *end)
  451. {
  452. unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
  453. if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
  454. unsigned int cpp;
  455. cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
  456. cluster_start = cpos % cpp;
  457. cluster_start = cluster_start << osb->s_clustersize_bits;
  458. cluster_end = cluster_start + osb->s_clustersize;
  459. }
  460. BUG_ON(cluster_start > PAGE_SIZE);
  461. BUG_ON(cluster_end > PAGE_SIZE);
  462. if (start)
  463. *start = cluster_start;
  464. if (end)
  465. *end = cluster_end;
  466. }
  467. /*
  468. * 'from' and 'to' are the region in the page to avoid zeroing.
  469. *
  470. * If pagesize > clustersize, this function will avoid zeroing outside
  471. * of the cluster boundary.
  472. *
  473. * from == to == 0 is code for "zero the entire cluster region"
  474. */
  475. static void ocfs2_clear_page_regions(struct page *page,
  476. struct ocfs2_super *osb, u32 cpos,
  477. unsigned from, unsigned to)
  478. {
  479. void *kaddr;
  480. unsigned int cluster_start, cluster_end;
  481. ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
  482. kaddr = kmap_atomic(page);
  483. if (from || to) {
  484. if (from > cluster_start)
  485. memset(kaddr + cluster_start, 0, from - cluster_start);
  486. if (to < cluster_end)
  487. memset(kaddr + to, 0, cluster_end - to);
  488. } else {
  489. memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
  490. }
  491. kunmap_atomic(kaddr);
  492. }
  493. /*
  494. * Nonsparse file systems fully allocate before we get to the write
  495. * code. This prevents ocfs2_write() from tagging the write as an
  496. * allocating one, which means ocfs2_map_page_blocks() might try to
  497. * read-in the blocks at the tail of our file. Avoid reading them by
  498. * testing i_size against each block offset.
  499. */
  500. static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
  501. unsigned int block_start)
  502. {
  503. u64 offset = page_offset(page) + block_start;
  504. if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
  505. return 1;
  506. if (i_size_read(inode) > offset)
  507. return 1;
  508. return 0;
  509. }
  510. /*
  511. * Some of this taken from __block_write_begin(). We already have our
  512. * mapping by now though, and the entire write will be allocating or
  513. * it won't, so not much need to use BH_New.
  514. *
  515. * This will also skip zeroing, which is handled externally.
  516. */
  517. int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
  518. struct inode *inode, unsigned int from,
  519. unsigned int to, int new)
  520. {
  521. int ret = 0;
  522. struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
  523. unsigned int block_end, block_start;
  524. unsigned int bsize = i_blocksize(inode);
  525. if (!page_has_buffers(page))
  526. create_empty_buffers(page, bsize, 0);
  527. head = page_buffers(page);
  528. for (bh = head, block_start = 0; bh != head || !block_start;
  529. bh = bh->b_this_page, block_start += bsize) {
  530. block_end = block_start + bsize;
  531. clear_buffer_new(bh);
  532. /*
  533. * Ignore blocks outside of our i/o range -
  534. * they may belong to unallocated clusters.
  535. */
  536. if (block_start >= to || block_end <= from) {
  537. if (PageUptodate(page))
  538. set_buffer_uptodate(bh);
  539. continue;
  540. }
  541. /*
  542. * For an allocating write with cluster size >= page
  543. * size, we always write the entire page.
  544. */
  545. if (new)
  546. set_buffer_new(bh);
  547. if (!buffer_mapped(bh)) {
  548. map_bh(bh, inode->i_sb, *p_blkno);
  549. unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
  550. }
  551. if (PageUptodate(page)) {
  552. if (!buffer_uptodate(bh))
  553. set_buffer_uptodate(bh);
  554. } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
  555. !buffer_new(bh) &&
  556. ocfs2_should_read_blk(inode, page, block_start) &&
  557. (block_start < from || block_end > to)) {
  558. ll_rw_block(REQ_OP_READ, 0, 1, &bh);
  559. *wait_bh++=bh;
  560. }
  561. *p_blkno = *p_blkno + 1;
  562. }
  563. /*
  564. * If we issued read requests - let them complete.
  565. */
  566. while(wait_bh > wait) {
  567. wait_on_buffer(*--wait_bh);
  568. if (!buffer_uptodate(*wait_bh))
  569. ret = -EIO;
  570. }
  571. if (ret == 0 || !new)
  572. return ret;
  573. /*
  574. * If we get -EIO above, zero out any newly allocated blocks
  575. * to avoid exposing stale data.
  576. */
  577. bh = head;
  578. block_start = 0;
  579. do {
  580. block_end = block_start + bsize;
  581. if (block_end <= from)
  582. goto next_bh;
  583. if (block_start >= to)
  584. break;
  585. zero_user(page, block_start, bh->b_size);
  586. set_buffer_uptodate(bh);
  587. mark_buffer_dirty(bh);
  588. next_bh:
  589. block_start = block_end;
  590. bh = bh->b_this_page;
  591. } while (bh != head);
  592. return ret;
  593. }
  594. #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
  595. #define OCFS2_MAX_CTXT_PAGES 1
  596. #else
  597. #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
  598. #endif
  599. #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
  600. struct ocfs2_unwritten_extent {
  601. struct list_head ue_node;
  602. struct list_head ue_ip_node;
  603. u32 ue_cpos;
  604. u32 ue_phys;
  605. };
  606. /*
  607. * Describe the state of a single cluster to be written to.
  608. */
  609. struct ocfs2_write_cluster_desc {
  610. u32 c_cpos;
  611. u32 c_phys;
  612. /*
  613. * Give this a unique field because c_phys eventually gets
  614. * filled.
  615. */
  616. unsigned c_new;
  617. unsigned c_clear_unwritten;
  618. unsigned c_needs_zero;
  619. };
  620. struct ocfs2_write_ctxt {
  621. /* Logical cluster position / len of write */
  622. u32 w_cpos;
  623. u32 w_clen;
  624. /* First cluster allocated in a nonsparse extend */
  625. u32 w_first_new_cpos;
  626. /* Type of caller. Must be one of buffer, mmap, direct. */
  627. ocfs2_write_type_t w_type;
  628. struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
  629. /*
  630. * This is true if page_size > cluster_size.
  631. *
  632. * It triggers a set of special cases during write which might
  633. * have to deal with allocating writes to partial pages.
  634. */
  635. unsigned int w_large_pages;
  636. /*
  637. * Pages involved in this write.
  638. *
  639. * w_target_page is the page being written to by the user.
  640. *
  641. * w_pages is an array of pages which always contains
  642. * w_target_page, and in the case of an allocating write with
  643. * page_size < cluster size, it will contain zero'd and mapped
  644. * pages adjacent to w_target_page which need to be written
  645. * out in so that future reads from that region will get
  646. * zero's.
  647. */
  648. unsigned int w_num_pages;
  649. struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
  650. struct page *w_target_page;
  651. /*
  652. * w_target_locked is used for page_mkwrite path indicating no unlocking
  653. * against w_target_page in ocfs2_write_end_nolock.
  654. */
  655. unsigned int w_target_locked:1;
  656. /*
  657. * ocfs2_write_end() uses this to know what the real range to
  658. * write in the target should be.
  659. */
  660. unsigned int w_target_from;
  661. unsigned int w_target_to;
  662. /*
  663. * We could use journal_current_handle() but this is cleaner,
  664. * IMHO -Mark
  665. */
  666. handle_t *w_handle;
  667. struct buffer_head *w_di_bh;
  668. struct ocfs2_cached_dealloc_ctxt w_dealloc;
  669. struct list_head w_unwritten_list;
  670. };
  671. void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
  672. {
  673. int i;
  674. for(i = 0; i < num_pages; i++) {
  675. if (pages[i]) {
  676. unlock_page(pages[i]);
  677. mark_page_accessed(pages[i]);
  678. put_page(pages[i]);
  679. }
  680. }
  681. }
  682. static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
  683. {
  684. int i;
  685. /*
  686. * w_target_locked is only set to true in the page_mkwrite() case.
  687. * The intent is to allow us to lock the target page from write_begin()
  688. * to write_end(). The caller must hold a ref on w_target_page.
  689. */
  690. if (wc->w_target_locked) {
  691. BUG_ON(!wc->w_target_page);
  692. for (i = 0; i < wc->w_num_pages; i++) {
  693. if (wc->w_target_page == wc->w_pages[i]) {
  694. wc->w_pages[i] = NULL;
  695. break;
  696. }
  697. }
  698. mark_page_accessed(wc->w_target_page);
  699. put_page(wc->w_target_page);
  700. }
  701. ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
  702. }
  703. static void ocfs2_free_unwritten_list(struct inode *inode,
  704. struct list_head *head)
  705. {
  706. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  707. struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
  708. list_for_each_entry_safe(ue, tmp, head, ue_node) {
  709. list_del(&ue->ue_node);
  710. spin_lock(&oi->ip_lock);
  711. list_del(&ue->ue_ip_node);
  712. spin_unlock(&oi->ip_lock);
  713. kfree(ue);
  714. }
  715. }
  716. static void ocfs2_free_write_ctxt(struct inode *inode,
  717. struct ocfs2_write_ctxt *wc)
  718. {
  719. ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
  720. ocfs2_unlock_pages(wc);
  721. brelse(wc->w_di_bh);
  722. kfree(wc);
  723. }
  724. static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
  725. struct ocfs2_super *osb, loff_t pos,
  726. unsigned len, ocfs2_write_type_t type,
  727. struct buffer_head *di_bh)
  728. {
  729. u32 cend;
  730. struct ocfs2_write_ctxt *wc;
  731. wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
  732. if (!wc)
  733. return -ENOMEM;
  734. wc->w_cpos = pos >> osb->s_clustersize_bits;
  735. wc->w_first_new_cpos = UINT_MAX;
  736. cend = (pos + len - 1) >> osb->s_clustersize_bits;
  737. wc->w_clen = cend - wc->w_cpos + 1;
  738. get_bh(di_bh);
  739. wc->w_di_bh = di_bh;
  740. wc->w_type = type;
  741. if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
  742. wc->w_large_pages = 1;
  743. else
  744. wc->w_large_pages = 0;
  745. ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
  746. INIT_LIST_HEAD(&wc->w_unwritten_list);
  747. *wcp = wc;
  748. return 0;
  749. }
  750. /*
  751. * If a page has any new buffers, zero them out here, and mark them uptodate
  752. * and dirty so they'll be written out (in order to prevent uninitialised
  753. * block data from leaking). And clear the new bit.
  754. */
  755. static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
  756. {
  757. unsigned int block_start, block_end;
  758. struct buffer_head *head, *bh;
  759. BUG_ON(!PageLocked(page));
  760. if (!page_has_buffers(page))
  761. return;
  762. bh = head = page_buffers(page);
  763. block_start = 0;
  764. do {
  765. block_end = block_start + bh->b_size;
  766. if (buffer_new(bh)) {
  767. if (block_end > from && block_start < to) {
  768. if (!PageUptodate(page)) {
  769. unsigned start, end;
  770. start = max(from, block_start);
  771. end = min(to, block_end);
  772. zero_user_segment(page, start, end);
  773. set_buffer_uptodate(bh);
  774. }
  775. clear_buffer_new(bh);
  776. mark_buffer_dirty(bh);
  777. }
  778. }
  779. block_start = block_end;
  780. bh = bh->b_this_page;
  781. } while (bh != head);
  782. }
  783. /*
  784. * Only called when we have a failure during allocating write to write
  785. * zero's to the newly allocated region.
  786. */
  787. static void ocfs2_write_failure(struct inode *inode,
  788. struct ocfs2_write_ctxt *wc,
  789. loff_t user_pos, unsigned user_len)
  790. {
  791. int i;
  792. unsigned from = user_pos & (PAGE_SIZE - 1),
  793. to = user_pos + user_len;
  794. struct page *tmppage;
  795. if (wc->w_target_page)
  796. ocfs2_zero_new_buffers(wc->w_target_page, from, to);
  797. for(i = 0; i < wc->w_num_pages; i++) {
  798. tmppage = wc->w_pages[i];
  799. if (tmppage && page_has_buffers(tmppage)) {
  800. if (ocfs2_should_order_data(inode))
  801. ocfs2_jbd2_file_inode(wc->w_handle, inode);
  802. block_commit_write(tmppage, from, to);
  803. }
  804. }
  805. }
  806. static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
  807. struct ocfs2_write_ctxt *wc,
  808. struct page *page, u32 cpos,
  809. loff_t user_pos, unsigned user_len,
  810. int new)
  811. {
  812. int ret;
  813. unsigned int map_from = 0, map_to = 0;
  814. unsigned int cluster_start, cluster_end;
  815. unsigned int user_data_from = 0, user_data_to = 0;
  816. ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
  817. &cluster_start, &cluster_end);
  818. /* treat the write as new if the a hole/lseek spanned across
  819. * the page boundary.
  820. */
  821. new = new | ((i_size_read(inode) <= page_offset(page)) &&
  822. (page_offset(page) <= user_pos));
  823. if (page == wc->w_target_page) {
  824. map_from = user_pos & (PAGE_SIZE - 1);
  825. map_to = map_from + user_len;
  826. if (new)
  827. ret = ocfs2_map_page_blocks(page, p_blkno, inode,
  828. cluster_start, cluster_end,
  829. new);
  830. else
  831. ret = ocfs2_map_page_blocks(page, p_blkno, inode,
  832. map_from, map_to, new);
  833. if (ret) {
  834. mlog_errno(ret);
  835. goto out;
  836. }
  837. user_data_from = map_from;
  838. user_data_to = map_to;
  839. if (new) {
  840. map_from = cluster_start;
  841. map_to = cluster_end;
  842. }
  843. } else {
  844. /*
  845. * If we haven't allocated the new page yet, we
  846. * shouldn't be writing it out without copying user
  847. * data. This is likely a math error from the caller.
  848. */
  849. BUG_ON(!new);
  850. map_from = cluster_start;
  851. map_to = cluster_end;
  852. ret = ocfs2_map_page_blocks(page, p_blkno, inode,
  853. cluster_start, cluster_end, new);
  854. if (ret) {
  855. mlog_errno(ret);
  856. goto out;
  857. }
  858. }
  859. /*
  860. * Parts of newly allocated pages need to be zero'd.
  861. *
  862. * Above, we have also rewritten 'to' and 'from' - as far as
  863. * the rest of the function is concerned, the entire cluster
  864. * range inside of a page needs to be written.
  865. *
  866. * We can skip this if the page is up to date - it's already
  867. * been zero'd from being read in as a hole.
  868. */
  869. if (new && !PageUptodate(page))
  870. ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
  871. cpos, user_data_from, user_data_to);
  872. flush_dcache_page(page);
  873. out:
  874. return ret;
  875. }
  876. /*
  877. * This function will only grab one clusters worth of pages.
  878. */
  879. static int ocfs2_grab_pages_for_write(struct address_space *mapping,
  880. struct ocfs2_write_ctxt *wc,
  881. u32 cpos, loff_t user_pos,
  882. unsigned user_len, int new,
  883. struct page *mmap_page)
  884. {
  885. int ret = 0, i;
  886. unsigned long start, target_index, end_index, index;
  887. struct inode *inode = mapping->host;
  888. loff_t last_byte;
  889. target_index = user_pos >> PAGE_SHIFT;
  890. /*
  891. * Figure out how many pages we'll be manipulating here. For
  892. * non allocating write, we just change the one
  893. * page. Otherwise, we'll need a whole clusters worth. If we're
  894. * writing past i_size, we only need enough pages to cover the
  895. * last page of the write.
  896. */
  897. if (new) {
  898. wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
  899. start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
  900. /*
  901. * We need the index *past* the last page we could possibly
  902. * touch. This is the page past the end of the write or
  903. * i_size, whichever is greater.
  904. */
  905. last_byte = max(user_pos + user_len, i_size_read(inode));
  906. BUG_ON(last_byte < 1);
  907. end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
  908. if ((start + wc->w_num_pages) > end_index)
  909. wc->w_num_pages = end_index - start;
  910. } else {
  911. wc->w_num_pages = 1;
  912. start = target_index;
  913. }
  914. end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
  915. for(i = 0; i < wc->w_num_pages; i++) {
  916. index = start + i;
  917. if (index >= target_index && index <= end_index &&
  918. wc->w_type == OCFS2_WRITE_MMAP) {
  919. /*
  920. * ocfs2_pagemkwrite() is a little different
  921. * and wants us to directly use the page
  922. * passed in.
  923. */
  924. lock_page(mmap_page);
  925. /* Exit and let the caller retry */
  926. if (mmap_page->mapping != mapping) {
  927. WARN_ON(mmap_page->mapping);
  928. unlock_page(mmap_page);
  929. ret = -EAGAIN;
  930. goto out;
  931. }
  932. get_page(mmap_page);
  933. wc->w_pages[i] = mmap_page;
  934. wc->w_target_locked = true;
  935. } else if (index >= target_index && index <= end_index &&
  936. wc->w_type == OCFS2_WRITE_DIRECT) {
  937. /* Direct write has no mapping page. */
  938. wc->w_pages[i] = NULL;
  939. continue;
  940. } else {
  941. wc->w_pages[i] = find_or_create_page(mapping, index,
  942. GFP_NOFS);
  943. if (!wc->w_pages[i]) {
  944. ret = -ENOMEM;
  945. mlog_errno(ret);
  946. goto out;
  947. }
  948. }
  949. wait_for_stable_page(wc->w_pages[i]);
  950. if (index == target_index)
  951. wc->w_target_page = wc->w_pages[i];
  952. }
  953. out:
  954. if (ret)
  955. wc->w_target_locked = false;
  956. return ret;
  957. }
  958. /*
  959. * Prepare a single cluster for write one cluster into the file.
  960. */
  961. static int ocfs2_write_cluster(struct address_space *mapping,
  962. u32 *phys, unsigned int new,
  963. unsigned int clear_unwritten,
  964. unsigned int should_zero,
  965. struct ocfs2_alloc_context *data_ac,
  966. struct ocfs2_alloc_context *meta_ac,
  967. struct ocfs2_write_ctxt *wc, u32 cpos,
  968. loff_t user_pos, unsigned user_len)
  969. {
  970. int ret, i;
  971. u64 p_blkno;
  972. struct inode *inode = mapping->host;
  973. struct ocfs2_extent_tree et;
  974. int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
  975. if (new) {
  976. u32 tmp_pos;
  977. /*
  978. * This is safe to call with the page locks - it won't take
  979. * any additional semaphores or cluster locks.
  980. */
  981. tmp_pos = cpos;
  982. ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
  983. &tmp_pos, 1, !clear_unwritten,
  984. wc->w_di_bh, wc->w_handle,
  985. data_ac, meta_ac, NULL);
  986. /*
  987. * This shouldn't happen because we must have already
  988. * calculated the correct meta data allocation required. The
  989. * internal tree allocation code should know how to increase
  990. * transaction credits itself.
  991. *
  992. * If need be, we could handle -EAGAIN for a
  993. * RESTART_TRANS here.
  994. */
  995. mlog_bug_on_msg(ret == -EAGAIN,
  996. "Inode %llu: EAGAIN return during allocation.\n",
  997. (unsigned long long)OCFS2_I(inode)->ip_blkno);
  998. if (ret < 0) {
  999. mlog_errno(ret);
  1000. goto out;
  1001. }
  1002. } else if (clear_unwritten) {
  1003. ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
  1004. wc->w_di_bh);
  1005. ret = ocfs2_mark_extent_written(inode, &et,
  1006. wc->w_handle, cpos, 1, *phys,
  1007. meta_ac, &wc->w_dealloc);
  1008. if (ret < 0) {
  1009. mlog_errno(ret);
  1010. goto out;
  1011. }
  1012. }
  1013. /*
  1014. * The only reason this should fail is due to an inability to
  1015. * find the extent added.
  1016. */
  1017. ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
  1018. if (ret < 0) {
  1019. mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
  1020. "at logical cluster %u",
  1021. (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
  1022. goto out;
  1023. }
  1024. BUG_ON(*phys == 0);
  1025. p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
  1026. if (!should_zero)
  1027. p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
  1028. for(i = 0; i < wc->w_num_pages; i++) {
  1029. int tmpret;
  1030. /* This is the direct io target page. */
  1031. if (wc->w_pages[i] == NULL) {
  1032. p_blkno++;
  1033. continue;
  1034. }
  1035. tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
  1036. wc->w_pages[i], cpos,
  1037. user_pos, user_len,
  1038. should_zero);
  1039. if (tmpret) {
  1040. mlog_errno(tmpret);
  1041. if (ret == 0)
  1042. ret = tmpret;
  1043. }
  1044. }
  1045. /*
  1046. * We only have cleanup to do in case of allocating write.
  1047. */
  1048. if (ret && new)
  1049. ocfs2_write_failure(inode, wc, user_pos, user_len);
  1050. out:
  1051. return ret;
  1052. }
  1053. static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
  1054. struct ocfs2_alloc_context *data_ac,
  1055. struct ocfs2_alloc_context *meta_ac,
  1056. struct ocfs2_write_ctxt *wc,
  1057. loff_t pos, unsigned len)
  1058. {
  1059. int ret, i;
  1060. loff_t cluster_off;
  1061. unsigned int local_len = len;
  1062. struct ocfs2_write_cluster_desc *desc;
  1063. struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
  1064. for (i = 0; i < wc->w_clen; i++) {
  1065. desc = &wc->w_desc[i];
  1066. /*
  1067. * We have to make sure that the total write passed in
  1068. * doesn't extend past a single cluster.
  1069. */
  1070. local_len = len;
  1071. cluster_off = pos & (osb->s_clustersize - 1);
  1072. if ((cluster_off + local_len) > osb->s_clustersize)
  1073. local_len = osb->s_clustersize - cluster_off;
  1074. ret = ocfs2_write_cluster(mapping, &desc->c_phys,
  1075. desc->c_new,
  1076. desc->c_clear_unwritten,
  1077. desc->c_needs_zero,
  1078. data_ac, meta_ac,
  1079. wc, desc->c_cpos, pos, local_len);
  1080. if (ret) {
  1081. mlog_errno(ret);
  1082. goto out;
  1083. }
  1084. len -= local_len;
  1085. pos += local_len;
  1086. }
  1087. ret = 0;
  1088. out:
  1089. return ret;
  1090. }
  1091. /*
  1092. * ocfs2_write_end() wants to know which parts of the target page it
  1093. * should complete the write on. It's easiest to compute them ahead of
  1094. * time when a more complete view of the write is available.
  1095. */
  1096. static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
  1097. struct ocfs2_write_ctxt *wc,
  1098. loff_t pos, unsigned len, int alloc)
  1099. {
  1100. struct ocfs2_write_cluster_desc *desc;
  1101. wc->w_target_from = pos & (PAGE_SIZE - 1);
  1102. wc->w_target_to = wc->w_target_from + len;
  1103. if (alloc == 0)
  1104. return;
  1105. /*
  1106. * Allocating write - we may have different boundaries based
  1107. * on page size and cluster size.
  1108. *
  1109. * NOTE: We can no longer compute one value from the other as
  1110. * the actual write length and user provided length may be
  1111. * different.
  1112. */
  1113. if (wc->w_large_pages) {
  1114. /*
  1115. * We only care about the 1st and last cluster within
  1116. * our range and whether they should be zero'd or not. Either
  1117. * value may be extended out to the start/end of a
  1118. * newly allocated cluster.
  1119. */
  1120. desc = &wc->w_desc[0];
  1121. if (desc->c_needs_zero)
  1122. ocfs2_figure_cluster_boundaries(osb,
  1123. desc->c_cpos,
  1124. &wc->w_target_from,
  1125. NULL);
  1126. desc = &wc->w_desc[wc->w_clen - 1];
  1127. if (desc->c_needs_zero)
  1128. ocfs2_figure_cluster_boundaries(osb,
  1129. desc->c_cpos,
  1130. NULL,
  1131. &wc->w_target_to);
  1132. } else {
  1133. wc->w_target_from = 0;
  1134. wc->w_target_to = PAGE_SIZE;
  1135. }
  1136. }
  1137. /*
  1138. * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
  1139. * do the zero work. And should not to clear UNWRITTEN since it will be cleared
  1140. * by the direct io procedure.
  1141. * If this is a new extent that allocated by direct io, we should mark it in
  1142. * the ip_unwritten_list.
  1143. */
  1144. static int ocfs2_unwritten_check(struct inode *inode,
  1145. struct ocfs2_write_ctxt *wc,
  1146. struct ocfs2_write_cluster_desc *desc)
  1147. {
  1148. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  1149. struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
  1150. int ret = 0;
  1151. if (!desc->c_needs_zero)
  1152. return 0;
  1153. retry:
  1154. spin_lock(&oi->ip_lock);
  1155. /* Needs not to zero no metter buffer or direct. The one who is zero
  1156. * the cluster is doing zero. And he will clear unwritten after all
  1157. * cluster io finished. */
  1158. list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
  1159. if (desc->c_cpos == ue->ue_cpos) {
  1160. BUG_ON(desc->c_new);
  1161. desc->c_needs_zero = 0;
  1162. desc->c_clear_unwritten = 0;
  1163. goto unlock;
  1164. }
  1165. }
  1166. if (wc->w_type != OCFS2_WRITE_DIRECT)
  1167. goto unlock;
  1168. if (new == NULL) {
  1169. spin_unlock(&oi->ip_lock);
  1170. new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
  1171. GFP_NOFS);
  1172. if (new == NULL) {
  1173. ret = -ENOMEM;
  1174. goto out;
  1175. }
  1176. goto retry;
  1177. }
  1178. /* This direct write will doing zero. */
  1179. new->ue_cpos = desc->c_cpos;
  1180. new->ue_phys = desc->c_phys;
  1181. desc->c_clear_unwritten = 0;
  1182. list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
  1183. list_add_tail(&new->ue_node, &wc->w_unwritten_list);
  1184. new = NULL;
  1185. unlock:
  1186. spin_unlock(&oi->ip_lock);
  1187. out:
  1188. if (new)
  1189. kfree(new);
  1190. return ret;
  1191. }
  1192. /*
  1193. * Populate each single-cluster write descriptor in the write context
  1194. * with information about the i/o to be done.
  1195. *
  1196. * Returns the number of clusters that will have to be allocated, as
  1197. * well as a worst case estimate of the number of extent records that
  1198. * would have to be created during a write to an unwritten region.
  1199. */
  1200. static int ocfs2_populate_write_desc(struct inode *inode,
  1201. struct ocfs2_write_ctxt *wc,
  1202. unsigned int *clusters_to_alloc,
  1203. unsigned int *extents_to_split)
  1204. {
  1205. int ret;
  1206. struct ocfs2_write_cluster_desc *desc;
  1207. unsigned int num_clusters = 0;
  1208. unsigned int ext_flags = 0;
  1209. u32 phys = 0;
  1210. int i;
  1211. *clusters_to_alloc = 0;
  1212. *extents_to_split = 0;
  1213. for (i = 0; i < wc->w_clen; i++) {
  1214. desc = &wc->w_desc[i];
  1215. desc->c_cpos = wc->w_cpos + i;
  1216. if (num_clusters == 0) {
  1217. /*
  1218. * Need to look up the next extent record.
  1219. */
  1220. ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
  1221. &num_clusters, &ext_flags);
  1222. if (ret) {
  1223. mlog_errno(ret);
  1224. goto out;
  1225. }
  1226. /* We should already CoW the refcountd extent. */
  1227. BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
  1228. /*
  1229. * Assume worst case - that we're writing in
  1230. * the middle of the extent.
  1231. *
  1232. * We can assume that the write proceeds from
  1233. * left to right, in which case the extent
  1234. * insert code is smart enough to coalesce the
  1235. * next splits into the previous records created.
  1236. */
  1237. if (ext_flags & OCFS2_EXT_UNWRITTEN)
  1238. *extents_to_split = *extents_to_split + 2;
  1239. } else if (phys) {
  1240. /*
  1241. * Only increment phys if it doesn't describe
  1242. * a hole.
  1243. */
  1244. phys++;
  1245. }
  1246. /*
  1247. * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
  1248. * file that got extended. w_first_new_cpos tells us
  1249. * where the newly allocated clusters are so we can
  1250. * zero them.
  1251. */
  1252. if (desc->c_cpos >= wc->w_first_new_cpos) {
  1253. BUG_ON(phys == 0);
  1254. desc->c_needs_zero = 1;
  1255. }
  1256. desc->c_phys = phys;
  1257. if (phys == 0) {
  1258. desc->c_new = 1;
  1259. desc->c_needs_zero = 1;
  1260. desc->c_clear_unwritten = 1;
  1261. *clusters_to_alloc = *clusters_to_alloc + 1;
  1262. }
  1263. if (ext_flags & OCFS2_EXT_UNWRITTEN) {
  1264. desc->c_clear_unwritten = 1;
  1265. desc->c_needs_zero = 1;
  1266. }
  1267. ret = ocfs2_unwritten_check(inode, wc, desc);
  1268. if (ret) {
  1269. mlog_errno(ret);
  1270. goto out;
  1271. }
  1272. num_clusters--;
  1273. }
  1274. ret = 0;
  1275. out:
  1276. return ret;
  1277. }
  1278. static int ocfs2_write_begin_inline(struct address_space *mapping,
  1279. struct inode *inode,
  1280. struct ocfs2_write_ctxt *wc)
  1281. {
  1282. int ret;
  1283. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1284. struct page *page;
  1285. handle_t *handle;
  1286. struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1287. handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
  1288. if (IS_ERR(handle)) {
  1289. ret = PTR_ERR(handle);
  1290. mlog_errno(ret);
  1291. goto out;
  1292. }
  1293. page = find_or_create_page(mapping, 0, GFP_NOFS);
  1294. if (!page) {
  1295. ocfs2_commit_trans(osb, handle);
  1296. ret = -ENOMEM;
  1297. mlog_errno(ret);
  1298. goto out;
  1299. }
  1300. /*
  1301. * If we don't set w_num_pages then this page won't get unlocked
  1302. * and freed on cleanup of the write context.
  1303. */
  1304. wc->w_pages[0] = wc->w_target_page = page;
  1305. wc->w_num_pages = 1;
  1306. ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
  1307. OCFS2_JOURNAL_ACCESS_WRITE);
  1308. if (ret) {
  1309. ocfs2_commit_trans(osb, handle);
  1310. mlog_errno(ret);
  1311. goto out;
  1312. }
  1313. if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
  1314. ocfs2_set_inode_data_inline(inode, di);
  1315. if (!PageUptodate(page)) {
  1316. ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
  1317. if (ret) {
  1318. ocfs2_commit_trans(osb, handle);
  1319. goto out;
  1320. }
  1321. }
  1322. wc->w_handle = handle;
  1323. out:
  1324. return ret;
  1325. }
  1326. int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
  1327. {
  1328. struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
  1329. if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
  1330. return 1;
  1331. return 0;
  1332. }
  1333. static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
  1334. struct inode *inode, loff_t pos,
  1335. unsigned len, struct page *mmap_page,
  1336. struct ocfs2_write_ctxt *wc)
  1337. {
  1338. int ret, written = 0;
  1339. loff_t end = pos + len;
  1340. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  1341. struct ocfs2_dinode *di = NULL;
  1342. trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
  1343. len, (unsigned long long)pos,
  1344. oi->ip_dyn_features);
  1345. /*
  1346. * Handle inodes which already have inline data 1st.
  1347. */
  1348. if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
  1349. if (mmap_page == NULL &&
  1350. ocfs2_size_fits_inline_data(wc->w_di_bh, end))
  1351. goto do_inline_write;
  1352. /*
  1353. * The write won't fit - we have to give this inode an
  1354. * inline extent list now.
  1355. */
  1356. ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
  1357. if (ret)
  1358. mlog_errno(ret);
  1359. goto out;
  1360. }
  1361. /*
  1362. * Check whether the inode can accept inline data.
  1363. */
  1364. if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
  1365. return 0;
  1366. /*
  1367. * Check whether the write can fit.
  1368. */
  1369. di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1370. if (mmap_page ||
  1371. end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
  1372. return 0;
  1373. do_inline_write:
  1374. ret = ocfs2_write_begin_inline(mapping, inode, wc);
  1375. if (ret) {
  1376. mlog_errno(ret);
  1377. goto out;
  1378. }
  1379. /*
  1380. * This signals to the caller that the data can be written
  1381. * inline.
  1382. */
  1383. written = 1;
  1384. out:
  1385. return written ? written : ret;
  1386. }
  1387. /*
  1388. * This function only does anything for file systems which can't
  1389. * handle sparse files.
  1390. *
  1391. * What we want to do here is fill in any hole between the current end
  1392. * of allocation and the end of our write. That way the rest of the
  1393. * write path can treat it as an non-allocating write, which has no
  1394. * special case code for sparse/nonsparse files.
  1395. */
  1396. static int ocfs2_expand_nonsparse_inode(struct inode *inode,
  1397. struct buffer_head *di_bh,
  1398. loff_t pos, unsigned len,
  1399. struct ocfs2_write_ctxt *wc)
  1400. {
  1401. int ret;
  1402. loff_t newsize = pos + len;
  1403. BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
  1404. if (newsize <= i_size_read(inode))
  1405. return 0;
  1406. ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
  1407. if (ret)
  1408. mlog_errno(ret);
  1409. /* There is no wc if this is call from direct. */
  1410. if (wc)
  1411. wc->w_first_new_cpos =
  1412. ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
  1413. return ret;
  1414. }
  1415. static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
  1416. loff_t pos)
  1417. {
  1418. int ret = 0;
  1419. BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
  1420. if (pos > i_size_read(inode))
  1421. ret = ocfs2_zero_extend(inode, di_bh, pos);
  1422. return ret;
  1423. }
  1424. int ocfs2_write_begin_nolock(struct address_space *mapping,
  1425. loff_t pos, unsigned len, ocfs2_write_type_t type,
  1426. struct page **pagep, void **fsdata,
  1427. struct buffer_head *di_bh, struct page *mmap_page)
  1428. {
  1429. int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
  1430. unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
  1431. struct ocfs2_write_ctxt *wc;
  1432. struct inode *inode = mapping->host;
  1433. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1434. struct ocfs2_dinode *di;
  1435. struct ocfs2_alloc_context *data_ac = NULL;
  1436. struct ocfs2_alloc_context *meta_ac = NULL;
  1437. handle_t *handle;
  1438. struct ocfs2_extent_tree et;
  1439. int try_free = 1, ret1;
  1440. try_again:
  1441. ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
  1442. if (ret) {
  1443. mlog_errno(ret);
  1444. return ret;
  1445. }
  1446. if (ocfs2_supports_inline_data(osb)) {
  1447. ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
  1448. mmap_page, wc);
  1449. if (ret == 1) {
  1450. ret = 0;
  1451. goto success;
  1452. }
  1453. if (ret < 0) {
  1454. mlog_errno(ret);
  1455. goto out;
  1456. }
  1457. }
  1458. /* Direct io change i_size late, should not zero tail here. */
  1459. if (type != OCFS2_WRITE_DIRECT) {
  1460. if (ocfs2_sparse_alloc(osb))
  1461. ret = ocfs2_zero_tail(inode, di_bh, pos);
  1462. else
  1463. ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
  1464. len, wc);
  1465. if (ret) {
  1466. mlog_errno(ret);
  1467. goto out;
  1468. }
  1469. }
  1470. ret = ocfs2_check_range_for_refcount(inode, pos, len);
  1471. if (ret < 0) {
  1472. mlog_errno(ret);
  1473. goto out;
  1474. } else if (ret == 1) {
  1475. clusters_need = wc->w_clen;
  1476. ret = ocfs2_refcount_cow(inode, di_bh,
  1477. wc->w_cpos, wc->w_clen, UINT_MAX);
  1478. if (ret) {
  1479. mlog_errno(ret);
  1480. goto out;
  1481. }
  1482. }
  1483. ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
  1484. &extents_to_split);
  1485. if (ret) {
  1486. mlog_errno(ret);
  1487. goto out;
  1488. }
  1489. clusters_need += clusters_to_alloc;
  1490. di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1491. trace_ocfs2_write_begin_nolock(
  1492. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  1493. (long long)i_size_read(inode),
  1494. le32_to_cpu(di->i_clusters),
  1495. pos, len, type, mmap_page,
  1496. clusters_to_alloc, extents_to_split);
  1497. /*
  1498. * We set w_target_from, w_target_to here so that
  1499. * ocfs2_write_end() knows which range in the target page to
  1500. * write out. An allocation requires that we write the entire
  1501. * cluster range.
  1502. */
  1503. if (clusters_to_alloc || extents_to_split) {
  1504. /*
  1505. * XXX: We are stretching the limits of
  1506. * ocfs2_lock_allocators(). It greatly over-estimates
  1507. * the work to be done.
  1508. */
  1509. ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
  1510. wc->w_di_bh);
  1511. ret = ocfs2_lock_allocators(inode, &et,
  1512. clusters_to_alloc, extents_to_split,
  1513. &data_ac, &meta_ac);
  1514. if (ret) {
  1515. mlog_errno(ret);
  1516. goto out;
  1517. }
  1518. if (data_ac)
  1519. data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
  1520. credits = ocfs2_calc_extend_credits(inode->i_sb,
  1521. &di->id2.i_list);
  1522. } else if (type == OCFS2_WRITE_DIRECT)
  1523. /* direct write needs not to start trans if no extents alloc. */
  1524. goto success;
  1525. /*
  1526. * We have to zero sparse allocated clusters, unwritten extent clusters,
  1527. * and non-sparse clusters we just extended. For non-sparse writes,
  1528. * we know zeros will only be needed in the first and/or last cluster.
  1529. */
  1530. if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
  1531. wc->w_desc[wc->w_clen - 1].c_needs_zero))
  1532. cluster_of_pages = 1;
  1533. else
  1534. cluster_of_pages = 0;
  1535. ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
  1536. handle = ocfs2_start_trans(osb, credits);
  1537. if (IS_ERR(handle)) {
  1538. ret = PTR_ERR(handle);
  1539. mlog_errno(ret);
  1540. goto out;
  1541. }
  1542. wc->w_handle = handle;
  1543. if (clusters_to_alloc) {
  1544. ret = dquot_alloc_space_nodirty(inode,
  1545. ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
  1546. if (ret)
  1547. goto out_commit;
  1548. }
  1549. ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
  1550. OCFS2_JOURNAL_ACCESS_WRITE);
  1551. if (ret) {
  1552. mlog_errno(ret);
  1553. goto out_quota;
  1554. }
  1555. /*
  1556. * Fill our page array first. That way we've grabbed enough so
  1557. * that we can zero and flush if we error after adding the
  1558. * extent.
  1559. */
  1560. ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
  1561. cluster_of_pages, mmap_page);
  1562. if (ret && ret != -EAGAIN) {
  1563. mlog_errno(ret);
  1564. goto out_quota;
  1565. }
  1566. /*
  1567. * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
  1568. * the target page. In this case, we exit with no error and no target
  1569. * page. This will trigger the caller, page_mkwrite(), to re-try
  1570. * the operation.
  1571. */
  1572. if (ret == -EAGAIN) {
  1573. BUG_ON(wc->w_target_page);
  1574. ret = 0;
  1575. goto out_quota;
  1576. }
  1577. ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
  1578. len);
  1579. if (ret) {
  1580. mlog_errno(ret);
  1581. goto out_quota;
  1582. }
  1583. if (data_ac)
  1584. ocfs2_free_alloc_context(data_ac);
  1585. if (meta_ac)
  1586. ocfs2_free_alloc_context(meta_ac);
  1587. success:
  1588. if (pagep)
  1589. *pagep = wc->w_target_page;
  1590. *fsdata = wc;
  1591. return 0;
  1592. out_quota:
  1593. if (clusters_to_alloc)
  1594. dquot_free_space(inode,
  1595. ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
  1596. out_commit:
  1597. ocfs2_commit_trans(osb, handle);
  1598. out:
  1599. /*
  1600. * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
  1601. * even in case of error here like ENOSPC and ENOMEM. So, we need
  1602. * to unlock the target page manually to prevent deadlocks when
  1603. * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
  1604. * to VM code.
  1605. */
  1606. if (wc->w_target_locked)
  1607. unlock_page(mmap_page);
  1608. ocfs2_free_write_ctxt(inode, wc);
  1609. if (data_ac) {
  1610. ocfs2_free_alloc_context(data_ac);
  1611. data_ac = NULL;
  1612. }
  1613. if (meta_ac) {
  1614. ocfs2_free_alloc_context(meta_ac);
  1615. meta_ac = NULL;
  1616. }
  1617. if (ret == -ENOSPC && try_free) {
  1618. /*
  1619. * Try to free some truncate log so that we can have enough
  1620. * clusters to allocate.
  1621. */
  1622. try_free = 0;
  1623. ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
  1624. if (ret1 == 1)
  1625. goto try_again;
  1626. if (ret1 < 0)
  1627. mlog_errno(ret1);
  1628. }
  1629. return ret;
  1630. }
  1631. static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
  1632. loff_t pos, unsigned len, unsigned flags,
  1633. struct page **pagep, void **fsdata)
  1634. {
  1635. int ret;
  1636. struct buffer_head *di_bh = NULL;
  1637. struct inode *inode = mapping->host;
  1638. ret = ocfs2_inode_lock(inode, &di_bh, 1);
  1639. if (ret) {
  1640. mlog_errno(ret);
  1641. return ret;
  1642. }
  1643. /*
  1644. * Take alloc sem here to prevent concurrent lookups. That way
  1645. * the mapping, zeroing and tree manipulation within
  1646. * ocfs2_write() will be safe against ->readpage(). This
  1647. * should also serve to lock out allocation from a shared
  1648. * writeable region.
  1649. */
  1650. down_write(&OCFS2_I(inode)->ip_alloc_sem);
  1651. ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
  1652. pagep, fsdata, di_bh, NULL);
  1653. if (ret) {
  1654. mlog_errno(ret);
  1655. goto out_fail;
  1656. }
  1657. brelse(di_bh);
  1658. return 0;
  1659. out_fail:
  1660. up_write(&OCFS2_I(inode)->ip_alloc_sem);
  1661. brelse(di_bh);
  1662. ocfs2_inode_unlock(inode, 1);
  1663. return ret;
  1664. }
  1665. static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
  1666. unsigned len, unsigned *copied,
  1667. struct ocfs2_dinode *di,
  1668. struct ocfs2_write_ctxt *wc)
  1669. {
  1670. void *kaddr;
  1671. if (unlikely(*copied < len)) {
  1672. if (!PageUptodate(wc->w_target_page)) {
  1673. *copied = 0;
  1674. return;
  1675. }
  1676. }
  1677. kaddr = kmap_atomic(wc->w_target_page);
  1678. memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
  1679. kunmap_atomic(kaddr);
  1680. trace_ocfs2_write_end_inline(
  1681. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  1682. (unsigned long long)pos, *copied,
  1683. le16_to_cpu(di->id2.i_data.id_count),
  1684. le16_to_cpu(di->i_dyn_features));
  1685. }
  1686. int ocfs2_write_end_nolock(struct address_space *mapping,
  1687. loff_t pos, unsigned len, unsigned copied,
  1688. struct page *page, void *fsdata)
  1689. {
  1690. int i, ret;
  1691. unsigned from, to, start = pos & (PAGE_SIZE - 1);
  1692. struct inode *inode = mapping->host;
  1693. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1694. struct ocfs2_write_ctxt *wc = fsdata;
  1695. struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1696. handle_t *handle = wc->w_handle;
  1697. struct page *tmppage;
  1698. BUG_ON(!list_empty(&wc->w_unwritten_list));
  1699. if (handle) {
  1700. ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
  1701. wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
  1702. if (ret) {
  1703. copied = ret;
  1704. mlog_errno(ret);
  1705. goto out;
  1706. }
  1707. }
  1708. if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
  1709. ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
  1710. goto out_write_size;
  1711. }
  1712. if (unlikely(copied < len) && wc->w_target_page) {
  1713. if (!PageUptodate(wc->w_target_page))
  1714. copied = 0;
  1715. ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
  1716. start+len);
  1717. }
  1718. if (wc->w_target_page)
  1719. flush_dcache_page(wc->w_target_page);
  1720. for(i = 0; i < wc->w_num_pages; i++) {
  1721. tmppage = wc->w_pages[i];
  1722. /* This is the direct io target page. */
  1723. if (tmppage == NULL)
  1724. continue;
  1725. if (tmppage == wc->w_target_page) {
  1726. from = wc->w_target_from;
  1727. to = wc->w_target_to;
  1728. BUG_ON(from > PAGE_SIZE ||
  1729. to > PAGE_SIZE ||
  1730. to < from);
  1731. } else {
  1732. /*
  1733. * Pages adjacent to the target (if any) imply
  1734. * a hole-filling write in which case we want
  1735. * to flush their entire range.
  1736. */
  1737. from = 0;
  1738. to = PAGE_SIZE;
  1739. }
  1740. if (page_has_buffers(tmppage)) {
  1741. if (handle && ocfs2_should_order_data(inode))
  1742. ocfs2_jbd2_file_inode(handle, inode);
  1743. block_commit_write(tmppage, from, to);
  1744. }
  1745. }
  1746. out_write_size:
  1747. /* Direct io do not update i_size here. */
  1748. if (wc->w_type != OCFS2_WRITE_DIRECT) {
  1749. pos += copied;
  1750. if (pos > i_size_read(inode)) {
  1751. i_size_write(inode, pos);
  1752. mark_inode_dirty(inode);
  1753. }
  1754. inode->i_blocks = ocfs2_inode_sector_count(inode);
  1755. di->i_size = cpu_to_le64((u64)i_size_read(inode));
  1756. inode->i_mtime = inode->i_ctime = current_time(inode);
  1757. di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
  1758. di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  1759. ocfs2_update_inode_fsync_trans(handle, inode, 1);
  1760. }
  1761. if (handle)
  1762. ocfs2_journal_dirty(handle, wc->w_di_bh);
  1763. out:
  1764. /* unlock pages before dealloc since it needs acquiring j_trans_barrier
  1765. * lock, or it will cause a deadlock since journal commit threads holds
  1766. * this lock and will ask for the page lock when flushing the data.
  1767. * put it here to preserve the unlock order.
  1768. */
  1769. ocfs2_unlock_pages(wc);
  1770. if (handle)
  1771. ocfs2_commit_trans(osb, handle);
  1772. ocfs2_run_deallocs(osb, &wc->w_dealloc);
  1773. brelse(wc->w_di_bh);
  1774. kfree(wc);
  1775. return copied;
  1776. }
  1777. static int ocfs2_write_end(struct file *file, struct address_space *mapping,
  1778. loff_t pos, unsigned len, unsigned copied,
  1779. struct page *page, void *fsdata)
  1780. {
  1781. int ret;
  1782. struct inode *inode = mapping->host;
  1783. ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
  1784. up_write(&OCFS2_I(inode)->ip_alloc_sem);
  1785. ocfs2_inode_unlock(inode, 1);
  1786. return ret;
  1787. }
  1788. struct ocfs2_dio_write_ctxt {
  1789. struct list_head dw_zero_list;
  1790. unsigned dw_zero_count;
  1791. int dw_orphaned;
  1792. pid_t dw_writer_pid;
  1793. };
  1794. static struct ocfs2_dio_write_ctxt *
  1795. ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
  1796. {
  1797. struct ocfs2_dio_write_ctxt *dwc = NULL;
  1798. if (bh->b_private)
  1799. return bh->b_private;
  1800. dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
  1801. if (dwc == NULL)
  1802. return NULL;
  1803. INIT_LIST_HEAD(&dwc->dw_zero_list);
  1804. dwc->dw_zero_count = 0;
  1805. dwc->dw_orphaned = 0;
  1806. dwc->dw_writer_pid = task_pid_nr(current);
  1807. bh->b_private = dwc;
  1808. *alloc = 1;
  1809. return dwc;
  1810. }
  1811. static void ocfs2_dio_free_write_ctx(struct inode *inode,
  1812. struct ocfs2_dio_write_ctxt *dwc)
  1813. {
  1814. ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
  1815. kfree(dwc);
  1816. }
  1817. /*
  1818. * TODO: Make this into a generic get_blocks function.
  1819. *
  1820. * From do_direct_io in direct-io.c:
  1821. * "So what we do is to permit the ->get_blocks function to populate
  1822. * bh.b_size with the size of IO which is permitted at this offset and
  1823. * this i_blkbits."
  1824. *
  1825. * This function is called directly from get_more_blocks in direct-io.c.
  1826. *
  1827. * called like this: dio->get_blocks(dio->inode, fs_startblk,
  1828. * fs_count, map_bh, dio->rw == WRITE);
  1829. */
  1830. static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
  1831. struct buffer_head *bh_result, int create)
  1832. {
  1833. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1834. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  1835. struct ocfs2_write_ctxt *wc;
  1836. struct ocfs2_write_cluster_desc *desc = NULL;
  1837. struct ocfs2_dio_write_ctxt *dwc = NULL;
  1838. struct buffer_head *di_bh = NULL;
  1839. u64 p_blkno;
  1840. loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
  1841. unsigned len, total_len = bh_result->b_size;
  1842. int ret = 0, first_get_block = 0;
  1843. len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
  1844. len = min(total_len, len);
  1845. mlog(0, "get block of %lu at %llu:%u req %u\n",
  1846. inode->i_ino, pos, len, total_len);
  1847. /*
  1848. * Because we need to change file size in ocfs2_dio_end_io_write(), or
  1849. * we may need to add it to orphan dir. So can not fall to fast path
  1850. * while file size will be changed.
  1851. */
  1852. if (pos + total_len <= i_size_read(inode)) {
  1853. /* This is the fast path for re-write. */
  1854. ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
  1855. if (buffer_mapped(bh_result) &&
  1856. !buffer_new(bh_result) &&
  1857. ret == 0)
  1858. goto out;
  1859. /* Clear state set by ocfs2_get_block. */
  1860. bh_result->b_state = 0;
  1861. }
  1862. dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
  1863. if (unlikely(dwc == NULL)) {
  1864. ret = -ENOMEM;
  1865. mlog_errno(ret);
  1866. goto out;
  1867. }
  1868. if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
  1869. ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
  1870. !dwc->dw_orphaned) {
  1871. /*
  1872. * when we are going to alloc extents beyond file size, add the
  1873. * inode to orphan dir, so we can recall those spaces when
  1874. * system crashed during write.
  1875. */
  1876. ret = ocfs2_add_inode_to_orphan(osb, inode);
  1877. if (ret < 0) {
  1878. mlog_errno(ret);
  1879. goto out;
  1880. }
  1881. dwc->dw_orphaned = 1;
  1882. }
  1883. ret = ocfs2_inode_lock(inode, &di_bh, 1);
  1884. if (ret) {
  1885. mlog_errno(ret);
  1886. goto out;
  1887. }
  1888. down_write(&oi->ip_alloc_sem);
  1889. if (first_get_block) {
  1890. if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
  1891. ret = ocfs2_zero_tail(inode, di_bh, pos);
  1892. else
  1893. ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
  1894. total_len, NULL);
  1895. if (ret < 0) {
  1896. mlog_errno(ret);
  1897. goto unlock;
  1898. }
  1899. }
  1900. ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
  1901. OCFS2_WRITE_DIRECT, NULL,
  1902. (void **)&wc, di_bh, NULL);
  1903. if (ret) {
  1904. mlog_errno(ret);
  1905. goto unlock;
  1906. }
  1907. desc = &wc->w_desc[0];
  1908. p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
  1909. BUG_ON(p_blkno == 0);
  1910. p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
  1911. map_bh(bh_result, inode->i_sb, p_blkno);
  1912. bh_result->b_size = len;
  1913. if (desc->c_needs_zero)
  1914. set_buffer_new(bh_result);
  1915. /* May sleep in end_io. It should not happen in a irq context. So defer
  1916. * it to dio work queue. */
  1917. set_buffer_defer_completion(bh_result);
  1918. if (!list_empty(&wc->w_unwritten_list)) {
  1919. struct ocfs2_unwritten_extent *ue = NULL;
  1920. ue = list_first_entry(&wc->w_unwritten_list,
  1921. struct ocfs2_unwritten_extent,
  1922. ue_node);
  1923. BUG_ON(ue->ue_cpos != desc->c_cpos);
  1924. /* The physical address may be 0, fill it. */
  1925. ue->ue_phys = desc->c_phys;
  1926. list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
  1927. dwc->dw_zero_count++;
  1928. }
  1929. ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, NULL, wc);
  1930. BUG_ON(ret != len);
  1931. ret = 0;
  1932. unlock:
  1933. up_write(&oi->ip_alloc_sem);
  1934. ocfs2_inode_unlock(inode, 1);
  1935. brelse(di_bh);
  1936. out:
  1937. if (ret < 0)
  1938. ret = -EIO;
  1939. return ret;
  1940. }
  1941. static void ocfs2_dio_end_io_write(struct inode *inode,
  1942. struct ocfs2_dio_write_ctxt *dwc,
  1943. loff_t offset,
  1944. ssize_t bytes)
  1945. {
  1946. struct ocfs2_cached_dealloc_ctxt dealloc;
  1947. struct ocfs2_extent_tree et;
  1948. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1949. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  1950. struct ocfs2_unwritten_extent *ue = NULL;
  1951. struct buffer_head *di_bh = NULL;
  1952. struct ocfs2_dinode *di;
  1953. struct ocfs2_alloc_context *data_ac = NULL;
  1954. struct ocfs2_alloc_context *meta_ac = NULL;
  1955. handle_t *handle = NULL;
  1956. loff_t end = offset + bytes;
  1957. int ret = 0, credits = 0, locked = 0;
  1958. ocfs2_init_dealloc_ctxt(&dealloc);
  1959. /* We do clear unwritten, delete orphan, change i_size here. If neither
  1960. * of these happen, we can skip all this. */
  1961. if (list_empty(&dwc->dw_zero_list) &&
  1962. end <= i_size_read(inode) &&
  1963. !dwc->dw_orphaned)
  1964. goto out;
  1965. /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
  1966. * are in that context. */
  1967. if (dwc->dw_writer_pid != task_pid_nr(current)) {
  1968. inode_lock(inode);
  1969. locked = 1;
  1970. }
  1971. ret = ocfs2_inode_lock(inode, &di_bh, 1);
  1972. if (ret < 0) {
  1973. mlog_errno(ret);
  1974. goto out;
  1975. }
  1976. down_write(&oi->ip_alloc_sem);
  1977. /* Delete orphan before acquire i_mutex. */
  1978. if (dwc->dw_orphaned) {
  1979. BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
  1980. end = end > i_size_read(inode) ? end : 0;
  1981. ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
  1982. !!end, end);
  1983. if (ret < 0)
  1984. mlog_errno(ret);
  1985. }
  1986. di = (struct ocfs2_dinode *)di_bh;
  1987. ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
  1988. ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
  1989. &data_ac, &meta_ac);
  1990. if (ret) {
  1991. mlog_errno(ret);
  1992. goto unlock;
  1993. }
  1994. credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
  1995. handle = ocfs2_start_trans(osb, credits);
  1996. if (IS_ERR(handle)) {
  1997. ret = PTR_ERR(handle);
  1998. mlog_errno(ret);
  1999. goto unlock;
  2000. }
  2001. ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
  2002. OCFS2_JOURNAL_ACCESS_WRITE);
  2003. if (ret) {
  2004. mlog_errno(ret);
  2005. goto commit;
  2006. }
  2007. list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
  2008. ret = ocfs2_mark_extent_written(inode, &et, handle,
  2009. ue->ue_cpos, 1,
  2010. ue->ue_phys,
  2011. meta_ac, &dealloc);
  2012. if (ret < 0) {
  2013. mlog_errno(ret);
  2014. break;
  2015. }
  2016. }
  2017. if (end > i_size_read(inode)) {
  2018. ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
  2019. if (ret < 0)
  2020. mlog_errno(ret);
  2021. }
  2022. commit:
  2023. ocfs2_commit_trans(osb, handle);
  2024. unlock:
  2025. up_write(&oi->ip_alloc_sem);
  2026. ocfs2_inode_unlock(inode, 1);
  2027. brelse(di_bh);
  2028. out:
  2029. if (data_ac)
  2030. ocfs2_free_alloc_context(data_ac);
  2031. if (meta_ac)
  2032. ocfs2_free_alloc_context(meta_ac);
  2033. ocfs2_run_deallocs(osb, &dealloc);
  2034. if (locked)
  2035. inode_unlock(inode);
  2036. ocfs2_dio_free_write_ctx(inode, dwc);
  2037. }
  2038. /*
  2039. * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
  2040. * particularly interested in the aio/dio case. We use the rw_lock DLM lock
  2041. * to protect io on one node from truncation on another.
  2042. */
  2043. static int ocfs2_dio_end_io(struct kiocb *iocb,
  2044. loff_t offset,
  2045. ssize_t bytes,
  2046. void *private)
  2047. {
  2048. struct inode *inode = file_inode(iocb->ki_filp);
  2049. int level;
  2050. if (bytes <= 0)
  2051. return 0;
  2052. /* this io's submitter should not have unlocked this before we could */
  2053. BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
  2054. if (private)
  2055. ocfs2_dio_end_io_write(inode, private, offset, bytes);
  2056. ocfs2_iocb_clear_rw_locked(iocb);
  2057. level = ocfs2_iocb_rw_locked_level(iocb);
  2058. ocfs2_rw_unlock(inode, level);
  2059. return 0;
  2060. }
  2061. static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
  2062. {
  2063. struct file *file = iocb->ki_filp;
  2064. struct inode *inode = file->f_mapping->host;
  2065. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  2066. get_block_t *get_block;
  2067. /*
  2068. * Fallback to buffered I/O if we see an inode without
  2069. * extents.
  2070. */
  2071. if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
  2072. return 0;
  2073. /* Fallback to buffered I/O if we do not support append dio. */
  2074. if (iocb->ki_pos + iter->count > i_size_read(inode) &&
  2075. !ocfs2_supports_append_dio(osb))
  2076. return 0;
  2077. if (iov_iter_rw(iter) == READ)
  2078. get_block = ocfs2_lock_get_block;
  2079. else
  2080. get_block = ocfs2_dio_wr_get_block;
  2081. return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
  2082. iter, get_block,
  2083. ocfs2_dio_end_io, NULL, 0);
  2084. }
  2085. const struct address_space_operations ocfs2_aops = {
  2086. .readpage = ocfs2_readpage,
  2087. .readpages = ocfs2_readpages,
  2088. .writepage = ocfs2_writepage,
  2089. .write_begin = ocfs2_write_begin,
  2090. .write_end = ocfs2_write_end,
  2091. .bmap = ocfs2_bmap,
  2092. .direct_IO = ocfs2_direct_IO,
  2093. .invalidatepage = block_invalidatepage,
  2094. .releasepage = ocfs2_releasepage,
  2095. .migratepage = buffer_migrate_page,
  2096. .is_partially_uptodate = block_is_partially_uptodate,
  2097. .error_remove_page = generic_error_remove_page,
  2098. };