mrf24j40.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411
  1. /*
  2. * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
  3. *
  4. * Copyright (C) 2012 Alan Ott <alan@signal11.us>
  5. * Signal 11 Software
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. */
  17. #include <linux/spi/spi.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/module.h>
  20. #include <linux/regmap.h>
  21. #include <linux/ieee802154.h>
  22. #include <linux/irq.h>
  23. #include <net/cfg802154.h>
  24. #include <net/mac802154.h>
  25. /* MRF24J40 Short Address Registers */
  26. #define REG_RXMCR 0x00 /* Receive MAC control */
  27. #define BIT_PROMI BIT(0)
  28. #define BIT_ERRPKT BIT(1)
  29. #define BIT_NOACKRSP BIT(5)
  30. #define BIT_PANCOORD BIT(3)
  31. #define REG_PANIDL 0x01 /* PAN ID (low) */
  32. #define REG_PANIDH 0x02 /* PAN ID (high) */
  33. #define REG_SADRL 0x03 /* Short address (low) */
  34. #define REG_SADRH 0x04 /* Short address (high) */
  35. #define REG_EADR0 0x05 /* Long address (low) (high is EADR7) */
  36. #define REG_EADR1 0x06
  37. #define REG_EADR2 0x07
  38. #define REG_EADR3 0x08
  39. #define REG_EADR4 0x09
  40. #define REG_EADR5 0x0A
  41. #define REG_EADR6 0x0B
  42. #define REG_EADR7 0x0C
  43. #define REG_RXFLUSH 0x0D
  44. #define REG_ORDER 0x10
  45. #define REG_TXMCR 0x11 /* Transmit MAC control */
  46. #define TXMCR_MIN_BE_SHIFT 3
  47. #define TXMCR_MIN_BE_MASK 0x18
  48. #define TXMCR_CSMA_RETRIES_SHIFT 0
  49. #define TXMCR_CSMA_RETRIES_MASK 0x07
  50. #define REG_ACKTMOUT 0x12
  51. #define REG_ESLOTG1 0x13
  52. #define REG_SYMTICKL 0x14
  53. #define REG_SYMTICKH 0x15
  54. #define REG_PACON0 0x16 /* Power Amplifier Control */
  55. #define REG_PACON1 0x17 /* Power Amplifier Control */
  56. #define REG_PACON2 0x18 /* Power Amplifier Control */
  57. #define REG_TXBCON0 0x1A
  58. #define REG_TXNCON 0x1B /* Transmit Normal FIFO Control */
  59. #define BIT_TXNTRIG BIT(0)
  60. #define BIT_TXNSECEN BIT(1)
  61. #define BIT_TXNACKREQ BIT(2)
  62. #define REG_TXG1CON 0x1C
  63. #define REG_TXG2CON 0x1D
  64. #define REG_ESLOTG23 0x1E
  65. #define REG_ESLOTG45 0x1F
  66. #define REG_ESLOTG67 0x20
  67. #define REG_TXPEND 0x21
  68. #define REG_WAKECON 0x22
  69. #define REG_FROMOFFSET 0x23
  70. #define REG_TXSTAT 0x24 /* TX MAC Status Register */
  71. #define REG_TXBCON1 0x25
  72. #define REG_GATECLK 0x26
  73. #define REG_TXTIME 0x27
  74. #define REG_HSYMTMRL 0x28
  75. #define REG_HSYMTMRH 0x29
  76. #define REG_SOFTRST 0x2A /* Soft Reset */
  77. #define REG_SECCON0 0x2C
  78. #define REG_SECCON1 0x2D
  79. #define REG_TXSTBL 0x2E /* TX Stabilization */
  80. #define REG_RXSR 0x30
  81. #define REG_INTSTAT 0x31 /* Interrupt Status */
  82. #define BIT_TXNIF BIT(0)
  83. #define BIT_RXIF BIT(3)
  84. #define BIT_SECIF BIT(4)
  85. #define BIT_SECIGNORE BIT(7)
  86. #define REG_INTCON 0x32 /* Interrupt Control */
  87. #define BIT_TXNIE BIT(0)
  88. #define BIT_RXIE BIT(3)
  89. #define BIT_SECIE BIT(4)
  90. #define REG_GPIO 0x33 /* GPIO */
  91. #define REG_TRISGPIO 0x34 /* GPIO direction */
  92. #define REG_SLPACK 0x35
  93. #define REG_RFCTL 0x36 /* RF Control Mode Register */
  94. #define BIT_RFRST BIT(2)
  95. #define REG_SECCR2 0x37
  96. #define REG_BBREG0 0x38
  97. #define REG_BBREG1 0x39 /* Baseband Registers */
  98. #define BIT_RXDECINV BIT(2)
  99. #define REG_BBREG2 0x3A /* */
  100. #define BBREG2_CCA_MODE_SHIFT 6
  101. #define BBREG2_CCA_MODE_MASK 0xc0
  102. #define REG_BBREG3 0x3B
  103. #define REG_BBREG4 0x3C
  104. #define REG_BBREG6 0x3E /* */
  105. #define REG_CCAEDTH 0x3F /* Energy Detection Threshold */
  106. /* MRF24J40 Long Address Registers */
  107. #define REG_RFCON0 0x200 /* RF Control Registers */
  108. #define RFCON0_CH_SHIFT 4
  109. #define RFCON0_CH_MASK 0xf0
  110. #define RFOPT_RECOMMEND 3
  111. #define REG_RFCON1 0x201
  112. #define REG_RFCON2 0x202
  113. #define REG_RFCON3 0x203
  114. #define TXPWRL_MASK 0xc0
  115. #define TXPWRL_SHIFT 6
  116. #define TXPWRL_30 0x3
  117. #define TXPWRL_20 0x2
  118. #define TXPWRL_10 0x1
  119. #define TXPWRL_0 0x0
  120. #define TXPWRS_MASK 0x38
  121. #define TXPWRS_SHIFT 3
  122. #define TXPWRS_6_3 0x7
  123. #define TXPWRS_4_9 0x6
  124. #define TXPWRS_3_7 0x5
  125. #define TXPWRS_2_8 0x4
  126. #define TXPWRS_1_9 0x3
  127. #define TXPWRS_1_2 0x2
  128. #define TXPWRS_0_5 0x1
  129. #define TXPWRS_0 0x0
  130. #define REG_RFCON5 0x205
  131. #define REG_RFCON6 0x206
  132. #define REG_RFCON7 0x207
  133. #define REG_RFCON8 0x208
  134. #define REG_SLPCAL0 0x209
  135. #define REG_SLPCAL1 0x20A
  136. #define REG_SLPCAL2 0x20B
  137. #define REG_RFSTATE 0x20F
  138. #define REG_RSSI 0x210
  139. #define REG_SLPCON0 0x211 /* Sleep Clock Control Registers */
  140. #define BIT_INTEDGE BIT(1)
  141. #define REG_SLPCON1 0x220
  142. #define REG_WAKETIMEL 0x222 /* Wake-up Time Match Value Low */
  143. #define REG_WAKETIMEH 0x223 /* Wake-up Time Match Value High */
  144. #define REG_REMCNTL 0x224
  145. #define REG_REMCNTH 0x225
  146. #define REG_MAINCNT0 0x226
  147. #define REG_MAINCNT1 0x227
  148. #define REG_MAINCNT2 0x228
  149. #define REG_MAINCNT3 0x229
  150. #define REG_TESTMODE 0x22F /* Test mode */
  151. #define REG_ASSOEAR0 0x230
  152. #define REG_ASSOEAR1 0x231
  153. #define REG_ASSOEAR2 0x232
  154. #define REG_ASSOEAR3 0x233
  155. #define REG_ASSOEAR4 0x234
  156. #define REG_ASSOEAR5 0x235
  157. #define REG_ASSOEAR6 0x236
  158. #define REG_ASSOEAR7 0x237
  159. #define REG_ASSOSAR0 0x238
  160. #define REG_ASSOSAR1 0x239
  161. #define REG_UNONCE0 0x240
  162. #define REG_UNONCE1 0x241
  163. #define REG_UNONCE2 0x242
  164. #define REG_UNONCE3 0x243
  165. #define REG_UNONCE4 0x244
  166. #define REG_UNONCE5 0x245
  167. #define REG_UNONCE6 0x246
  168. #define REG_UNONCE7 0x247
  169. #define REG_UNONCE8 0x248
  170. #define REG_UNONCE9 0x249
  171. #define REG_UNONCE10 0x24A
  172. #define REG_UNONCE11 0x24B
  173. #define REG_UNONCE12 0x24C
  174. #define REG_RX_FIFO 0x300 /* Receive FIFO */
  175. /* Device configuration: Only channels 11-26 on page 0 are supported. */
  176. #define MRF24J40_CHAN_MIN 11
  177. #define MRF24J40_CHAN_MAX 26
  178. #define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
  179. - ((u32)1 << MRF24J40_CHAN_MIN))
  180. #define TX_FIFO_SIZE 128 /* From datasheet */
  181. #define RX_FIFO_SIZE 144 /* From datasheet */
  182. #define SET_CHANNEL_DELAY_US 192 /* From datasheet */
  183. enum mrf24j40_modules { MRF24J40, MRF24J40MA, MRF24J40MC };
  184. /* Device Private Data */
  185. struct mrf24j40 {
  186. struct spi_device *spi;
  187. struct ieee802154_hw *hw;
  188. struct regmap *regmap_short;
  189. struct regmap *regmap_long;
  190. /* for writing txfifo */
  191. struct spi_message tx_msg;
  192. u8 tx_hdr_buf[2];
  193. struct spi_transfer tx_hdr_trx;
  194. u8 tx_len_buf[2];
  195. struct spi_transfer tx_len_trx;
  196. struct spi_transfer tx_buf_trx;
  197. struct sk_buff *tx_skb;
  198. /* post transmit message to send frame out */
  199. struct spi_message tx_post_msg;
  200. u8 tx_post_buf[2];
  201. struct spi_transfer tx_post_trx;
  202. /* for protect/unprotect/read length rxfifo */
  203. struct spi_message rx_msg;
  204. u8 rx_buf[3];
  205. struct spi_transfer rx_trx;
  206. /* receive handling */
  207. struct spi_message rx_buf_msg;
  208. u8 rx_addr_buf[2];
  209. struct spi_transfer rx_addr_trx;
  210. u8 rx_lqi_buf[2];
  211. struct spi_transfer rx_lqi_trx;
  212. u8 rx_fifo_buf[RX_FIFO_SIZE];
  213. struct spi_transfer rx_fifo_buf_trx;
  214. /* isr handling for reading intstat */
  215. struct spi_message irq_msg;
  216. u8 irq_buf[2];
  217. struct spi_transfer irq_trx;
  218. };
  219. /* regmap information for short address register access */
  220. #define MRF24J40_SHORT_WRITE 0x01
  221. #define MRF24J40_SHORT_READ 0x00
  222. #define MRF24J40_SHORT_NUMREGS 0x3F
  223. /* regmap information for long address register access */
  224. #define MRF24J40_LONG_ACCESS 0x80
  225. #define MRF24J40_LONG_NUMREGS 0x38F
  226. /* Read/Write SPI Commands for Short and Long Address registers. */
  227. #define MRF24J40_READSHORT(reg) ((reg) << 1)
  228. #define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
  229. #define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
  230. #define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
  231. /* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
  232. #define MAX_SPI_SPEED_HZ 10000000
  233. #define printdev(X) (&X->spi->dev)
  234. static bool
  235. mrf24j40_short_reg_writeable(struct device *dev, unsigned int reg)
  236. {
  237. switch (reg) {
  238. case REG_RXMCR:
  239. case REG_PANIDL:
  240. case REG_PANIDH:
  241. case REG_SADRL:
  242. case REG_SADRH:
  243. case REG_EADR0:
  244. case REG_EADR1:
  245. case REG_EADR2:
  246. case REG_EADR3:
  247. case REG_EADR4:
  248. case REG_EADR5:
  249. case REG_EADR6:
  250. case REG_EADR7:
  251. case REG_RXFLUSH:
  252. case REG_ORDER:
  253. case REG_TXMCR:
  254. case REG_ACKTMOUT:
  255. case REG_ESLOTG1:
  256. case REG_SYMTICKL:
  257. case REG_SYMTICKH:
  258. case REG_PACON0:
  259. case REG_PACON1:
  260. case REG_PACON2:
  261. case REG_TXBCON0:
  262. case REG_TXNCON:
  263. case REG_TXG1CON:
  264. case REG_TXG2CON:
  265. case REG_ESLOTG23:
  266. case REG_ESLOTG45:
  267. case REG_ESLOTG67:
  268. case REG_TXPEND:
  269. case REG_WAKECON:
  270. case REG_FROMOFFSET:
  271. case REG_TXBCON1:
  272. case REG_GATECLK:
  273. case REG_TXTIME:
  274. case REG_HSYMTMRL:
  275. case REG_HSYMTMRH:
  276. case REG_SOFTRST:
  277. case REG_SECCON0:
  278. case REG_SECCON1:
  279. case REG_TXSTBL:
  280. case REG_RXSR:
  281. case REG_INTCON:
  282. case REG_TRISGPIO:
  283. case REG_GPIO:
  284. case REG_RFCTL:
  285. case REG_SECCR2:
  286. case REG_SLPACK:
  287. case REG_BBREG0:
  288. case REG_BBREG1:
  289. case REG_BBREG2:
  290. case REG_BBREG3:
  291. case REG_BBREG4:
  292. case REG_BBREG6:
  293. case REG_CCAEDTH:
  294. return true;
  295. default:
  296. return false;
  297. }
  298. }
  299. static bool
  300. mrf24j40_short_reg_readable(struct device *dev, unsigned int reg)
  301. {
  302. bool rc;
  303. /* all writeable are also readable */
  304. rc = mrf24j40_short_reg_writeable(dev, reg);
  305. if (rc)
  306. return rc;
  307. /* readonly regs */
  308. switch (reg) {
  309. case REG_TXSTAT:
  310. case REG_INTSTAT:
  311. return true;
  312. default:
  313. return false;
  314. }
  315. }
  316. static bool
  317. mrf24j40_short_reg_volatile(struct device *dev, unsigned int reg)
  318. {
  319. /* can be changed during runtime */
  320. switch (reg) {
  321. case REG_TXSTAT:
  322. case REG_INTSTAT:
  323. case REG_RXFLUSH:
  324. case REG_TXNCON:
  325. case REG_SOFTRST:
  326. case REG_RFCTL:
  327. case REG_TXBCON0:
  328. case REG_TXG1CON:
  329. case REG_TXG2CON:
  330. case REG_TXBCON1:
  331. case REG_SECCON0:
  332. case REG_RXSR:
  333. case REG_SLPACK:
  334. case REG_SECCR2:
  335. case REG_BBREG6:
  336. /* use them in spi_async and regmap so it's volatile */
  337. case REG_BBREG1:
  338. return true;
  339. default:
  340. return false;
  341. }
  342. }
  343. static bool
  344. mrf24j40_short_reg_precious(struct device *dev, unsigned int reg)
  345. {
  346. /* don't clear irq line on read */
  347. switch (reg) {
  348. case REG_INTSTAT:
  349. return true;
  350. default:
  351. return false;
  352. }
  353. }
  354. static const struct regmap_config mrf24j40_short_regmap = {
  355. .name = "mrf24j40_short",
  356. .reg_bits = 7,
  357. .val_bits = 8,
  358. .pad_bits = 1,
  359. .write_flag_mask = MRF24J40_SHORT_WRITE,
  360. .read_flag_mask = MRF24J40_SHORT_READ,
  361. .cache_type = REGCACHE_RBTREE,
  362. .max_register = MRF24J40_SHORT_NUMREGS,
  363. .writeable_reg = mrf24j40_short_reg_writeable,
  364. .readable_reg = mrf24j40_short_reg_readable,
  365. .volatile_reg = mrf24j40_short_reg_volatile,
  366. .precious_reg = mrf24j40_short_reg_precious,
  367. };
  368. static bool
  369. mrf24j40_long_reg_writeable(struct device *dev, unsigned int reg)
  370. {
  371. switch (reg) {
  372. case REG_RFCON0:
  373. case REG_RFCON1:
  374. case REG_RFCON2:
  375. case REG_RFCON3:
  376. case REG_RFCON5:
  377. case REG_RFCON6:
  378. case REG_RFCON7:
  379. case REG_RFCON8:
  380. case REG_SLPCAL2:
  381. case REG_SLPCON0:
  382. case REG_SLPCON1:
  383. case REG_WAKETIMEL:
  384. case REG_WAKETIMEH:
  385. case REG_REMCNTL:
  386. case REG_REMCNTH:
  387. case REG_MAINCNT0:
  388. case REG_MAINCNT1:
  389. case REG_MAINCNT2:
  390. case REG_MAINCNT3:
  391. case REG_TESTMODE:
  392. case REG_ASSOEAR0:
  393. case REG_ASSOEAR1:
  394. case REG_ASSOEAR2:
  395. case REG_ASSOEAR3:
  396. case REG_ASSOEAR4:
  397. case REG_ASSOEAR5:
  398. case REG_ASSOEAR6:
  399. case REG_ASSOEAR7:
  400. case REG_ASSOSAR0:
  401. case REG_ASSOSAR1:
  402. case REG_UNONCE0:
  403. case REG_UNONCE1:
  404. case REG_UNONCE2:
  405. case REG_UNONCE3:
  406. case REG_UNONCE4:
  407. case REG_UNONCE5:
  408. case REG_UNONCE6:
  409. case REG_UNONCE7:
  410. case REG_UNONCE8:
  411. case REG_UNONCE9:
  412. case REG_UNONCE10:
  413. case REG_UNONCE11:
  414. case REG_UNONCE12:
  415. return true;
  416. default:
  417. return false;
  418. }
  419. }
  420. static bool
  421. mrf24j40_long_reg_readable(struct device *dev, unsigned int reg)
  422. {
  423. bool rc;
  424. /* all writeable are also readable */
  425. rc = mrf24j40_long_reg_writeable(dev, reg);
  426. if (rc)
  427. return rc;
  428. /* readonly regs */
  429. switch (reg) {
  430. case REG_SLPCAL0:
  431. case REG_SLPCAL1:
  432. case REG_RFSTATE:
  433. case REG_RSSI:
  434. return true;
  435. default:
  436. return false;
  437. }
  438. }
  439. static bool
  440. mrf24j40_long_reg_volatile(struct device *dev, unsigned int reg)
  441. {
  442. /* can be changed during runtime */
  443. switch (reg) {
  444. case REG_SLPCAL0:
  445. case REG_SLPCAL1:
  446. case REG_SLPCAL2:
  447. case REG_RFSTATE:
  448. case REG_RSSI:
  449. case REG_MAINCNT3:
  450. return true;
  451. default:
  452. return false;
  453. }
  454. }
  455. static const struct regmap_config mrf24j40_long_regmap = {
  456. .name = "mrf24j40_long",
  457. .reg_bits = 11,
  458. .val_bits = 8,
  459. .pad_bits = 5,
  460. .write_flag_mask = MRF24J40_LONG_ACCESS,
  461. .read_flag_mask = MRF24J40_LONG_ACCESS,
  462. .cache_type = REGCACHE_RBTREE,
  463. .max_register = MRF24J40_LONG_NUMREGS,
  464. .writeable_reg = mrf24j40_long_reg_writeable,
  465. .readable_reg = mrf24j40_long_reg_readable,
  466. .volatile_reg = mrf24j40_long_reg_volatile,
  467. };
  468. static int mrf24j40_long_regmap_write(void *context, const void *data,
  469. size_t count)
  470. {
  471. struct spi_device *spi = context;
  472. u8 buf[3];
  473. if (count > 3)
  474. return -EINVAL;
  475. /* regmap supports read/write mask only in frist byte
  476. * long write access need to set the 12th bit, so we
  477. * make special handling for write.
  478. */
  479. memcpy(buf, data, count);
  480. buf[1] |= (1 << 4);
  481. return spi_write(spi, buf, count);
  482. }
  483. static int
  484. mrf24j40_long_regmap_read(void *context, const void *reg, size_t reg_size,
  485. void *val, size_t val_size)
  486. {
  487. struct spi_device *spi = context;
  488. return spi_write_then_read(spi, reg, reg_size, val, val_size);
  489. }
  490. static const struct regmap_bus mrf24j40_long_regmap_bus = {
  491. .write = mrf24j40_long_regmap_write,
  492. .read = mrf24j40_long_regmap_read,
  493. .reg_format_endian_default = REGMAP_ENDIAN_BIG,
  494. .val_format_endian_default = REGMAP_ENDIAN_BIG,
  495. };
  496. static void write_tx_buf_complete(void *context)
  497. {
  498. struct mrf24j40 *devrec = context;
  499. __le16 fc = ieee802154_get_fc_from_skb(devrec->tx_skb);
  500. u8 val = BIT_TXNTRIG;
  501. int ret;
  502. if (ieee802154_is_secen(fc))
  503. val |= BIT_TXNSECEN;
  504. if (ieee802154_is_ackreq(fc))
  505. val |= BIT_TXNACKREQ;
  506. devrec->tx_post_msg.complete = NULL;
  507. devrec->tx_post_buf[0] = MRF24J40_WRITESHORT(REG_TXNCON);
  508. devrec->tx_post_buf[1] = val;
  509. ret = spi_async(devrec->spi, &devrec->tx_post_msg);
  510. if (ret)
  511. dev_err(printdev(devrec), "SPI write Failed for transmit buf\n");
  512. }
  513. /* This function relies on an undocumented write method. Once a write command
  514. and address is set, as many bytes of data as desired can be clocked into
  515. the device. The datasheet only shows setting one byte at a time. */
  516. static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
  517. const u8 *data, size_t length)
  518. {
  519. u16 cmd;
  520. int ret;
  521. /* Range check the length. 2 bytes are used for the length fields.*/
  522. if (length > TX_FIFO_SIZE-2) {
  523. dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
  524. length = TX_FIFO_SIZE-2;
  525. }
  526. cmd = MRF24J40_WRITELONG(reg);
  527. devrec->tx_hdr_buf[0] = cmd >> 8 & 0xff;
  528. devrec->tx_hdr_buf[1] = cmd & 0xff;
  529. devrec->tx_len_buf[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
  530. devrec->tx_len_buf[1] = length; /* Total length */
  531. devrec->tx_buf_trx.tx_buf = data;
  532. devrec->tx_buf_trx.len = length;
  533. ret = spi_async(devrec->spi, &devrec->tx_msg);
  534. if (ret)
  535. dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
  536. return ret;
  537. }
  538. static int mrf24j40_tx(struct ieee802154_hw *hw, struct sk_buff *skb)
  539. {
  540. struct mrf24j40 *devrec = hw->priv;
  541. dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
  542. devrec->tx_skb = skb;
  543. return write_tx_buf(devrec, 0x000, skb->data, skb->len);
  544. }
  545. static int mrf24j40_ed(struct ieee802154_hw *hw, u8 *level)
  546. {
  547. /* TODO: */
  548. pr_warn("mrf24j40: ed not implemented\n");
  549. *level = 0;
  550. return 0;
  551. }
  552. static int mrf24j40_start(struct ieee802154_hw *hw)
  553. {
  554. struct mrf24j40 *devrec = hw->priv;
  555. dev_dbg(printdev(devrec), "start\n");
  556. /* Clear TXNIE and RXIE. Enable interrupts */
  557. return regmap_update_bits(devrec->regmap_short, REG_INTCON,
  558. BIT_TXNIE | BIT_RXIE | BIT_SECIE, 0);
  559. }
  560. static void mrf24j40_stop(struct ieee802154_hw *hw)
  561. {
  562. struct mrf24j40 *devrec = hw->priv;
  563. dev_dbg(printdev(devrec), "stop\n");
  564. /* Set TXNIE and RXIE. Disable Interrupts */
  565. regmap_update_bits(devrec->regmap_short, REG_INTCON,
  566. BIT_TXNIE | BIT_TXNIE, BIT_TXNIE | BIT_TXNIE);
  567. }
  568. static int mrf24j40_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
  569. {
  570. struct mrf24j40 *devrec = hw->priv;
  571. u8 val;
  572. int ret;
  573. dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
  574. WARN_ON(page != 0);
  575. WARN_ON(channel < MRF24J40_CHAN_MIN);
  576. WARN_ON(channel > MRF24J40_CHAN_MAX);
  577. /* Set Channel TODO */
  578. val = (channel - 11) << RFCON0_CH_SHIFT | RFOPT_RECOMMEND;
  579. ret = regmap_update_bits(devrec->regmap_long, REG_RFCON0,
  580. RFCON0_CH_MASK, val);
  581. if (ret)
  582. return ret;
  583. /* RF Reset */
  584. ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST,
  585. BIT_RFRST);
  586. if (ret)
  587. return ret;
  588. ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST, 0);
  589. if (!ret)
  590. udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
  591. return ret;
  592. }
  593. static int mrf24j40_filter(struct ieee802154_hw *hw,
  594. struct ieee802154_hw_addr_filt *filt,
  595. unsigned long changed)
  596. {
  597. struct mrf24j40 *devrec = hw->priv;
  598. dev_dbg(printdev(devrec), "filter\n");
  599. if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
  600. /* Short Addr */
  601. u8 addrh, addrl;
  602. addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff;
  603. addrl = le16_to_cpu(filt->short_addr) & 0xff;
  604. regmap_write(devrec->regmap_short, REG_SADRH, addrh);
  605. regmap_write(devrec->regmap_short, REG_SADRL, addrl);
  606. dev_dbg(printdev(devrec),
  607. "Set short addr to %04hx\n", filt->short_addr);
  608. }
  609. if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
  610. /* Device Address */
  611. u8 i, addr[8];
  612. memcpy(addr, &filt->ieee_addr, 8);
  613. for (i = 0; i < 8; i++)
  614. regmap_write(devrec->regmap_short, REG_EADR0 + i,
  615. addr[i]);
  616. #ifdef DEBUG
  617. pr_debug("Set long addr to: ");
  618. for (i = 0; i < 8; i++)
  619. pr_debug("%02hhx ", addr[7 - i]);
  620. pr_debug("\n");
  621. #endif
  622. }
  623. if (changed & IEEE802154_AFILT_PANID_CHANGED) {
  624. /* PAN ID */
  625. u8 panidl, panidh;
  626. panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff;
  627. panidl = le16_to_cpu(filt->pan_id) & 0xff;
  628. regmap_write(devrec->regmap_short, REG_PANIDH, panidh);
  629. regmap_write(devrec->regmap_short, REG_PANIDL, panidl);
  630. dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
  631. }
  632. if (changed & IEEE802154_AFILT_PANC_CHANGED) {
  633. /* Pan Coordinator */
  634. u8 val;
  635. int ret;
  636. if (filt->pan_coord)
  637. val = BIT_PANCOORD;
  638. else
  639. val = 0;
  640. ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
  641. BIT_PANCOORD, val);
  642. if (ret)
  643. return ret;
  644. /* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
  645. * REG_ORDER is maintained as default (no beacon/superframe).
  646. */
  647. dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
  648. filt->pan_coord ? "on" : "off");
  649. }
  650. return 0;
  651. }
  652. static void mrf24j40_handle_rx_read_buf_unlock(struct mrf24j40 *devrec)
  653. {
  654. int ret;
  655. /* Turn back on reception of packets off the air. */
  656. devrec->rx_msg.complete = NULL;
  657. devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
  658. devrec->rx_buf[1] = 0x00; /* CLR RXDECINV */
  659. ret = spi_async(devrec->spi, &devrec->rx_msg);
  660. if (ret)
  661. dev_err(printdev(devrec), "failed to unlock rx buffer\n");
  662. }
  663. static void mrf24j40_handle_rx_read_buf_complete(void *context)
  664. {
  665. struct mrf24j40 *devrec = context;
  666. u8 len = devrec->rx_buf[2];
  667. u8 rx_local_buf[RX_FIFO_SIZE];
  668. struct sk_buff *skb;
  669. memcpy(rx_local_buf, devrec->rx_fifo_buf, len);
  670. mrf24j40_handle_rx_read_buf_unlock(devrec);
  671. skb = dev_alloc_skb(IEEE802154_MTU);
  672. if (!skb) {
  673. dev_err(printdev(devrec), "failed to allocate skb\n");
  674. return;
  675. }
  676. memcpy(skb_put(skb, len), rx_local_buf, len);
  677. ieee802154_rx_irqsafe(devrec->hw, skb, 0);
  678. #ifdef DEBUG
  679. print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ", DUMP_PREFIX_OFFSET, 16, 1,
  680. rx_local_buf, len, 0);
  681. pr_debug("mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
  682. devrec->rx_lqi_buf[0], devrec->rx_lqi_buf[1]);
  683. #endif
  684. }
  685. static void mrf24j40_handle_rx_read_buf(void *context)
  686. {
  687. struct mrf24j40 *devrec = context;
  688. u16 cmd;
  689. int ret;
  690. /* if length is invalid read the full MTU */
  691. if (!ieee802154_is_valid_psdu_len(devrec->rx_buf[2]))
  692. devrec->rx_buf[2] = IEEE802154_MTU;
  693. cmd = MRF24J40_READLONG(REG_RX_FIFO + 1);
  694. devrec->rx_addr_buf[0] = cmd >> 8 & 0xff;
  695. devrec->rx_addr_buf[1] = cmd & 0xff;
  696. devrec->rx_fifo_buf_trx.len = devrec->rx_buf[2];
  697. ret = spi_async(devrec->spi, &devrec->rx_buf_msg);
  698. if (ret) {
  699. dev_err(printdev(devrec), "failed to read rx buffer\n");
  700. mrf24j40_handle_rx_read_buf_unlock(devrec);
  701. }
  702. }
  703. static void mrf24j40_handle_rx_read_len(void *context)
  704. {
  705. struct mrf24j40 *devrec = context;
  706. u16 cmd;
  707. int ret;
  708. /* read the length of received frame */
  709. devrec->rx_msg.complete = mrf24j40_handle_rx_read_buf;
  710. devrec->rx_trx.len = 3;
  711. cmd = MRF24J40_READLONG(REG_RX_FIFO);
  712. devrec->rx_buf[0] = cmd >> 8 & 0xff;
  713. devrec->rx_buf[1] = cmd & 0xff;
  714. ret = spi_async(devrec->spi, &devrec->rx_msg);
  715. if (ret) {
  716. dev_err(printdev(devrec), "failed to read rx buffer length\n");
  717. mrf24j40_handle_rx_read_buf_unlock(devrec);
  718. }
  719. }
  720. static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
  721. {
  722. /* Turn off reception of packets off the air. This prevents the
  723. * device from overwriting the buffer while we're reading it.
  724. */
  725. devrec->rx_msg.complete = mrf24j40_handle_rx_read_len;
  726. devrec->rx_trx.len = 2;
  727. devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
  728. devrec->rx_buf[1] = BIT_RXDECINV; /* SET RXDECINV */
  729. return spi_async(devrec->spi, &devrec->rx_msg);
  730. }
  731. static int
  732. mrf24j40_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
  733. u8 retries)
  734. {
  735. struct mrf24j40 *devrec = hw->priv;
  736. u8 val;
  737. /* min_be */
  738. val = min_be << TXMCR_MIN_BE_SHIFT;
  739. /* csma backoffs */
  740. val |= retries << TXMCR_CSMA_RETRIES_SHIFT;
  741. return regmap_update_bits(devrec->regmap_short, REG_TXMCR,
  742. TXMCR_MIN_BE_MASK | TXMCR_CSMA_RETRIES_MASK,
  743. val);
  744. }
  745. static int mrf24j40_set_cca_mode(struct ieee802154_hw *hw,
  746. const struct wpan_phy_cca *cca)
  747. {
  748. struct mrf24j40 *devrec = hw->priv;
  749. u8 val;
  750. /* mapping 802.15.4 to driver spec */
  751. switch (cca->mode) {
  752. case NL802154_CCA_ENERGY:
  753. val = 2;
  754. break;
  755. case NL802154_CCA_CARRIER:
  756. val = 1;
  757. break;
  758. case NL802154_CCA_ENERGY_CARRIER:
  759. switch (cca->opt) {
  760. case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
  761. val = 3;
  762. break;
  763. default:
  764. return -EINVAL;
  765. }
  766. break;
  767. default:
  768. return -EINVAL;
  769. }
  770. return regmap_update_bits(devrec->regmap_short, REG_BBREG2,
  771. BBREG2_CCA_MODE_MASK,
  772. val << BBREG2_CCA_MODE_SHIFT);
  773. }
  774. /* array for representing ed levels */
  775. static const s32 mrf24j40_ed_levels[] = {
  776. -9000, -8900, -8800, -8700, -8600, -8500, -8400, -8300, -8200, -8100,
  777. -8000, -7900, -7800, -7700, -7600, -7500, -7400, -7300, -7200, -7100,
  778. -7000, -6900, -6800, -6700, -6600, -6500, -6400, -6300, -6200, -6100,
  779. -6000, -5900, -5800, -5700, -5600, -5500, -5400, -5300, -5200, -5100,
  780. -5000, -4900, -4800, -4700, -4600, -4500, -4400, -4300, -4200, -4100,
  781. -4000, -3900, -3800, -3700, -3600, -3500
  782. };
  783. /* map ed levels to register value */
  784. static const s32 mrf24j40_ed_levels_map[][2] = {
  785. { -9000, 0 }, { -8900, 1 }, { -8800, 2 }, { -8700, 5 }, { -8600, 9 },
  786. { -8500, 13 }, { -8400, 18 }, { -8300, 23 }, { -8200, 27 },
  787. { -8100, 32 }, { -8000, 37 }, { -7900, 43 }, { -7800, 48 },
  788. { -7700, 53 }, { -7600, 58 }, { -7500, 63 }, { -7400, 68 },
  789. { -7300, 73 }, { -7200, 78 }, { -7100, 83 }, { -7000, 89 },
  790. { -6900, 95 }, { -6800, 100 }, { -6700, 107 }, { -6600, 111 },
  791. { -6500, 117 }, { -6400, 121 }, { -6300, 125 }, { -6200, 129 },
  792. { -6100, 133 }, { -6000, 138 }, { -5900, 143 }, { -5800, 148 },
  793. { -5700, 153 }, { -5600, 159 }, { -5500, 165 }, { -5400, 170 },
  794. { -5300, 176 }, { -5200, 183 }, { -5100, 188 }, { -5000, 193 },
  795. { -4900, 198 }, { -4800, 203 }, { -4700, 207 }, { -4600, 212 },
  796. { -4500, 216 }, { -4400, 221 }, { -4300, 225 }, { -4200, 228 },
  797. { -4100, 233 }, { -4000, 239 }, { -3900, 245 }, { -3800, 250 },
  798. { -3700, 253 }, { -3600, 254 }, { -3500, 255 },
  799. };
  800. static int mrf24j40_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
  801. {
  802. struct mrf24j40 *devrec = hw->priv;
  803. int i;
  804. for (i = 0; i < ARRAY_SIZE(mrf24j40_ed_levels_map); i++) {
  805. if (mrf24j40_ed_levels_map[i][0] == mbm)
  806. return regmap_write(devrec->regmap_short, REG_CCAEDTH,
  807. mrf24j40_ed_levels_map[i][1]);
  808. }
  809. return -EINVAL;
  810. }
  811. static const s32 mrf24j40ma_powers[] = {
  812. 0, -50, -120, -190, -280, -370, -490, -630, -1000, -1050, -1120, -1190,
  813. -1280, -1370, -1490, -1630, -2000, -2050, -2120, -2190, -2280, -2370,
  814. -2490, -2630, -3000, -3050, -3120, -3190, -3280, -3370, -3490, -3630,
  815. };
  816. static int mrf24j40_set_txpower(struct ieee802154_hw *hw, s32 mbm)
  817. {
  818. struct mrf24j40 *devrec = hw->priv;
  819. s32 small_scale;
  820. u8 val;
  821. if (0 >= mbm && mbm > -1000) {
  822. val = TXPWRL_0 << TXPWRL_SHIFT;
  823. small_scale = mbm;
  824. } else if (-1000 >= mbm && mbm > -2000) {
  825. val = TXPWRL_10 << TXPWRL_SHIFT;
  826. small_scale = mbm + 1000;
  827. } else if (-2000 >= mbm && mbm > -3000) {
  828. val = TXPWRL_20 << TXPWRL_SHIFT;
  829. small_scale = mbm + 2000;
  830. } else if (-3000 >= mbm && mbm > -4000) {
  831. val = TXPWRL_30 << TXPWRL_SHIFT;
  832. small_scale = mbm + 3000;
  833. } else {
  834. return -EINVAL;
  835. }
  836. switch (small_scale) {
  837. case 0:
  838. val |= (TXPWRS_0 << TXPWRS_SHIFT);
  839. break;
  840. case -50:
  841. val |= (TXPWRS_0_5 << TXPWRS_SHIFT);
  842. break;
  843. case -120:
  844. val |= (TXPWRS_1_2 << TXPWRS_SHIFT);
  845. break;
  846. case -190:
  847. val |= (TXPWRS_1_9 << TXPWRS_SHIFT);
  848. break;
  849. case -280:
  850. val |= (TXPWRS_2_8 << TXPWRS_SHIFT);
  851. break;
  852. case -370:
  853. val |= (TXPWRS_3_7 << TXPWRS_SHIFT);
  854. break;
  855. case -490:
  856. val |= (TXPWRS_4_9 << TXPWRS_SHIFT);
  857. break;
  858. case -630:
  859. val |= (TXPWRS_6_3 << TXPWRS_SHIFT);
  860. break;
  861. default:
  862. return -EINVAL;
  863. }
  864. return regmap_update_bits(devrec->regmap_long, REG_RFCON3,
  865. TXPWRL_MASK | TXPWRS_MASK, val);
  866. }
  867. static int mrf24j40_set_promiscuous_mode(struct ieee802154_hw *hw, bool on)
  868. {
  869. struct mrf24j40 *devrec = hw->priv;
  870. int ret;
  871. if (on) {
  872. /* set PROMI, ERRPKT and NOACKRSP */
  873. ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
  874. BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
  875. BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP);
  876. } else {
  877. /* clear PROMI, ERRPKT and NOACKRSP */
  878. ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
  879. BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
  880. 0);
  881. }
  882. return ret;
  883. }
  884. static const struct ieee802154_ops mrf24j40_ops = {
  885. .owner = THIS_MODULE,
  886. .xmit_async = mrf24j40_tx,
  887. .ed = mrf24j40_ed,
  888. .start = mrf24j40_start,
  889. .stop = mrf24j40_stop,
  890. .set_channel = mrf24j40_set_channel,
  891. .set_hw_addr_filt = mrf24j40_filter,
  892. .set_csma_params = mrf24j40_csma_params,
  893. .set_cca_mode = mrf24j40_set_cca_mode,
  894. .set_cca_ed_level = mrf24j40_set_cca_ed_level,
  895. .set_txpower = mrf24j40_set_txpower,
  896. .set_promiscuous_mode = mrf24j40_set_promiscuous_mode,
  897. };
  898. static void mrf24j40_intstat_complete(void *context)
  899. {
  900. struct mrf24j40 *devrec = context;
  901. u8 intstat = devrec->irq_buf[1];
  902. enable_irq(devrec->spi->irq);
  903. /* Ignore Rx security decryption */
  904. if (intstat & BIT_SECIF)
  905. regmap_write_async(devrec->regmap_short, REG_SECCON0,
  906. BIT_SECIGNORE);
  907. /* Check for TX complete */
  908. if (intstat & BIT_TXNIF)
  909. ieee802154_xmit_complete(devrec->hw, devrec->tx_skb, false);
  910. /* Check for Rx */
  911. if (intstat & BIT_RXIF)
  912. mrf24j40_handle_rx(devrec);
  913. }
  914. static irqreturn_t mrf24j40_isr(int irq, void *data)
  915. {
  916. struct mrf24j40 *devrec = data;
  917. int ret;
  918. disable_irq_nosync(irq);
  919. devrec->irq_buf[0] = MRF24J40_READSHORT(REG_INTSTAT);
  920. devrec->irq_buf[1] = 0;
  921. /* Read the interrupt status */
  922. ret = spi_async(devrec->spi, &devrec->irq_msg);
  923. if (ret) {
  924. enable_irq(irq);
  925. return IRQ_NONE;
  926. }
  927. return IRQ_HANDLED;
  928. }
  929. static int mrf24j40_hw_init(struct mrf24j40 *devrec)
  930. {
  931. u32 irq_type;
  932. int ret;
  933. /* Initialize the device.
  934. From datasheet section 3.2: Initialization. */
  935. ret = regmap_write(devrec->regmap_short, REG_SOFTRST, 0x07);
  936. if (ret)
  937. goto err_ret;
  938. ret = regmap_write(devrec->regmap_short, REG_PACON2, 0x98);
  939. if (ret)
  940. goto err_ret;
  941. ret = regmap_write(devrec->regmap_short, REG_TXSTBL, 0x95);
  942. if (ret)
  943. goto err_ret;
  944. ret = regmap_write(devrec->regmap_long, REG_RFCON0, 0x03);
  945. if (ret)
  946. goto err_ret;
  947. ret = regmap_write(devrec->regmap_long, REG_RFCON1, 0x01);
  948. if (ret)
  949. goto err_ret;
  950. ret = regmap_write(devrec->regmap_long, REG_RFCON2, 0x80);
  951. if (ret)
  952. goto err_ret;
  953. ret = regmap_write(devrec->regmap_long, REG_RFCON6, 0x90);
  954. if (ret)
  955. goto err_ret;
  956. ret = regmap_write(devrec->regmap_long, REG_RFCON7, 0x80);
  957. if (ret)
  958. goto err_ret;
  959. ret = regmap_write(devrec->regmap_long, REG_RFCON8, 0x10);
  960. if (ret)
  961. goto err_ret;
  962. ret = regmap_write(devrec->regmap_long, REG_SLPCON1, 0x21);
  963. if (ret)
  964. goto err_ret;
  965. ret = regmap_write(devrec->regmap_short, REG_BBREG2, 0x80);
  966. if (ret)
  967. goto err_ret;
  968. ret = regmap_write(devrec->regmap_short, REG_CCAEDTH, 0x60);
  969. if (ret)
  970. goto err_ret;
  971. ret = regmap_write(devrec->regmap_short, REG_BBREG6, 0x40);
  972. if (ret)
  973. goto err_ret;
  974. ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x04);
  975. if (ret)
  976. goto err_ret;
  977. ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x0);
  978. if (ret)
  979. goto err_ret;
  980. udelay(192);
  981. /* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
  982. ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR, 0x03, 0x00);
  983. if (ret)
  984. goto err_ret;
  985. if (spi_get_device_id(devrec->spi)->driver_data == MRF24J40MC) {
  986. /* Enable external amplifier.
  987. * From MRF24J40MC datasheet section 1.3: Operation.
  988. */
  989. regmap_update_bits(devrec->regmap_long, REG_TESTMODE, 0x07,
  990. 0x07);
  991. /* Set GPIO3 as output. */
  992. regmap_update_bits(devrec->regmap_short, REG_TRISGPIO, 0x08,
  993. 0x08);
  994. /* Set GPIO3 HIGH to enable U5 voltage regulator */
  995. regmap_update_bits(devrec->regmap_short, REG_GPIO, 0x08, 0x08);
  996. /* Reduce TX pwr to meet FCC requirements.
  997. * From MRF24J40MC datasheet section 3.1.1
  998. */
  999. regmap_write(devrec->regmap_long, REG_RFCON3, 0x28);
  1000. }
  1001. irq_type = irq_get_trigger_type(devrec->spi->irq);
  1002. if (irq_type == IRQ_TYPE_EDGE_RISING ||
  1003. irq_type == IRQ_TYPE_EDGE_FALLING)
  1004. dev_warn(&devrec->spi->dev,
  1005. "Using edge triggered irq's are not recommended, because it can cause races and result in a non-functional driver!\n");
  1006. switch (irq_type) {
  1007. case IRQ_TYPE_EDGE_RISING:
  1008. case IRQ_TYPE_LEVEL_HIGH:
  1009. /* set interrupt polarity to rising */
  1010. ret = regmap_update_bits(devrec->regmap_long, REG_SLPCON0,
  1011. BIT_INTEDGE, BIT_INTEDGE);
  1012. if (ret)
  1013. goto err_ret;
  1014. break;
  1015. default:
  1016. /* default is falling edge */
  1017. break;
  1018. }
  1019. return 0;
  1020. err_ret:
  1021. return ret;
  1022. }
  1023. static void
  1024. mrf24j40_setup_tx_spi_messages(struct mrf24j40 *devrec)
  1025. {
  1026. spi_message_init(&devrec->tx_msg);
  1027. devrec->tx_msg.context = devrec;
  1028. devrec->tx_msg.complete = write_tx_buf_complete;
  1029. devrec->tx_hdr_trx.len = 2;
  1030. devrec->tx_hdr_trx.tx_buf = devrec->tx_hdr_buf;
  1031. spi_message_add_tail(&devrec->tx_hdr_trx, &devrec->tx_msg);
  1032. devrec->tx_len_trx.len = 2;
  1033. devrec->tx_len_trx.tx_buf = devrec->tx_len_buf;
  1034. spi_message_add_tail(&devrec->tx_len_trx, &devrec->tx_msg);
  1035. spi_message_add_tail(&devrec->tx_buf_trx, &devrec->tx_msg);
  1036. spi_message_init(&devrec->tx_post_msg);
  1037. devrec->tx_post_msg.context = devrec;
  1038. devrec->tx_post_trx.len = 2;
  1039. devrec->tx_post_trx.tx_buf = devrec->tx_post_buf;
  1040. spi_message_add_tail(&devrec->tx_post_trx, &devrec->tx_post_msg);
  1041. }
  1042. static void
  1043. mrf24j40_setup_rx_spi_messages(struct mrf24j40 *devrec)
  1044. {
  1045. spi_message_init(&devrec->rx_msg);
  1046. devrec->rx_msg.context = devrec;
  1047. devrec->rx_trx.len = 2;
  1048. devrec->rx_trx.tx_buf = devrec->rx_buf;
  1049. devrec->rx_trx.rx_buf = devrec->rx_buf;
  1050. spi_message_add_tail(&devrec->rx_trx, &devrec->rx_msg);
  1051. spi_message_init(&devrec->rx_buf_msg);
  1052. devrec->rx_buf_msg.context = devrec;
  1053. devrec->rx_buf_msg.complete = mrf24j40_handle_rx_read_buf_complete;
  1054. devrec->rx_addr_trx.len = 2;
  1055. devrec->rx_addr_trx.tx_buf = devrec->rx_addr_buf;
  1056. spi_message_add_tail(&devrec->rx_addr_trx, &devrec->rx_buf_msg);
  1057. devrec->rx_fifo_buf_trx.rx_buf = devrec->rx_fifo_buf;
  1058. spi_message_add_tail(&devrec->rx_fifo_buf_trx, &devrec->rx_buf_msg);
  1059. devrec->rx_lqi_trx.len = 2;
  1060. devrec->rx_lqi_trx.rx_buf = devrec->rx_lqi_buf;
  1061. spi_message_add_tail(&devrec->rx_lqi_trx, &devrec->rx_buf_msg);
  1062. }
  1063. static void
  1064. mrf24j40_setup_irq_spi_messages(struct mrf24j40 *devrec)
  1065. {
  1066. spi_message_init(&devrec->irq_msg);
  1067. devrec->irq_msg.context = devrec;
  1068. devrec->irq_msg.complete = mrf24j40_intstat_complete;
  1069. devrec->irq_trx.len = 2;
  1070. devrec->irq_trx.tx_buf = devrec->irq_buf;
  1071. devrec->irq_trx.rx_buf = devrec->irq_buf;
  1072. spi_message_add_tail(&devrec->irq_trx, &devrec->irq_msg);
  1073. }
  1074. static void mrf24j40_phy_setup(struct mrf24j40 *devrec)
  1075. {
  1076. ieee802154_random_extended_addr(&devrec->hw->phy->perm_extended_addr);
  1077. devrec->hw->phy->current_channel = 11;
  1078. /* mrf24j40 supports max_minbe 0 - 3 */
  1079. devrec->hw->phy->supported.max_minbe = 3;
  1080. /* datasheet doesn't say anything about max_be, but we have min_be
  1081. * So we assume the max_be default.
  1082. */
  1083. devrec->hw->phy->supported.min_maxbe = 5;
  1084. devrec->hw->phy->supported.max_maxbe = 5;
  1085. devrec->hw->phy->cca.mode = NL802154_CCA_CARRIER;
  1086. devrec->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
  1087. BIT(NL802154_CCA_CARRIER) |
  1088. BIT(NL802154_CCA_ENERGY_CARRIER);
  1089. devrec->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND);
  1090. devrec->hw->phy->cca_ed_level = -6900;
  1091. devrec->hw->phy->supported.cca_ed_levels = mrf24j40_ed_levels;
  1092. devrec->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(mrf24j40_ed_levels);
  1093. switch (spi_get_device_id(devrec->spi)->driver_data) {
  1094. case MRF24J40:
  1095. case MRF24J40MA:
  1096. devrec->hw->phy->supported.tx_powers = mrf24j40ma_powers;
  1097. devrec->hw->phy->supported.tx_powers_size = ARRAY_SIZE(mrf24j40ma_powers);
  1098. devrec->hw->phy->flags |= WPAN_PHY_FLAG_TXPOWER;
  1099. break;
  1100. default:
  1101. break;
  1102. }
  1103. }
  1104. static int mrf24j40_probe(struct spi_device *spi)
  1105. {
  1106. int ret = -ENOMEM, irq_type;
  1107. struct ieee802154_hw *hw;
  1108. struct mrf24j40 *devrec;
  1109. dev_info(&spi->dev, "probe(). IRQ: %d\n", spi->irq);
  1110. /* Register with the 802154 subsystem */
  1111. hw = ieee802154_alloc_hw(sizeof(*devrec), &mrf24j40_ops);
  1112. if (!hw)
  1113. goto err_ret;
  1114. devrec = hw->priv;
  1115. devrec->spi = spi;
  1116. spi_set_drvdata(spi, devrec);
  1117. devrec->hw = hw;
  1118. devrec->hw->parent = &spi->dev;
  1119. devrec->hw->phy->supported.channels[0] = CHANNEL_MASK;
  1120. devrec->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT |
  1121. IEEE802154_HW_CSMA_PARAMS |
  1122. IEEE802154_HW_PROMISCUOUS;
  1123. devrec->hw->phy->flags = WPAN_PHY_FLAG_CCA_MODE |
  1124. WPAN_PHY_FLAG_CCA_ED_LEVEL;
  1125. mrf24j40_setup_tx_spi_messages(devrec);
  1126. mrf24j40_setup_rx_spi_messages(devrec);
  1127. mrf24j40_setup_irq_spi_messages(devrec);
  1128. devrec->regmap_short = devm_regmap_init_spi(spi,
  1129. &mrf24j40_short_regmap);
  1130. if (IS_ERR(devrec->regmap_short)) {
  1131. ret = PTR_ERR(devrec->regmap_short);
  1132. dev_err(&spi->dev, "Failed to allocate short register map: %d\n",
  1133. ret);
  1134. goto err_register_device;
  1135. }
  1136. devrec->regmap_long = devm_regmap_init(&spi->dev,
  1137. &mrf24j40_long_regmap_bus,
  1138. spi, &mrf24j40_long_regmap);
  1139. if (IS_ERR(devrec->regmap_long)) {
  1140. ret = PTR_ERR(devrec->regmap_long);
  1141. dev_err(&spi->dev, "Failed to allocate long register map: %d\n",
  1142. ret);
  1143. goto err_register_device;
  1144. }
  1145. if (spi->max_speed_hz > MAX_SPI_SPEED_HZ) {
  1146. dev_warn(&spi->dev, "spi clock above possible maximum: %d",
  1147. MAX_SPI_SPEED_HZ);
  1148. return -EINVAL;
  1149. }
  1150. ret = mrf24j40_hw_init(devrec);
  1151. if (ret)
  1152. goto err_register_device;
  1153. mrf24j40_phy_setup(devrec);
  1154. /* request IRQF_TRIGGER_LOW as fallback default */
  1155. irq_type = irq_get_trigger_type(spi->irq);
  1156. if (!irq_type)
  1157. irq_type = IRQF_TRIGGER_LOW;
  1158. ret = devm_request_irq(&spi->dev, spi->irq, mrf24j40_isr,
  1159. irq_type, dev_name(&spi->dev), devrec);
  1160. if (ret) {
  1161. dev_err(printdev(devrec), "Unable to get IRQ");
  1162. goto err_register_device;
  1163. }
  1164. dev_dbg(printdev(devrec), "registered mrf24j40\n");
  1165. ret = ieee802154_register_hw(devrec->hw);
  1166. if (ret)
  1167. goto err_register_device;
  1168. return 0;
  1169. err_register_device:
  1170. ieee802154_free_hw(devrec->hw);
  1171. err_ret:
  1172. return ret;
  1173. }
  1174. static int mrf24j40_remove(struct spi_device *spi)
  1175. {
  1176. struct mrf24j40 *devrec = spi_get_drvdata(spi);
  1177. dev_dbg(printdev(devrec), "remove\n");
  1178. ieee802154_unregister_hw(devrec->hw);
  1179. ieee802154_free_hw(devrec->hw);
  1180. /* TODO: Will ieee802154_free_device() wait until ->xmit() is
  1181. * complete? */
  1182. return 0;
  1183. }
  1184. static const struct of_device_id mrf24j40_of_match[] = {
  1185. { .compatible = "microchip,mrf24j40", .data = (void *)MRF24J40 },
  1186. { .compatible = "microchip,mrf24j40ma", .data = (void *)MRF24J40MA },
  1187. { .compatible = "microchip,mrf24j40mc", .data = (void *)MRF24J40MC },
  1188. { },
  1189. };
  1190. MODULE_DEVICE_TABLE(of, mrf24j40_of_match);
  1191. static const struct spi_device_id mrf24j40_ids[] = {
  1192. { "mrf24j40", MRF24J40 },
  1193. { "mrf24j40ma", MRF24J40MA },
  1194. { "mrf24j40mc", MRF24J40MC },
  1195. { },
  1196. };
  1197. MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
  1198. static struct spi_driver mrf24j40_driver = {
  1199. .driver = {
  1200. .of_match_table = of_match_ptr(mrf24j40_of_match),
  1201. .name = "mrf24j40",
  1202. },
  1203. .id_table = mrf24j40_ids,
  1204. .probe = mrf24j40_probe,
  1205. .remove = mrf24j40_remove,
  1206. };
  1207. module_spi_driver(mrf24j40_driver);
  1208. MODULE_LICENSE("GPL");
  1209. MODULE_AUTHOR("Alan Ott");
  1210. MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");