card_utils.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061
  1. /**
  2. * IBM Accelerator Family 'GenWQE'
  3. *
  4. * (C) Copyright IBM Corp. 2013
  5. *
  6. * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
  7. * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
  8. * Author: Michael Jung <mijung@gmx.net>
  9. * Author: Michael Ruettger <michael@ibmra.de>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License (version 2 only)
  13. * as published by the Free Software Foundation.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. */
  20. /*
  21. * Miscelanous functionality used in the other GenWQE driver parts.
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/sched.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/page-flags.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/iommu.h>
  31. #include <linux/delay.h>
  32. #include <linux/pci.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/ctype.h>
  35. #include <linux/module.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/delay.h>
  38. #include <asm/pgtable.h>
  39. #include "genwqe_driver.h"
  40. #include "card_base.h"
  41. #include "card_ddcb.h"
  42. /**
  43. * __genwqe_writeq() - Write 64-bit register
  44. * @cd: genwqe device descriptor
  45. * @byte_offs: byte offset within BAR
  46. * @val: 64-bit value
  47. *
  48. * Return: 0 if success; < 0 if error
  49. */
  50. int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
  51. {
  52. struct pci_dev *pci_dev = cd->pci_dev;
  53. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  54. return -EIO;
  55. if (cd->mmio == NULL)
  56. return -EIO;
  57. if (pci_channel_offline(pci_dev))
  58. return -EIO;
  59. __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
  60. return 0;
  61. }
  62. /**
  63. * __genwqe_readq() - Read 64-bit register
  64. * @cd: genwqe device descriptor
  65. * @byte_offs: offset within BAR
  66. *
  67. * Return: value from register
  68. */
  69. u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
  70. {
  71. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  72. return 0xffffffffffffffffull;
  73. if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
  74. (byte_offs == IO_SLC_CFGREG_GFIR))
  75. return 0x000000000000ffffull;
  76. if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
  77. (byte_offs == IO_SLC_CFGREG_GFIR))
  78. return 0x00000000ffff0000ull;
  79. if (cd->mmio == NULL)
  80. return 0xffffffffffffffffull;
  81. return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
  82. }
  83. /**
  84. * __genwqe_writel() - Write 32-bit register
  85. * @cd: genwqe device descriptor
  86. * @byte_offs: byte offset within BAR
  87. * @val: 32-bit value
  88. *
  89. * Return: 0 if success; < 0 if error
  90. */
  91. int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
  92. {
  93. struct pci_dev *pci_dev = cd->pci_dev;
  94. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  95. return -EIO;
  96. if (cd->mmio == NULL)
  97. return -EIO;
  98. if (pci_channel_offline(pci_dev))
  99. return -EIO;
  100. __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
  101. return 0;
  102. }
  103. /**
  104. * __genwqe_readl() - Read 32-bit register
  105. * @cd: genwqe device descriptor
  106. * @byte_offs: offset within BAR
  107. *
  108. * Return: Value from register
  109. */
  110. u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
  111. {
  112. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  113. return 0xffffffff;
  114. if (cd->mmio == NULL)
  115. return 0xffffffff;
  116. return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
  117. }
  118. /**
  119. * genwqe_read_app_id() - Extract app_id
  120. *
  121. * app_unitcfg need to be filled with valid data first
  122. */
  123. int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
  124. {
  125. int i, j;
  126. u32 app_id = (u32)cd->app_unitcfg;
  127. memset(app_name, 0, len);
  128. for (i = 0, j = 0; j < min(len, 4); j++) {
  129. char ch = (char)((app_id >> (24 - j*8)) & 0xff);
  130. if (ch == ' ')
  131. continue;
  132. app_name[i++] = isprint(ch) ? ch : 'X';
  133. }
  134. return i;
  135. }
  136. /**
  137. * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
  138. *
  139. * Existing kernel functions seem to use a different polynom,
  140. * therefore we could not use them here.
  141. *
  142. * Genwqe's Polynomial = 0x20044009
  143. */
  144. #define CRC32_POLYNOMIAL 0x20044009
  145. static u32 crc32_tab[256]; /* crc32 lookup table */
  146. void genwqe_init_crc32(void)
  147. {
  148. int i, j;
  149. u32 crc;
  150. for (i = 0; i < 256; i++) {
  151. crc = i << 24;
  152. for (j = 0; j < 8; j++) {
  153. if (crc & 0x80000000)
  154. crc = (crc << 1) ^ CRC32_POLYNOMIAL;
  155. else
  156. crc = (crc << 1);
  157. }
  158. crc32_tab[i] = crc;
  159. }
  160. }
  161. /**
  162. * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
  163. * @buff: pointer to data buffer
  164. * @len: length of data for calculation
  165. * @init: initial crc (0xffffffff at start)
  166. *
  167. * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
  168. * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
  169. * result in a crc32 of 0xf33cb7d3.
  170. *
  171. * The existing kernel crc functions did not cover this polynom yet.
  172. *
  173. * Return: crc32 checksum.
  174. */
  175. u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
  176. {
  177. int i;
  178. u32 crc;
  179. crc = init;
  180. while (len--) {
  181. i = ((crc >> 24) ^ *buff++) & 0xFF;
  182. crc = (crc << 8) ^ crc32_tab[i];
  183. }
  184. return crc;
  185. }
  186. void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
  187. dma_addr_t *dma_handle)
  188. {
  189. if (get_order(size) > MAX_ORDER)
  190. return NULL;
  191. return dma_zalloc_coherent(&cd->pci_dev->dev, size, dma_handle,
  192. GFP_KERNEL);
  193. }
  194. void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
  195. void *vaddr, dma_addr_t dma_handle)
  196. {
  197. if (vaddr == NULL)
  198. return;
  199. dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle);
  200. }
  201. static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
  202. int num_pages)
  203. {
  204. int i;
  205. struct pci_dev *pci_dev = cd->pci_dev;
  206. for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
  207. pci_unmap_page(pci_dev, dma_list[i],
  208. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  209. dma_list[i] = 0x0;
  210. }
  211. }
  212. static int genwqe_map_pages(struct genwqe_dev *cd,
  213. struct page **page_list, int num_pages,
  214. dma_addr_t *dma_list)
  215. {
  216. int i;
  217. struct pci_dev *pci_dev = cd->pci_dev;
  218. /* establish DMA mapping for requested pages */
  219. for (i = 0; i < num_pages; i++) {
  220. dma_addr_t daddr;
  221. dma_list[i] = 0x0;
  222. daddr = pci_map_page(pci_dev, page_list[i],
  223. 0, /* map_offs */
  224. PAGE_SIZE,
  225. PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */
  226. if (pci_dma_mapping_error(pci_dev, daddr)) {
  227. dev_err(&pci_dev->dev,
  228. "[%s] err: no dma addr daddr=%016llx!\n",
  229. __func__, (long long)daddr);
  230. goto err;
  231. }
  232. dma_list[i] = daddr;
  233. }
  234. return 0;
  235. err:
  236. genwqe_unmap_pages(cd, dma_list, num_pages);
  237. return -EIO;
  238. }
  239. static int genwqe_sgl_size(int num_pages)
  240. {
  241. int len, num_tlb = num_pages / 7;
  242. len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
  243. return roundup(len, PAGE_SIZE);
  244. }
  245. /**
  246. * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
  247. *
  248. * Allocates memory for sgl and overlapping pages. Pages which might
  249. * overlap other user-space memory blocks are being cached for DMAs,
  250. * such that we do not run into syncronization issues. Data is copied
  251. * from user-space into the cached pages.
  252. */
  253. int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
  254. void __user *user_addr, size_t user_size)
  255. {
  256. int rc;
  257. struct pci_dev *pci_dev = cd->pci_dev;
  258. sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
  259. sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
  260. sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
  261. sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
  262. dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
  263. __func__, user_addr, user_size, sgl->nr_pages,
  264. sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
  265. sgl->user_addr = user_addr;
  266. sgl->user_size = user_size;
  267. sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
  268. if (get_order(sgl->sgl_size) > MAX_ORDER) {
  269. dev_err(&pci_dev->dev,
  270. "[%s] err: too much memory requested!\n", __func__);
  271. return -ENOMEM;
  272. }
  273. sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
  274. &sgl->sgl_dma_addr);
  275. if (sgl->sgl == NULL) {
  276. dev_err(&pci_dev->dev,
  277. "[%s] err: no memory available!\n", __func__);
  278. return -ENOMEM;
  279. }
  280. /* Only use buffering on incomplete pages */
  281. if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
  282. sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
  283. &sgl->fpage_dma_addr);
  284. if (sgl->fpage == NULL)
  285. goto err_out;
  286. /* Sync with user memory */
  287. if (copy_from_user(sgl->fpage + sgl->fpage_offs,
  288. user_addr, sgl->fpage_size)) {
  289. rc = -EFAULT;
  290. goto err_out;
  291. }
  292. }
  293. if (sgl->lpage_size != 0) {
  294. sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
  295. &sgl->lpage_dma_addr);
  296. if (sgl->lpage == NULL)
  297. goto err_out1;
  298. /* Sync with user memory */
  299. if (copy_from_user(sgl->lpage, user_addr + user_size -
  300. sgl->lpage_size, sgl->lpage_size)) {
  301. rc = -EFAULT;
  302. goto err_out2;
  303. }
  304. }
  305. return 0;
  306. err_out2:
  307. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
  308. sgl->lpage_dma_addr);
  309. sgl->lpage = NULL;
  310. sgl->lpage_dma_addr = 0;
  311. err_out1:
  312. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
  313. sgl->fpage_dma_addr);
  314. sgl->fpage = NULL;
  315. sgl->fpage_dma_addr = 0;
  316. err_out:
  317. __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
  318. sgl->sgl_dma_addr);
  319. sgl->sgl = NULL;
  320. sgl->sgl_dma_addr = 0;
  321. sgl->sgl_size = 0;
  322. return -ENOMEM;
  323. }
  324. int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
  325. dma_addr_t *dma_list)
  326. {
  327. int i = 0, j = 0, p;
  328. unsigned long dma_offs, map_offs;
  329. dma_addr_t prev_daddr = 0;
  330. struct sg_entry *s, *last_s = NULL;
  331. size_t size = sgl->user_size;
  332. dma_offs = 128; /* next block if needed/dma_offset */
  333. map_offs = sgl->fpage_offs; /* offset in first page */
  334. s = &sgl->sgl[0]; /* first set of 8 entries */
  335. p = 0; /* page */
  336. while (p < sgl->nr_pages) {
  337. dma_addr_t daddr;
  338. unsigned int size_to_map;
  339. /* always write the chaining entry, cleanup is done later */
  340. j = 0;
  341. s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
  342. s[j].len = cpu_to_be32(128);
  343. s[j].flags = cpu_to_be32(SG_CHAINED);
  344. j++;
  345. while (j < 8) {
  346. /* DMA mapping for requested page, offs, size */
  347. size_to_map = min(size, PAGE_SIZE - map_offs);
  348. if ((p == 0) && (sgl->fpage != NULL)) {
  349. daddr = sgl->fpage_dma_addr + map_offs;
  350. } else if ((p == sgl->nr_pages - 1) &&
  351. (sgl->lpage != NULL)) {
  352. daddr = sgl->lpage_dma_addr;
  353. } else {
  354. daddr = dma_list[p] + map_offs;
  355. }
  356. size -= size_to_map;
  357. map_offs = 0;
  358. if (prev_daddr == daddr) {
  359. u32 prev_len = be32_to_cpu(last_s->len);
  360. /* pr_info("daddr combining: "
  361. "%016llx/%08x -> %016llx\n",
  362. prev_daddr, prev_len, daddr); */
  363. last_s->len = cpu_to_be32(prev_len +
  364. size_to_map);
  365. p++; /* process next page */
  366. if (p == sgl->nr_pages)
  367. goto fixup; /* nothing to do */
  368. prev_daddr = daddr + size_to_map;
  369. continue;
  370. }
  371. /* start new entry */
  372. s[j].target_addr = cpu_to_be64(daddr);
  373. s[j].len = cpu_to_be32(size_to_map);
  374. s[j].flags = cpu_to_be32(SG_DATA);
  375. prev_daddr = daddr + size_to_map;
  376. last_s = &s[j];
  377. j++;
  378. p++; /* process next page */
  379. if (p == sgl->nr_pages)
  380. goto fixup; /* nothing to do */
  381. }
  382. dma_offs += 128;
  383. s += 8; /* continue 8 elements further */
  384. }
  385. fixup:
  386. if (j == 1) { /* combining happend on last entry! */
  387. s -= 8; /* full shift needed on previous sgl block */
  388. j = 7; /* shift all elements */
  389. }
  390. for (i = 0; i < j; i++) /* move elements 1 up */
  391. s[i] = s[i + 1];
  392. s[i].target_addr = cpu_to_be64(0);
  393. s[i].len = cpu_to_be32(0);
  394. s[i].flags = cpu_to_be32(SG_END_LIST);
  395. return 0;
  396. }
  397. /**
  398. * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
  399. *
  400. * After the DMA transfer has been completed we free the memory for
  401. * the sgl and the cached pages. Data is being transfered from cached
  402. * pages into user-space buffers.
  403. */
  404. int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
  405. {
  406. int rc = 0;
  407. struct pci_dev *pci_dev = cd->pci_dev;
  408. if (sgl->fpage) {
  409. if (copy_to_user(sgl->user_addr, sgl->fpage + sgl->fpage_offs,
  410. sgl->fpage_size)) {
  411. dev_err(&pci_dev->dev, "[%s] err: copying fpage!\n",
  412. __func__);
  413. rc = -EFAULT;
  414. }
  415. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
  416. sgl->fpage_dma_addr);
  417. sgl->fpage = NULL;
  418. sgl->fpage_dma_addr = 0;
  419. }
  420. if (sgl->lpage) {
  421. if (copy_to_user(sgl->user_addr + sgl->user_size -
  422. sgl->lpage_size, sgl->lpage,
  423. sgl->lpage_size)) {
  424. dev_err(&pci_dev->dev, "[%s] err: copying lpage!\n",
  425. __func__);
  426. rc = -EFAULT;
  427. }
  428. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
  429. sgl->lpage_dma_addr);
  430. sgl->lpage = NULL;
  431. sgl->lpage_dma_addr = 0;
  432. }
  433. __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
  434. sgl->sgl_dma_addr);
  435. sgl->sgl = NULL;
  436. sgl->sgl_dma_addr = 0x0;
  437. sgl->sgl_size = 0;
  438. return rc;
  439. }
  440. /**
  441. * free_user_pages() - Give pinned pages back
  442. *
  443. * Documentation of get_user_pages is in mm/memory.c:
  444. *
  445. * If the page is written to, set_page_dirty (or set_page_dirty_lock,
  446. * as appropriate) must be called after the page is finished with, and
  447. * before put_page is called.
  448. *
  449. * FIXME Could be of use to others and might belong in the generic
  450. * code, if others agree. E.g.
  451. * ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c
  452. * ceph_put_page_vector in net/ceph/pagevec.c
  453. * maybe more?
  454. */
  455. static int free_user_pages(struct page **page_list, unsigned int nr_pages,
  456. int dirty)
  457. {
  458. unsigned int i;
  459. for (i = 0; i < nr_pages; i++) {
  460. if (page_list[i] != NULL) {
  461. if (dirty)
  462. set_page_dirty_lock(page_list[i]);
  463. put_page(page_list[i]);
  464. }
  465. }
  466. return 0;
  467. }
  468. /**
  469. * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
  470. * @cd: pointer to genwqe device
  471. * @m: mapping params
  472. * @uaddr: user virtual address
  473. * @size: size of memory to be mapped
  474. *
  475. * We need to think about how we could speed this up. Of course it is
  476. * not a good idea to do this over and over again, like we are
  477. * currently doing it. Nevertheless, I am curious where on the path
  478. * the performance is spend. Most probably within the memory
  479. * allocation functions, but maybe also in the DMA mapping code.
  480. *
  481. * Restrictions: The maximum size of the possible mapping currently depends
  482. * on the amount of memory we can get using kzalloc() for the
  483. * page_list and pci_alloc_consistent for the sg_list.
  484. * The sg_list is currently itself not scattered, which could
  485. * be fixed with some effort. The page_list must be split into
  486. * PAGE_SIZE chunks too. All that will make the complicated
  487. * code more complicated.
  488. *
  489. * Return: 0 if success
  490. */
  491. int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
  492. unsigned long size, struct ddcb_requ *req)
  493. {
  494. int rc = -EINVAL;
  495. unsigned long data, offs;
  496. struct pci_dev *pci_dev = cd->pci_dev;
  497. if ((uaddr == NULL) || (size == 0)) {
  498. m->size = 0; /* mark unused and not added */
  499. return -EINVAL;
  500. }
  501. m->u_vaddr = uaddr;
  502. m->size = size;
  503. /* determine space needed for page_list. */
  504. data = (unsigned long)uaddr;
  505. offs = offset_in_page(data);
  506. m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
  507. m->page_list = kcalloc(m->nr_pages,
  508. sizeof(struct page *) + sizeof(dma_addr_t),
  509. GFP_KERNEL);
  510. if (!m->page_list) {
  511. dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
  512. m->nr_pages = 0;
  513. m->u_vaddr = NULL;
  514. m->size = 0; /* mark unused and not added */
  515. return -ENOMEM;
  516. }
  517. m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
  518. /* pin user pages in memory */
  519. rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
  520. m->nr_pages,
  521. 1, /* write by caller */
  522. m->page_list); /* ptrs to pages */
  523. if (rc < 0)
  524. goto fail_get_user_pages;
  525. /* assumption: get_user_pages can be killed by signals. */
  526. if (rc < m->nr_pages) {
  527. free_user_pages(m->page_list, rc, 0);
  528. rc = -EFAULT;
  529. goto fail_get_user_pages;
  530. }
  531. rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
  532. if (rc != 0)
  533. goto fail_free_user_pages;
  534. return 0;
  535. fail_free_user_pages:
  536. free_user_pages(m->page_list, m->nr_pages, 0);
  537. fail_get_user_pages:
  538. kfree(m->page_list);
  539. m->page_list = NULL;
  540. m->dma_list = NULL;
  541. m->nr_pages = 0;
  542. m->u_vaddr = NULL;
  543. m->size = 0; /* mark unused and not added */
  544. return rc;
  545. }
  546. /**
  547. * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
  548. * memory
  549. * @cd: pointer to genwqe device
  550. * @m: mapping params
  551. */
  552. int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m,
  553. struct ddcb_requ *req)
  554. {
  555. struct pci_dev *pci_dev = cd->pci_dev;
  556. if (!dma_mapping_used(m)) {
  557. dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
  558. __func__, m);
  559. return -EINVAL;
  560. }
  561. if (m->dma_list)
  562. genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
  563. if (m->page_list) {
  564. free_user_pages(m->page_list, m->nr_pages, 1);
  565. kfree(m->page_list);
  566. m->page_list = NULL;
  567. m->dma_list = NULL;
  568. m->nr_pages = 0;
  569. }
  570. m->u_vaddr = NULL;
  571. m->size = 0; /* mark as unused and not added */
  572. return 0;
  573. }
  574. /**
  575. * genwqe_card_type() - Get chip type SLU Configuration Register
  576. * @cd: pointer to the genwqe device descriptor
  577. * Return: 0: Altera Stratix-IV 230
  578. * 1: Altera Stratix-IV 530
  579. * 2: Altera Stratix-V A4
  580. * 3: Altera Stratix-V A7
  581. */
  582. u8 genwqe_card_type(struct genwqe_dev *cd)
  583. {
  584. u64 card_type = cd->slu_unitcfg;
  585. return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
  586. }
  587. /**
  588. * genwqe_card_reset() - Reset the card
  589. * @cd: pointer to the genwqe device descriptor
  590. */
  591. int genwqe_card_reset(struct genwqe_dev *cd)
  592. {
  593. u64 softrst;
  594. struct pci_dev *pci_dev = cd->pci_dev;
  595. if (!genwqe_is_privileged(cd))
  596. return -ENODEV;
  597. /* new SL */
  598. __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
  599. msleep(1000);
  600. __genwqe_readq(cd, IO_HSU_FIR_CLR);
  601. __genwqe_readq(cd, IO_APP_FIR_CLR);
  602. __genwqe_readq(cd, IO_SLU_FIR_CLR);
  603. /*
  604. * Read-modify-write to preserve the stealth bits
  605. *
  606. * For SL >= 039, Stealth WE bit allows removing
  607. * the read-modify-wrote.
  608. * r-m-w may require a mask 0x3C to avoid hitting hard
  609. * reset again for error reset (should be 0, chicken).
  610. */
  611. softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
  612. __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
  613. /* give ERRORRESET some time to finish */
  614. msleep(50);
  615. if (genwqe_need_err_masking(cd)) {
  616. dev_info(&pci_dev->dev,
  617. "[%s] masking errors for old bitstreams\n", __func__);
  618. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
  619. }
  620. return 0;
  621. }
  622. int genwqe_read_softreset(struct genwqe_dev *cd)
  623. {
  624. u64 bitstream;
  625. if (!genwqe_is_privileged(cd))
  626. return -ENODEV;
  627. bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
  628. cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
  629. return 0;
  630. }
  631. /**
  632. * genwqe_set_interrupt_capability() - Configure MSI capability structure
  633. * @cd: pointer to the device
  634. * Return: 0 if no error
  635. */
  636. int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
  637. {
  638. int rc;
  639. struct pci_dev *pci_dev = cd->pci_dev;
  640. rc = pci_enable_msi_range(pci_dev, 1, count);
  641. if (rc < 0)
  642. return rc;
  643. cd->flags |= GENWQE_FLAG_MSI_ENABLED;
  644. return 0;
  645. }
  646. /**
  647. * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
  648. * @cd: pointer to the device
  649. */
  650. void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
  651. {
  652. struct pci_dev *pci_dev = cd->pci_dev;
  653. if (cd->flags & GENWQE_FLAG_MSI_ENABLED) {
  654. pci_disable_msi(pci_dev);
  655. cd->flags &= ~GENWQE_FLAG_MSI_ENABLED;
  656. }
  657. }
  658. /**
  659. * set_reg_idx() - Fill array with data. Ignore illegal offsets.
  660. * @cd: card device
  661. * @r: debug register array
  662. * @i: index to desired entry
  663. * @m: maximum possible entries
  664. * @addr: addr which is read
  665. * @index: index in debug array
  666. * @val: read value
  667. */
  668. static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
  669. unsigned int *i, unsigned int m, u32 addr, u32 idx,
  670. u64 val)
  671. {
  672. if (WARN_ON_ONCE(*i >= m))
  673. return -EFAULT;
  674. r[*i].addr = addr;
  675. r[*i].idx = idx;
  676. r[*i].val = val;
  677. ++*i;
  678. return 0;
  679. }
  680. static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
  681. unsigned int *i, unsigned int m, u32 addr, u64 val)
  682. {
  683. return set_reg_idx(cd, r, i, m, addr, 0, val);
  684. }
  685. int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
  686. unsigned int max_regs, int all)
  687. {
  688. unsigned int i, j, idx = 0;
  689. u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
  690. u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
  691. /* Global FIR */
  692. gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
  693. set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
  694. /* UnitCfg for SLU */
  695. sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
  696. set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
  697. /* UnitCfg for APP */
  698. appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
  699. set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
  700. /* Check all chip Units */
  701. for (i = 0; i < GENWQE_MAX_UNITS; i++) {
  702. /* Unit FIR */
  703. ufir_addr = (i << 24) | 0x008;
  704. ufir = __genwqe_readq(cd, ufir_addr);
  705. set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
  706. /* Unit FEC */
  707. ufec_addr = (i << 24) | 0x018;
  708. ufec = __genwqe_readq(cd, ufec_addr);
  709. set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
  710. for (j = 0; j < 64; j++) {
  711. /* wherever there is a primary 1, read the 2ndary */
  712. if (!all && (!(ufir & (1ull << j))))
  713. continue;
  714. sfir_addr = (i << 24) | (0x100 + 8 * j);
  715. sfir = __genwqe_readq(cd, sfir_addr);
  716. set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
  717. sfec_addr = (i << 24) | (0x300 + 8 * j);
  718. sfec = __genwqe_readq(cd, sfec_addr);
  719. set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
  720. }
  721. }
  722. /* fill with invalid data until end */
  723. for (i = idx; i < max_regs; i++) {
  724. regs[i].addr = 0xffffffff;
  725. regs[i].val = 0xffffffffffffffffull;
  726. }
  727. return idx;
  728. }
  729. /**
  730. * genwqe_ffdc_buff_size() - Calculates the number of dump registers
  731. */
  732. int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
  733. {
  734. int entries = 0, ring, traps, traces, trace_entries;
  735. u32 eevptr_addr, l_addr, d_len, d_type;
  736. u64 eevptr, val, addr;
  737. eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
  738. eevptr = __genwqe_readq(cd, eevptr_addr);
  739. if ((eevptr != 0x0) && (eevptr != -1ull)) {
  740. l_addr = GENWQE_UID_OFFS(uid) | eevptr;
  741. while (1) {
  742. val = __genwqe_readq(cd, l_addr);
  743. if ((val == 0x0) || (val == -1ull))
  744. break;
  745. /* 38:24 */
  746. d_len = (val & 0x0000007fff000000ull) >> 24;
  747. /* 39 */
  748. d_type = (val & 0x0000008000000000ull) >> 36;
  749. if (d_type) { /* repeat */
  750. entries += d_len;
  751. } else { /* size in bytes! */
  752. entries += d_len >> 3;
  753. }
  754. l_addr += 8;
  755. }
  756. }
  757. for (ring = 0; ring < 8; ring++) {
  758. addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
  759. val = __genwqe_readq(cd, addr);
  760. if ((val == 0x0ull) || (val == -1ull))
  761. continue;
  762. traps = (val >> 24) & 0xff;
  763. traces = (val >> 16) & 0xff;
  764. trace_entries = val & 0xffff;
  765. entries += traps + (traces * trace_entries);
  766. }
  767. return entries;
  768. }
  769. /**
  770. * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
  771. */
  772. int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
  773. struct genwqe_reg *regs, unsigned int max_regs)
  774. {
  775. int i, traps, traces, trace, trace_entries, trace_entry, ring;
  776. unsigned int idx = 0;
  777. u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
  778. u64 eevptr, e, val, addr;
  779. eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
  780. eevptr = __genwqe_readq(cd, eevptr_addr);
  781. if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
  782. l_addr = GENWQE_UID_OFFS(uid) | eevptr;
  783. while (1) {
  784. e = __genwqe_readq(cd, l_addr);
  785. if ((e == 0x0) || (e == 0xffffffffffffffffull))
  786. break;
  787. d_addr = (e & 0x0000000000ffffffull); /* 23:0 */
  788. d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
  789. d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
  790. d_addr |= GENWQE_UID_OFFS(uid);
  791. if (d_type) {
  792. for (i = 0; i < (int)d_len; i++) {
  793. val = __genwqe_readq(cd, d_addr);
  794. set_reg_idx(cd, regs, &idx, max_regs,
  795. d_addr, i, val);
  796. }
  797. } else {
  798. d_len >>= 3; /* Size in bytes! */
  799. for (i = 0; i < (int)d_len; i++, d_addr += 8) {
  800. val = __genwqe_readq(cd, d_addr);
  801. set_reg_idx(cd, regs, &idx, max_regs,
  802. d_addr, 0, val);
  803. }
  804. }
  805. l_addr += 8;
  806. }
  807. }
  808. /*
  809. * To save time, there are only 6 traces poplulated on Uid=2,
  810. * Ring=1. each with iters=512.
  811. */
  812. for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
  813. 2...7 are ASI rings */
  814. addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
  815. val = __genwqe_readq(cd, addr);
  816. if ((val == 0x0ull) || (val == -1ull))
  817. continue;
  818. traps = (val >> 24) & 0xff; /* Number of Traps */
  819. traces = (val >> 16) & 0xff; /* Number of Traces */
  820. trace_entries = val & 0xffff; /* Entries per trace */
  821. /* Note: This is a combined loop that dumps both the traps */
  822. /* (for the trace == 0 case) as well as the traces 1 to */
  823. /* 'traces'. */
  824. for (trace = 0; trace <= traces; trace++) {
  825. u32 diag_sel =
  826. GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
  827. addr = (GENWQE_UID_OFFS(uid) |
  828. IO_EXTENDED_DIAG_SELECTOR);
  829. __genwqe_writeq(cd, addr, diag_sel);
  830. for (trace_entry = 0;
  831. trace_entry < (trace ? trace_entries : traps);
  832. trace_entry++) {
  833. addr = (GENWQE_UID_OFFS(uid) |
  834. IO_EXTENDED_DIAG_READ_MBX);
  835. val = __genwqe_readq(cd, addr);
  836. set_reg_idx(cd, regs, &idx, max_regs, addr,
  837. (diag_sel<<16) | trace_entry, val);
  838. }
  839. }
  840. }
  841. return 0;
  842. }
  843. /**
  844. * genwqe_write_vreg() - Write register in virtual window
  845. *
  846. * Note, these registers are only accessible to the PF through the
  847. * VF-window. It is not intended for the VF to access.
  848. */
  849. int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
  850. {
  851. __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
  852. __genwqe_writeq(cd, reg, val);
  853. return 0;
  854. }
  855. /**
  856. * genwqe_read_vreg() - Read register in virtual window
  857. *
  858. * Note, these registers are only accessible to the PF through the
  859. * VF-window. It is not intended for the VF to access.
  860. */
  861. u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
  862. {
  863. __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
  864. return __genwqe_readq(cd, reg);
  865. }
  866. /**
  867. * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
  868. *
  869. * Note: From a design perspective it turned out to be a bad idea to
  870. * use codes here to specifiy the frequency/speed values. An old
  871. * driver cannot understand new codes and is therefore always a
  872. * problem. Better is to measure out the value or put the
  873. * speed/frequency directly into a register which is always a valid
  874. * value for old as well as for new software.
  875. *
  876. * Return: Card clock in MHz
  877. */
  878. int genwqe_base_clock_frequency(struct genwqe_dev *cd)
  879. {
  880. u16 speed; /* MHz MHz MHz MHz */
  881. static const int speed_grade[] = { 250, 200, 166, 175 };
  882. speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
  883. if (speed >= ARRAY_SIZE(speed_grade))
  884. return 0; /* illegal value */
  885. return speed_grade[speed];
  886. }
  887. /**
  888. * genwqe_stop_traps() - Stop traps
  889. *
  890. * Before reading out the analysis data, we need to stop the traps.
  891. */
  892. void genwqe_stop_traps(struct genwqe_dev *cd)
  893. {
  894. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
  895. }
  896. /**
  897. * genwqe_start_traps() - Start traps
  898. *
  899. * After having read the data, we can/must enable the traps again.
  900. */
  901. void genwqe_start_traps(struct genwqe_dev *cd)
  902. {
  903. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
  904. if (genwqe_need_err_masking(cd))
  905. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
  906. }