btree.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535
  1. /*
  2. * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
  3. *
  4. * Uses a block device as cache for other block devices; optimized for SSDs.
  5. * All allocation is done in buckets, which should match the erase block size
  6. * of the device.
  7. *
  8. * Buckets containing cached data are kept on a heap sorted by priority;
  9. * bucket priority is increased on cache hit, and periodically all the buckets
  10. * on the heap have their priority scaled down. This currently is just used as
  11. * an LRU but in the future should allow for more intelligent heuristics.
  12. *
  13. * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  14. * counter. Garbage collection is used to remove stale pointers.
  15. *
  16. * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  17. * as keys are inserted we only sort the pages that have not yet been written.
  18. * When garbage collection is run, we resort the entire node.
  19. *
  20. * All configuration is done via sysfs; see Documentation/bcache.txt.
  21. */
  22. #include "bcache.h"
  23. #include "btree.h"
  24. #include "debug.h"
  25. #include "extents.h"
  26. #include <linux/slab.h>
  27. #include <linux/bitops.h>
  28. #include <linux/hash.h>
  29. #include <linux/kthread.h>
  30. #include <linux/prefetch.h>
  31. #include <linux/random.h>
  32. #include <linux/rcupdate.h>
  33. #include <trace/events/bcache.h>
  34. /*
  35. * Todo:
  36. * register_bcache: Return errors out to userspace correctly
  37. *
  38. * Writeback: don't undirty key until after a cache flush
  39. *
  40. * Create an iterator for key pointers
  41. *
  42. * On btree write error, mark bucket such that it won't be freed from the cache
  43. *
  44. * Journalling:
  45. * Check for bad keys in replay
  46. * Propagate barriers
  47. * Refcount journal entries in journal_replay
  48. *
  49. * Garbage collection:
  50. * Finish incremental gc
  51. * Gc should free old UUIDs, data for invalid UUIDs
  52. *
  53. * Provide a way to list backing device UUIDs we have data cached for, and
  54. * probably how long it's been since we've seen them, and a way to invalidate
  55. * dirty data for devices that will never be attached again
  56. *
  57. * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  58. * that based on that and how much dirty data we have we can keep writeback
  59. * from being starved
  60. *
  61. * Add a tracepoint or somesuch to watch for writeback starvation
  62. *
  63. * When btree depth > 1 and splitting an interior node, we have to make sure
  64. * alloc_bucket() cannot fail. This should be true but is not completely
  65. * obvious.
  66. *
  67. * Plugging?
  68. *
  69. * If data write is less than hard sector size of ssd, round up offset in open
  70. * bucket to the next whole sector
  71. *
  72. * Superblock needs to be fleshed out for multiple cache devices
  73. *
  74. * Add a sysfs tunable for the number of writeback IOs in flight
  75. *
  76. * Add a sysfs tunable for the number of open data buckets
  77. *
  78. * IO tracking: Can we track when one process is doing io on behalf of another?
  79. * IO tracking: Don't use just an average, weigh more recent stuff higher
  80. *
  81. * Test module load/unload
  82. */
  83. #define MAX_NEED_GC 64
  84. #define MAX_SAVE_PRIO 72
  85. #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
  86. #define PTR_HASH(c, k) \
  87. (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
  88. #define insert_lock(s, b) ((b)->level <= (s)->lock)
  89. /*
  90. * These macros are for recursing down the btree - they handle the details of
  91. * locking and looking up nodes in the cache for you. They're best treated as
  92. * mere syntax when reading code that uses them.
  93. *
  94. * op->lock determines whether we take a read or a write lock at a given depth.
  95. * If you've got a read lock and find that you need a write lock (i.e. you're
  96. * going to have to split), set op->lock and return -EINTR; btree_root() will
  97. * call you again and you'll have the correct lock.
  98. */
  99. /**
  100. * btree - recurse down the btree on a specified key
  101. * @fn: function to call, which will be passed the child node
  102. * @key: key to recurse on
  103. * @b: parent btree node
  104. * @op: pointer to struct btree_op
  105. */
  106. #define btree(fn, key, b, op, ...) \
  107. ({ \
  108. int _r, l = (b)->level - 1; \
  109. bool _w = l <= (op)->lock; \
  110. struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
  111. _w, b); \
  112. if (!IS_ERR(_child)) { \
  113. _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
  114. rw_unlock(_w, _child); \
  115. } else \
  116. _r = PTR_ERR(_child); \
  117. _r; \
  118. })
  119. /**
  120. * btree_root - call a function on the root of the btree
  121. * @fn: function to call, which will be passed the child node
  122. * @c: cache set
  123. * @op: pointer to struct btree_op
  124. */
  125. #define btree_root(fn, c, op, ...) \
  126. ({ \
  127. int _r = -EINTR; \
  128. do { \
  129. struct btree *_b = (c)->root; \
  130. bool _w = insert_lock(op, _b); \
  131. rw_lock(_w, _b, _b->level); \
  132. if (_b == (c)->root && \
  133. _w == insert_lock(op, _b)) { \
  134. _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
  135. } \
  136. rw_unlock(_w, _b); \
  137. bch_cannibalize_unlock(c); \
  138. if (_r == -EINTR) \
  139. schedule(); \
  140. } while (_r == -EINTR); \
  141. \
  142. finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
  143. _r; \
  144. })
  145. static inline struct bset *write_block(struct btree *b)
  146. {
  147. return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
  148. }
  149. static void bch_btree_init_next(struct btree *b)
  150. {
  151. /* If not a leaf node, always sort */
  152. if (b->level && b->keys.nsets)
  153. bch_btree_sort(&b->keys, &b->c->sort);
  154. else
  155. bch_btree_sort_lazy(&b->keys, &b->c->sort);
  156. if (b->written < btree_blocks(b))
  157. bch_bset_init_next(&b->keys, write_block(b),
  158. bset_magic(&b->c->sb));
  159. }
  160. /* Btree key manipulation */
  161. void bkey_put(struct cache_set *c, struct bkey *k)
  162. {
  163. unsigned i;
  164. for (i = 0; i < KEY_PTRS(k); i++)
  165. if (ptr_available(c, k, i))
  166. atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
  167. }
  168. /* Btree IO */
  169. static uint64_t btree_csum_set(struct btree *b, struct bset *i)
  170. {
  171. uint64_t crc = b->key.ptr[0];
  172. void *data = (void *) i + 8, *end = bset_bkey_last(i);
  173. crc = bch_crc64_update(crc, data, end - data);
  174. return crc ^ 0xffffffffffffffffULL;
  175. }
  176. void bch_btree_node_read_done(struct btree *b)
  177. {
  178. const char *err = "bad btree header";
  179. struct bset *i = btree_bset_first(b);
  180. struct btree_iter *iter;
  181. iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
  182. iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
  183. iter->used = 0;
  184. #ifdef CONFIG_BCACHE_DEBUG
  185. iter->b = &b->keys;
  186. #endif
  187. if (!i->seq)
  188. goto err;
  189. for (;
  190. b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
  191. i = write_block(b)) {
  192. err = "unsupported bset version";
  193. if (i->version > BCACHE_BSET_VERSION)
  194. goto err;
  195. err = "bad btree header";
  196. if (b->written + set_blocks(i, block_bytes(b->c)) >
  197. btree_blocks(b))
  198. goto err;
  199. err = "bad magic";
  200. if (i->magic != bset_magic(&b->c->sb))
  201. goto err;
  202. err = "bad checksum";
  203. switch (i->version) {
  204. case 0:
  205. if (i->csum != csum_set(i))
  206. goto err;
  207. break;
  208. case BCACHE_BSET_VERSION:
  209. if (i->csum != btree_csum_set(b, i))
  210. goto err;
  211. break;
  212. }
  213. err = "empty set";
  214. if (i != b->keys.set[0].data && !i->keys)
  215. goto err;
  216. bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
  217. b->written += set_blocks(i, block_bytes(b->c));
  218. }
  219. err = "corrupted btree";
  220. for (i = write_block(b);
  221. bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
  222. i = ((void *) i) + block_bytes(b->c))
  223. if (i->seq == b->keys.set[0].data->seq)
  224. goto err;
  225. bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
  226. i = b->keys.set[0].data;
  227. err = "short btree key";
  228. if (b->keys.set[0].size &&
  229. bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
  230. goto err;
  231. if (b->written < btree_blocks(b))
  232. bch_bset_init_next(&b->keys, write_block(b),
  233. bset_magic(&b->c->sb));
  234. out:
  235. mempool_free(iter, b->c->fill_iter);
  236. return;
  237. err:
  238. set_btree_node_io_error(b);
  239. bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
  240. err, PTR_BUCKET_NR(b->c, &b->key, 0),
  241. bset_block_offset(b, i), i->keys);
  242. goto out;
  243. }
  244. static void btree_node_read_endio(struct bio *bio)
  245. {
  246. struct closure *cl = bio->bi_private;
  247. closure_put(cl);
  248. }
  249. static void bch_btree_node_read(struct btree *b)
  250. {
  251. uint64_t start_time = local_clock();
  252. struct closure cl;
  253. struct bio *bio;
  254. trace_bcache_btree_read(b);
  255. closure_init_stack(&cl);
  256. bio = bch_bbio_alloc(b->c);
  257. bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
  258. bio->bi_end_io = btree_node_read_endio;
  259. bio->bi_private = &cl;
  260. bio_set_op_attrs(bio, REQ_OP_READ, REQ_META|READ_SYNC);
  261. bch_bio_map(bio, b->keys.set[0].data);
  262. bch_submit_bbio(bio, b->c, &b->key, 0);
  263. closure_sync(&cl);
  264. if (bio->bi_error)
  265. set_btree_node_io_error(b);
  266. bch_bbio_free(bio, b->c);
  267. if (btree_node_io_error(b))
  268. goto err;
  269. bch_btree_node_read_done(b);
  270. bch_time_stats_update(&b->c->btree_read_time, start_time);
  271. return;
  272. err:
  273. bch_cache_set_error(b->c, "io error reading bucket %zu",
  274. PTR_BUCKET_NR(b->c, &b->key, 0));
  275. }
  276. static void btree_complete_write(struct btree *b, struct btree_write *w)
  277. {
  278. if (w->prio_blocked &&
  279. !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
  280. wake_up_allocators(b->c);
  281. if (w->journal) {
  282. atomic_dec_bug(w->journal);
  283. __closure_wake_up(&b->c->journal.wait);
  284. }
  285. w->prio_blocked = 0;
  286. w->journal = NULL;
  287. }
  288. static void btree_node_write_unlock(struct closure *cl)
  289. {
  290. struct btree *b = container_of(cl, struct btree, io);
  291. up(&b->io_mutex);
  292. }
  293. static void __btree_node_write_done(struct closure *cl)
  294. {
  295. struct btree *b = container_of(cl, struct btree, io);
  296. struct btree_write *w = btree_prev_write(b);
  297. bch_bbio_free(b->bio, b->c);
  298. b->bio = NULL;
  299. btree_complete_write(b, w);
  300. if (btree_node_dirty(b))
  301. schedule_delayed_work(&b->work, 30 * HZ);
  302. closure_return_with_destructor(cl, btree_node_write_unlock);
  303. }
  304. static void btree_node_write_done(struct closure *cl)
  305. {
  306. struct btree *b = container_of(cl, struct btree, io);
  307. bio_free_pages(b->bio);
  308. __btree_node_write_done(cl);
  309. }
  310. static void btree_node_write_endio(struct bio *bio)
  311. {
  312. struct closure *cl = bio->bi_private;
  313. struct btree *b = container_of(cl, struct btree, io);
  314. if (bio->bi_error)
  315. set_btree_node_io_error(b);
  316. bch_bbio_count_io_errors(b->c, bio, bio->bi_error, "writing btree");
  317. closure_put(cl);
  318. }
  319. static void do_btree_node_write(struct btree *b)
  320. {
  321. struct closure *cl = &b->io;
  322. struct bset *i = btree_bset_last(b);
  323. BKEY_PADDED(key) k;
  324. i->version = BCACHE_BSET_VERSION;
  325. i->csum = btree_csum_set(b, i);
  326. BUG_ON(b->bio);
  327. b->bio = bch_bbio_alloc(b->c);
  328. b->bio->bi_end_io = btree_node_write_endio;
  329. b->bio->bi_private = cl;
  330. b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
  331. bio_set_op_attrs(b->bio, REQ_OP_WRITE, REQ_META|WRITE_SYNC|REQ_FUA);
  332. bch_bio_map(b->bio, i);
  333. /*
  334. * If we're appending to a leaf node, we don't technically need FUA -
  335. * this write just needs to be persisted before the next journal write,
  336. * which will be marked FLUSH|FUA.
  337. *
  338. * Similarly if we're writing a new btree root - the pointer is going to
  339. * be in the next journal entry.
  340. *
  341. * But if we're writing a new btree node (that isn't a root) or
  342. * appending to a non leaf btree node, we need either FUA or a flush
  343. * when we write the parent with the new pointer. FUA is cheaper than a
  344. * flush, and writes appending to leaf nodes aren't blocking anything so
  345. * just make all btree node writes FUA to keep things sane.
  346. */
  347. bkey_copy(&k.key, &b->key);
  348. SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
  349. bset_sector_offset(&b->keys, i));
  350. if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
  351. int j;
  352. struct bio_vec *bv;
  353. void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
  354. bio_for_each_segment_all(bv, b->bio, j)
  355. memcpy(page_address(bv->bv_page),
  356. base + j * PAGE_SIZE, PAGE_SIZE);
  357. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  358. continue_at(cl, btree_node_write_done, NULL);
  359. } else {
  360. b->bio->bi_vcnt = 0;
  361. bch_bio_map(b->bio, i);
  362. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  363. closure_sync(cl);
  364. continue_at_nobarrier(cl, __btree_node_write_done, NULL);
  365. }
  366. }
  367. void __bch_btree_node_write(struct btree *b, struct closure *parent)
  368. {
  369. struct bset *i = btree_bset_last(b);
  370. lockdep_assert_held(&b->write_lock);
  371. trace_bcache_btree_write(b);
  372. BUG_ON(current->bio_list);
  373. BUG_ON(b->written >= btree_blocks(b));
  374. BUG_ON(b->written && !i->keys);
  375. BUG_ON(btree_bset_first(b)->seq != i->seq);
  376. bch_check_keys(&b->keys, "writing");
  377. cancel_delayed_work(&b->work);
  378. /* If caller isn't waiting for write, parent refcount is cache set */
  379. down(&b->io_mutex);
  380. closure_init(&b->io, parent ?: &b->c->cl);
  381. clear_bit(BTREE_NODE_dirty, &b->flags);
  382. change_bit(BTREE_NODE_write_idx, &b->flags);
  383. do_btree_node_write(b);
  384. atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
  385. &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
  386. b->written += set_blocks(i, block_bytes(b->c));
  387. }
  388. void bch_btree_node_write(struct btree *b, struct closure *parent)
  389. {
  390. unsigned nsets = b->keys.nsets;
  391. lockdep_assert_held(&b->lock);
  392. __bch_btree_node_write(b, parent);
  393. /*
  394. * do verify if there was more than one set initially (i.e. we did a
  395. * sort) and we sorted down to a single set:
  396. */
  397. if (nsets && !b->keys.nsets)
  398. bch_btree_verify(b);
  399. bch_btree_init_next(b);
  400. }
  401. static void bch_btree_node_write_sync(struct btree *b)
  402. {
  403. struct closure cl;
  404. closure_init_stack(&cl);
  405. mutex_lock(&b->write_lock);
  406. bch_btree_node_write(b, &cl);
  407. mutex_unlock(&b->write_lock);
  408. closure_sync(&cl);
  409. }
  410. static void btree_node_write_work(struct work_struct *w)
  411. {
  412. struct btree *b = container_of(to_delayed_work(w), struct btree, work);
  413. mutex_lock(&b->write_lock);
  414. if (btree_node_dirty(b))
  415. __bch_btree_node_write(b, NULL);
  416. mutex_unlock(&b->write_lock);
  417. }
  418. static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
  419. {
  420. struct bset *i = btree_bset_last(b);
  421. struct btree_write *w = btree_current_write(b);
  422. lockdep_assert_held(&b->write_lock);
  423. BUG_ON(!b->written);
  424. BUG_ON(!i->keys);
  425. if (!btree_node_dirty(b))
  426. schedule_delayed_work(&b->work, 30 * HZ);
  427. set_btree_node_dirty(b);
  428. if (journal_ref) {
  429. if (w->journal &&
  430. journal_pin_cmp(b->c, w->journal, journal_ref)) {
  431. atomic_dec_bug(w->journal);
  432. w->journal = NULL;
  433. }
  434. if (!w->journal) {
  435. w->journal = journal_ref;
  436. atomic_inc(w->journal);
  437. }
  438. }
  439. /* Force write if set is too big */
  440. if (set_bytes(i) > PAGE_SIZE - 48 &&
  441. !current->bio_list)
  442. bch_btree_node_write(b, NULL);
  443. }
  444. /*
  445. * Btree in memory cache - allocation/freeing
  446. * mca -> memory cache
  447. */
  448. #define mca_reserve(c) (((c->root && c->root->level) \
  449. ? c->root->level : 1) * 8 + 16)
  450. #define mca_can_free(c) \
  451. max_t(int, 0, c->btree_cache_used - mca_reserve(c))
  452. static void mca_data_free(struct btree *b)
  453. {
  454. BUG_ON(b->io_mutex.count != 1);
  455. bch_btree_keys_free(&b->keys);
  456. b->c->btree_cache_used--;
  457. list_move(&b->list, &b->c->btree_cache_freed);
  458. }
  459. static void mca_bucket_free(struct btree *b)
  460. {
  461. BUG_ON(btree_node_dirty(b));
  462. b->key.ptr[0] = 0;
  463. hlist_del_init_rcu(&b->hash);
  464. list_move(&b->list, &b->c->btree_cache_freeable);
  465. }
  466. static unsigned btree_order(struct bkey *k)
  467. {
  468. return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
  469. }
  470. static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
  471. {
  472. if (!bch_btree_keys_alloc(&b->keys,
  473. max_t(unsigned,
  474. ilog2(b->c->btree_pages),
  475. btree_order(k)),
  476. gfp)) {
  477. b->c->btree_cache_used++;
  478. list_move(&b->list, &b->c->btree_cache);
  479. } else {
  480. list_move(&b->list, &b->c->btree_cache_freed);
  481. }
  482. }
  483. static struct btree *mca_bucket_alloc(struct cache_set *c,
  484. struct bkey *k, gfp_t gfp)
  485. {
  486. struct btree *b = kzalloc(sizeof(struct btree), gfp);
  487. if (!b)
  488. return NULL;
  489. init_rwsem(&b->lock);
  490. lockdep_set_novalidate_class(&b->lock);
  491. mutex_init(&b->write_lock);
  492. lockdep_set_novalidate_class(&b->write_lock);
  493. INIT_LIST_HEAD(&b->list);
  494. INIT_DELAYED_WORK(&b->work, btree_node_write_work);
  495. b->c = c;
  496. sema_init(&b->io_mutex, 1);
  497. mca_data_alloc(b, k, gfp);
  498. return b;
  499. }
  500. static int mca_reap(struct btree *b, unsigned min_order, bool flush)
  501. {
  502. struct closure cl;
  503. closure_init_stack(&cl);
  504. lockdep_assert_held(&b->c->bucket_lock);
  505. if (!down_write_trylock(&b->lock))
  506. return -ENOMEM;
  507. BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
  508. if (b->keys.page_order < min_order)
  509. goto out_unlock;
  510. if (!flush) {
  511. if (btree_node_dirty(b))
  512. goto out_unlock;
  513. if (down_trylock(&b->io_mutex))
  514. goto out_unlock;
  515. up(&b->io_mutex);
  516. }
  517. mutex_lock(&b->write_lock);
  518. if (btree_node_dirty(b))
  519. __bch_btree_node_write(b, &cl);
  520. mutex_unlock(&b->write_lock);
  521. closure_sync(&cl);
  522. /* wait for any in flight btree write */
  523. down(&b->io_mutex);
  524. up(&b->io_mutex);
  525. return 0;
  526. out_unlock:
  527. rw_unlock(true, b);
  528. return -ENOMEM;
  529. }
  530. static unsigned long bch_mca_scan(struct shrinker *shrink,
  531. struct shrink_control *sc)
  532. {
  533. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  534. struct btree *b, *t;
  535. unsigned long i, nr = sc->nr_to_scan;
  536. unsigned long freed = 0;
  537. if (c->shrinker_disabled)
  538. return SHRINK_STOP;
  539. if (c->btree_cache_alloc_lock)
  540. return SHRINK_STOP;
  541. /* Return -1 if we can't do anything right now */
  542. if (sc->gfp_mask & __GFP_IO)
  543. mutex_lock(&c->bucket_lock);
  544. else if (!mutex_trylock(&c->bucket_lock))
  545. return -1;
  546. /*
  547. * It's _really_ critical that we don't free too many btree nodes - we
  548. * have to always leave ourselves a reserve. The reserve is how we
  549. * guarantee that allocating memory for a new btree node can always
  550. * succeed, so that inserting keys into the btree can always succeed and
  551. * IO can always make forward progress:
  552. */
  553. nr /= c->btree_pages;
  554. nr = min_t(unsigned long, nr, mca_can_free(c));
  555. i = 0;
  556. list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
  557. if (freed >= nr)
  558. break;
  559. if (++i > 3 &&
  560. !mca_reap(b, 0, false)) {
  561. mca_data_free(b);
  562. rw_unlock(true, b);
  563. freed++;
  564. }
  565. }
  566. for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
  567. if (list_empty(&c->btree_cache))
  568. goto out;
  569. b = list_first_entry(&c->btree_cache, struct btree, list);
  570. list_rotate_left(&c->btree_cache);
  571. if (!b->accessed &&
  572. !mca_reap(b, 0, false)) {
  573. mca_bucket_free(b);
  574. mca_data_free(b);
  575. rw_unlock(true, b);
  576. freed++;
  577. } else
  578. b->accessed = 0;
  579. }
  580. out:
  581. mutex_unlock(&c->bucket_lock);
  582. return freed;
  583. }
  584. static unsigned long bch_mca_count(struct shrinker *shrink,
  585. struct shrink_control *sc)
  586. {
  587. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  588. if (c->shrinker_disabled)
  589. return 0;
  590. if (c->btree_cache_alloc_lock)
  591. return 0;
  592. return mca_can_free(c) * c->btree_pages;
  593. }
  594. void bch_btree_cache_free(struct cache_set *c)
  595. {
  596. struct btree *b;
  597. struct closure cl;
  598. closure_init_stack(&cl);
  599. if (c->shrink.list.next)
  600. unregister_shrinker(&c->shrink);
  601. mutex_lock(&c->bucket_lock);
  602. #ifdef CONFIG_BCACHE_DEBUG
  603. if (c->verify_data)
  604. list_move(&c->verify_data->list, &c->btree_cache);
  605. free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
  606. #endif
  607. list_splice(&c->btree_cache_freeable,
  608. &c->btree_cache);
  609. while (!list_empty(&c->btree_cache)) {
  610. b = list_first_entry(&c->btree_cache, struct btree, list);
  611. if (btree_node_dirty(b))
  612. btree_complete_write(b, btree_current_write(b));
  613. clear_bit(BTREE_NODE_dirty, &b->flags);
  614. mca_data_free(b);
  615. }
  616. while (!list_empty(&c->btree_cache_freed)) {
  617. b = list_first_entry(&c->btree_cache_freed,
  618. struct btree, list);
  619. list_del(&b->list);
  620. cancel_delayed_work_sync(&b->work);
  621. kfree(b);
  622. }
  623. mutex_unlock(&c->bucket_lock);
  624. }
  625. int bch_btree_cache_alloc(struct cache_set *c)
  626. {
  627. unsigned i;
  628. for (i = 0; i < mca_reserve(c); i++)
  629. if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
  630. return -ENOMEM;
  631. list_splice_init(&c->btree_cache,
  632. &c->btree_cache_freeable);
  633. #ifdef CONFIG_BCACHE_DEBUG
  634. mutex_init(&c->verify_lock);
  635. c->verify_ondisk = (void *)
  636. __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
  637. c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
  638. if (c->verify_data &&
  639. c->verify_data->keys.set->data)
  640. list_del_init(&c->verify_data->list);
  641. else
  642. c->verify_data = NULL;
  643. #endif
  644. c->shrink.count_objects = bch_mca_count;
  645. c->shrink.scan_objects = bch_mca_scan;
  646. c->shrink.seeks = 4;
  647. c->shrink.batch = c->btree_pages * 2;
  648. if (register_shrinker(&c->shrink))
  649. pr_warn("bcache: %s: could not register shrinker",
  650. __func__);
  651. return 0;
  652. }
  653. /* Btree in memory cache - hash table */
  654. static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
  655. {
  656. return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
  657. }
  658. static struct btree *mca_find(struct cache_set *c, struct bkey *k)
  659. {
  660. struct btree *b;
  661. rcu_read_lock();
  662. hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
  663. if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
  664. goto out;
  665. b = NULL;
  666. out:
  667. rcu_read_unlock();
  668. return b;
  669. }
  670. static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
  671. {
  672. struct task_struct *old;
  673. old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
  674. if (old && old != current) {
  675. if (op)
  676. prepare_to_wait(&c->btree_cache_wait, &op->wait,
  677. TASK_UNINTERRUPTIBLE);
  678. return -EINTR;
  679. }
  680. return 0;
  681. }
  682. static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
  683. struct bkey *k)
  684. {
  685. struct btree *b;
  686. trace_bcache_btree_cache_cannibalize(c);
  687. if (mca_cannibalize_lock(c, op))
  688. return ERR_PTR(-EINTR);
  689. list_for_each_entry_reverse(b, &c->btree_cache, list)
  690. if (!mca_reap(b, btree_order(k), false))
  691. return b;
  692. list_for_each_entry_reverse(b, &c->btree_cache, list)
  693. if (!mca_reap(b, btree_order(k), true))
  694. return b;
  695. WARN(1, "btree cache cannibalize failed\n");
  696. return ERR_PTR(-ENOMEM);
  697. }
  698. /*
  699. * We can only have one thread cannibalizing other cached btree nodes at a time,
  700. * or we'll deadlock. We use an open coded mutex to ensure that, which a
  701. * cannibalize_bucket() will take. This means every time we unlock the root of
  702. * the btree, we need to release this lock if we have it held.
  703. */
  704. static void bch_cannibalize_unlock(struct cache_set *c)
  705. {
  706. if (c->btree_cache_alloc_lock == current) {
  707. c->btree_cache_alloc_lock = NULL;
  708. wake_up(&c->btree_cache_wait);
  709. }
  710. }
  711. static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
  712. struct bkey *k, int level)
  713. {
  714. struct btree *b;
  715. BUG_ON(current->bio_list);
  716. lockdep_assert_held(&c->bucket_lock);
  717. if (mca_find(c, k))
  718. return NULL;
  719. /* btree_free() doesn't free memory; it sticks the node on the end of
  720. * the list. Check if there's any freed nodes there:
  721. */
  722. list_for_each_entry(b, &c->btree_cache_freeable, list)
  723. if (!mca_reap(b, btree_order(k), false))
  724. goto out;
  725. /* We never free struct btree itself, just the memory that holds the on
  726. * disk node. Check the freed list before allocating a new one:
  727. */
  728. list_for_each_entry(b, &c->btree_cache_freed, list)
  729. if (!mca_reap(b, 0, false)) {
  730. mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
  731. if (!b->keys.set[0].data)
  732. goto err;
  733. else
  734. goto out;
  735. }
  736. b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
  737. if (!b)
  738. goto err;
  739. BUG_ON(!down_write_trylock(&b->lock));
  740. if (!b->keys.set->data)
  741. goto err;
  742. out:
  743. BUG_ON(b->io_mutex.count != 1);
  744. bkey_copy(&b->key, k);
  745. list_move(&b->list, &c->btree_cache);
  746. hlist_del_init_rcu(&b->hash);
  747. hlist_add_head_rcu(&b->hash, mca_hash(c, k));
  748. lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
  749. b->parent = (void *) ~0UL;
  750. b->flags = 0;
  751. b->written = 0;
  752. b->level = level;
  753. if (!b->level)
  754. bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
  755. &b->c->expensive_debug_checks);
  756. else
  757. bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
  758. &b->c->expensive_debug_checks);
  759. return b;
  760. err:
  761. if (b)
  762. rw_unlock(true, b);
  763. b = mca_cannibalize(c, op, k);
  764. if (!IS_ERR(b))
  765. goto out;
  766. return b;
  767. }
  768. /**
  769. * bch_btree_node_get - find a btree node in the cache and lock it, reading it
  770. * in from disk if necessary.
  771. *
  772. * If IO is necessary and running under generic_make_request, returns -EAGAIN.
  773. *
  774. * The btree node will have either a read or a write lock held, depending on
  775. * level and op->lock.
  776. */
  777. struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
  778. struct bkey *k, int level, bool write,
  779. struct btree *parent)
  780. {
  781. int i = 0;
  782. struct btree *b;
  783. BUG_ON(level < 0);
  784. retry:
  785. b = mca_find(c, k);
  786. if (!b) {
  787. if (current->bio_list)
  788. return ERR_PTR(-EAGAIN);
  789. mutex_lock(&c->bucket_lock);
  790. b = mca_alloc(c, op, k, level);
  791. mutex_unlock(&c->bucket_lock);
  792. if (!b)
  793. goto retry;
  794. if (IS_ERR(b))
  795. return b;
  796. bch_btree_node_read(b);
  797. if (!write)
  798. downgrade_write(&b->lock);
  799. } else {
  800. rw_lock(write, b, level);
  801. if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
  802. rw_unlock(write, b);
  803. goto retry;
  804. }
  805. BUG_ON(b->level != level);
  806. }
  807. b->parent = parent;
  808. b->accessed = 1;
  809. for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
  810. prefetch(b->keys.set[i].tree);
  811. prefetch(b->keys.set[i].data);
  812. }
  813. for (; i <= b->keys.nsets; i++)
  814. prefetch(b->keys.set[i].data);
  815. if (btree_node_io_error(b)) {
  816. rw_unlock(write, b);
  817. return ERR_PTR(-EIO);
  818. }
  819. BUG_ON(!b->written);
  820. return b;
  821. }
  822. static void btree_node_prefetch(struct btree *parent, struct bkey *k)
  823. {
  824. struct btree *b;
  825. mutex_lock(&parent->c->bucket_lock);
  826. b = mca_alloc(parent->c, NULL, k, parent->level - 1);
  827. mutex_unlock(&parent->c->bucket_lock);
  828. if (!IS_ERR_OR_NULL(b)) {
  829. b->parent = parent;
  830. bch_btree_node_read(b);
  831. rw_unlock(true, b);
  832. }
  833. }
  834. /* Btree alloc */
  835. static void btree_node_free(struct btree *b)
  836. {
  837. trace_bcache_btree_node_free(b);
  838. BUG_ON(b == b->c->root);
  839. mutex_lock(&b->write_lock);
  840. if (btree_node_dirty(b))
  841. btree_complete_write(b, btree_current_write(b));
  842. clear_bit(BTREE_NODE_dirty, &b->flags);
  843. mutex_unlock(&b->write_lock);
  844. cancel_delayed_work(&b->work);
  845. mutex_lock(&b->c->bucket_lock);
  846. bch_bucket_free(b->c, &b->key);
  847. mca_bucket_free(b);
  848. mutex_unlock(&b->c->bucket_lock);
  849. }
  850. struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
  851. int level, bool wait,
  852. struct btree *parent)
  853. {
  854. BKEY_PADDED(key) k;
  855. struct btree *b = ERR_PTR(-EAGAIN);
  856. mutex_lock(&c->bucket_lock);
  857. retry:
  858. if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
  859. goto err;
  860. bkey_put(c, &k.key);
  861. SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
  862. b = mca_alloc(c, op, &k.key, level);
  863. if (IS_ERR(b))
  864. goto err_free;
  865. if (!b) {
  866. cache_bug(c,
  867. "Tried to allocate bucket that was in btree cache");
  868. goto retry;
  869. }
  870. b->accessed = 1;
  871. b->parent = parent;
  872. bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
  873. mutex_unlock(&c->bucket_lock);
  874. trace_bcache_btree_node_alloc(b);
  875. return b;
  876. err_free:
  877. bch_bucket_free(c, &k.key);
  878. err:
  879. mutex_unlock(&c->bucket_lock);
  880. trace_bcache_btree_node_alloc_fail(c);
  881. return b;
  882. }
  883. static struct btree *bch_btree_node_alloc(struct cache_set *c,
  884. struct btree_op *op, int level,
  885. struct btree *parent)
  886. {
  887. return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
  888. }
  889. static struct btree *btree_node_alloc_replacement(struct btree *b,
  890. struct btree_op *op)
  891. {
  892. struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
  893. if (!IS_ERR_OR_NULL(n)) {
  894. mutex_lock(&n->write_lock);
  895. bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
  896. bkey_copy_key(&n->key, &b->key);
  897. mutex_unlock(&n->write_lock);
  898. }
  899. return n;
  900. }
  901. static void make_btree_freeing_key(struct btree *b, struct bkey *k)
  902. {
  903. unsigned i;
  904. mutex_lock(&b->c->bucket_lock);
  905. atomic_inc(&b->c->prio_blocked);
  906. bkey_copy(k, &b->key);
  907. bkey_copy_key(k, &ZERO_KEY);
  908. for (i = 0; i < KEY_PTRS(k); i++)
  909. SET_PTR_GEN(k, i,
  910. bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
  911. PTR_BUCKET(b->c, &b->key, i)));
  912. mutex_unlock(&b->c->bucket_lock);
  913. }
  914. static int btree_check_reserve(struct btree *b, struct btree_op *op)
  915. {
  916. struct cache_set *c = b->c;
  917. struct cache *ca;
  918. unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
  919. mutex_lock(&c->bucket_lock);
  920. for_each_cache(ca, c, i)
  921. if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
  922. if (op)
  923. prepare_to_wait(&c->btree_cache_wait, &op->wait,
  924. TASK_UNINTERRUPTIBLE);
  925. mutex_unlock(&c->bucket_lock);
  926. return -EINTR;
  927. }
  928. mutex_unlock(&c->bucket_lock);
  929. return mca_cannibalize_lock(b->c, op);
  930. }
  931. /* Garbage collection */
  932. static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
  933. struct bkey *k)
  934. {
  935. uint8_t stale = 0;
  936. unsigned i;
  937. struct bucket *g;
  938. /*
  939. * ptr_invalid() can't return true for the keys that mark btree nodes as
  940. * freed, but since ptr_bad() returns true we'll never actually use them
  941. * for anything and thus we don't want mark their pointers here
  942. */
  943. if (!bkey_cmp(k, &ZERO_KEY))
  944. return stale;
  945. for (i = 0; i < KEY_PTRS(k); i++) {
  946. if (!ptr_available(c, k, i))
  947. continue;
  948. g = PTR_BUCKET(c, k, i);
  949. if (gen_after(g->last_gc, PTR_GEN(k, i)))
  950. g->last_gc = PTR_GEN(k, i);
  951. if (ptr_stale(c, k, i)) {
  952. stale = max(stale, ptr_stale(c, k, i));
  953. continue;
  954. }
  955. cache_bug_on(GC_MARK(g) &&
  956. (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
  957. c, "inconsistent ptrs: mark = %llu, level = %i",
  958. GC_MARK(g), level);
  959. if (level)
  960. SET_GC_MARK(g, GC_MARK_METADATA);
  961. else if (KEY_DIRTY(k))
  962. SET_GC_MARK(g, GC_MARK_DIRTY);
  963. else if (!GC_MARK(g))
  964. SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
  965. /* guard against overflow */
  966. SET_GC_SECTORS_USED(g, min_t(unsigned,
  967. GC_SECTORS_USED(g) + KEY_SIZE(k),
  968. MAX_GC_SECTORS_USED));
  969. BUG_ON(!GC_SECTORS_USED(g));
  970. }
  971. return stale;
  972. }
  973. #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
  974. void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
  975. {
  976. unsigned i;
  977. for (i = 0; i < KEY_PTRS(k); i++)
  978. if (ptr_available(c, k, i) &&
  979. !ptr_stale(c, k, i)) {
  980. struct bucket *b = PTR_BUCKET(c, k, i);
  981. b->gen = PTR_GEN(k, i);
  982. if (level && bkey_cmp(k, &ZERO_KEY))
  983. b->prio = BTREE_PRIO;
  984. else if (!level && b->prio == BTREE_PRIO)
  985. b->prio = INITIAL_PRIO;
  986. }
  987. __bch_btree_mark_key(c, level, k);
  988. }
  989. static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
  990. {
  991. uint8_t stale = 0;
  992. unsigned keys = 0, good_keys = 0;
  993. struct bkey *k;
  994. struct btree_iter iter;
  995. struct bset_tree *t;
  996. gc->nodes++;
  997. for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
  998. stale = max(stale, btree_mark_key(b, k));
  999. keys++;
  1000. if (bch_ptr_bad(&b->keys, k))
  1001. continue;
  1002. gc->key_bytes += bkey_u64s(k);
  1003. gc->nkeys++;
  1004. good_keys++;
  1005. gc->data += KEY_SIZE(k);
  1006. }
  1007. for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
  1008. btree_bug_on(t->size &&
  1009. bset_written(&b->keys, t) &&
  1010. bkey_cmp(&b->key, &t->end) < 0,
  1011. b, "found short btree key in gc");
  1012. if (b->c->gc_always_rewrite)
  1013. return true;
  1014. if (stale > 10)
  1015. return true;
  1016. if ((keys - good_keys) * 2 > keys)
  1017. return true;
  1018. return false;
  1019. }
  1020. #define GC_MERGE_NODES 4U
  1021. struct gc_merge_info {
  1022. struct btree *b;
  1023. unsigned keys;
  1024. };
  1025. static int bch_btree_insert_node(struct btree *, struct btree_op *,
  1026. struct keylist *, atomic_t *, struct bkey *);
  1027. static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
  1028. struct gc_stat *gc, struct gc_merge_info *r)
  1029. {
  1030. unsigned i, nodes = 0, keys = 0, blocks;
  1031. struct btree *new_nodes[GC_MERGE_NODES];
  1032. struct keylist keylist;
  1033. struct closure cl;
  1034. struct bkey *k;
  1035. bch_keylist_init(&keylist);
  1036. if (btree_check_reserve(b, NULL))
  1037. return 0;
  1038. memset(new_nodes, 0, sizeof(new_nodes));
  1039. closure_init_stack(&cl);
  1040. while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
  1041. keys += r[nodes++].keys;
  1042. blocks = btree_default_blocks(b->c) * 2 / 3;
  1043. if (nodes < 2 ||
  1044. __set_blocks(b->keys.set[0].data, keys,
  1045. block_bytes(b->c)) > blocks * (nodes - 1))
  1046. return 0;
  1047. for (i = 0; i < nodes; i++) {
  1048. new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
  1049. if (IS_ERR_OR_NULL(new_nodes[i]))
  1050. goto out_nocoalesce;
  1051. }
  1052. /*
  1053. * We have to check the reserve here, after we've allocated our new
  1054. * nodes, to make sure the insert below will succeed - we also check
  1055. * before as an optimization to potentially avoid a bunch of expensive
  1056. * allocs/sorts
  1057. */
  1058. if (btree_check_reserve(b, NULL))
  1059. goto out_nocoalesce;
  1060. for (i = 0; i < nodes; i++)
  1061. mutex_lock(&new_nodes[i]->write_lock);
  1062. for (i = nodes - 1; i > 0; --i) {
  1063. struct bset *n1 = btree_bset_first(new_nodes[i]);
  1064. struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
  1065. struct bkey *k, *last = NULL;
  1066. keys = 0;
  1067. if (i > 1) {
  1068. for (k = n2->start;
  1069. k < bset_bkey_last(n2);
  1070. k = bkey_next(k)) {
  1071. if (__set_blocks(n1, n1->keys + keys +
  1072. bkey_u64s(k),
  1073. block_bytes(b->c)) > blocks)
  1074. break;
  1075. last = k;
  1076. keys += bkey_u64s(k);
  1077. }
  1078. } else {
  1079. /*
  1080. * Last node we're not getting rid of - we're getting
  1081. * rid of the node at r[0]. Have to try and fit all of
  1082. * the remaining keys into this node; we can't ensure
  1083. * they will always fit due to rounding and variable
  1084. * length keys (shouldn't be possible in practice,
  1085. * though)
  1086. */
  1087. if (__set_blocks(n1, n1->keys + n2->keys,
  1088. block_bytes(b->c)) >
  1089. btree_blocks(new_nodes[i]))
  1090. goto out_nocoalesce;
  1091. keys = n2->keys;
  1092. /* Take the key of the node we're getting rid of */
  1093. last = &r->b->key;
  1094. }
  1095. BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
  1096. btree_blocks(new_nodes[i]));
  1097. if (last)
  1098. bkey_copy_key(&new_nodes[i]->key, last);
  1099. memcpy(bset_bkey_last(n1),
  1100. n2->start,
  1101. (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
  1102. n1->keys += keys;
  1103. r[i].keys = n1->keys;
  1104. memmove(n2->start,
  1105. bset_bkey_idx(n2, keys),
  1106. (void *) bset_bkey_last(n2) -
  1107. (void *) bset_bkey_idx(n2, keys));
  1108. n2->keys -= keys;
  1109. if (__bch_keylist_realloc(&keylist,
  1110. bkey_u64s(&new_nodes[i]->key)))
  1111. goto out_nocoalesce;
  1112. bch_btree_node_write(new_nodes[i], &cl);
  1113. bch_keylist_add(&keylist, &new_nodes[i]->key);
  1114. }
  1115. for (i = 0; i < nodes; i++)
  1116. mutex_unlock(&new_nodes[i]->write_lock);
  1117. closure_sync(&cl);
  1118. /* We emptied out this node */
  1119. BUG_ON(btree_bset_first(new_nodes[0])->keys);
  1120. btree_node_free(new_nodes[0]);
  1121. rw_unlock(true, new_nodes[0]);
  1122. new_nodes[0] = NULL;
  1123. for (i = 0; i < nodes; i++) {
  1124. if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
  1125. goto out_nocoalesce;
  1126. make_btree_freeing_key(r[i].b, keylist.top);
  1127. bch_keylist_push(&keylist);
  1128. }
  1129. bch_btree_insert_node(b, op, &keylist, NULL, NULL);
  1130. BUG_ON(!bch_keylist_empty(&keylist));
  1131. for (i = 0; i < nodes; i++) {
  1132. btree_node_free(r[i].b);
  1133. rw_unlock(true, r[i].b);
  1134. r[i].b = new_nodes[i];
  1135. }
  1136. memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
  1137. r[nodes - 1].b = ERR_PTR(-EINTR);
  1138. trace_bcache_btree_gc_coalesce(nodes);
  1139. gc->nodes--;
  1140. bch_keylist_free(&keylist);
  1141. /* Invalidated our iterator */
  1142. return -EINTR;
  1143. out_nocoalesce:
  1144. closure_sync(&cl);
  1145. bch_keylist_free(&keylist);
  1146. while ((k = bch_keylist_pop(&keylist)))
  1147. if (!bkey_cmp(k, &ZERO_KEY))
  1148. atomic_dec(&b->c->prio_blocked);
  1149. for (i = 0; i < nodes; i++)
  1150. if (!IS_ERR_OR_NULL(new_nodes[i])) {
  1151. btree_node_free(new_nodes[i]);
  1152. rw_unlock(true, new_nodes[i]);
  1153. }
  1154. return 0;
  1155. }
  1156. static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
  1157. struct btree *replace)
  1158. {
  1159. struct keylist keys;
  1160. struct btree *n;
  1161. if (btree_check_reserve(b, NULL))
  1162. return 0;
  1163. n = btree_node_alloc_replacement(replace, NULL);
  1164. /* recheck reserve after allocating replacement node */
  1165. if (btree_check_reserve(b, NULL)) {
  1166. btree_node_free(n);
  1167. rw_unlock(true, n);
  1168. return 0;
  1169. }
  1170. bch_btree_node_write_sync(n);
  1171. bch_keylist_init(&keys);
  1172. bch_keylist_add(&keys, &n->key);
  1173. make_btree_freeing_key(replace, keys.top);
  1174. bch_keylist_push(&keys);
  1175. bch_btree_insert_node(b, op, &keys, NULL, NULL);
  1176. BUG_ON(!bch_keylist_empty(&keys));
  1177. btree_node_free(replace);
  1178. rw_unlock(true, n);
  1179. /* Invalidated our iterator */
  1180. return -EINTR;
  1181. }
  1182. static unsigned btree_gc_count_keys(struct btree *b)
  1183. {
  1184. struct bkey *k;
  1185. struct btree_iter iter;
  1186. unsigned ret = 0;
  1187. for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
  1188. ret += bkey_u64s(k);
  1189. return ret;
  1190. }
  1191. static int btree_gc_recurse(struct btree *b, struct btree_op *op,
  1192. struct closure *writes, struct gc_stat *gc)
  1193. {
  1194. int ret = 0;
  1195. bool should_rewrite;
  1196. struct bkey *k;
  1197. struct btree_iter iter;
  1198. struct gc_merge_info r[GC_MERGE_NODES];
  1199. struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
  1200. bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
  1201. for (i = r; i < r + ARRAY_SIZE(r); i++)
  1202. i->b = ERR_PTR(-EINTR);
  1203. while (1) {
  1204. k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
  1205. if (k) {
  1206. r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
  1207. true, b);
  1208. if (IS_ERR(r->b)) {
  1209. ret = PTR_ERR(r->b);
  1210. break;
  1211. }
  1212. r->keys = btree_gc_count_keys(r->b);
  1213. ret = btree_gc_coalesce(b, op, gc, r);
  1214. if (ret)
  1215. break;
  1216. }
  1217. if (!last->b)
  1218. break;
  1219. if (!IS_ERR(last->b)) {
  1220. should_rewrite = btree_gc_mark_node(last->b, gc);
  1221. if (should_rewrite) {
  1222. ret = btree_gc_rewrite_node(b, op, last->b);
  1223. if (ret)
  1224. break;
  1225. }
  1226. if (last->b->level) {
  1227. ret = btree_gc_recurse(last->b, op, writes, gc);
  1228. if (ret)
  1229. break;
  1230. }
  1231. bkey_copy_key(&b->c->gc_done, &last->b->key);
  1232. /*
  1233. * Must flush leaf nodes before gc ends, since replace
  1234. * operations aren't journalled
  1235. */
  1236. mutex_lock(&last->b->write_lock);
  1237. if (btree_node_dirty(last->b))
  1238. bch_btree_node_write(last->b, writes);
  1239. mutex_unlock(&last->b->write_lock);
  1240. rw_unlock(true, last->b);
  1241. }
  1242. memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
  1243. r->b = NULL;
  1244. if (need_resched()) {
  1245. ret = -EAGAIN;
  1246. break;
  1247. }
  1248. }
  1249. for (i = r; i < r + ARRAY_SIZE(r); i++)
  1250. if (!IS_ERR_OR_NULL(i->b)) {
  1251. mutex_lock(&i->b->write_lock);
  1252. if (btree_node_dirty(i->b))
  1253. bch_btree_node_write(i->b, writes);
  1254. mutex_unlock(&i->b->write_lock);
  1255. rw_unlock(true, i->b);
  1256. }
  1257. return ret;
  1258. }
  1259. static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
  1260. struct closure *writes, struct gc_stat *gc)
  1261. {
  1262. struct btree *n = NULL;
  1263. int ret = 0;
  1264. bool should_rewrite;
  1265. should_rewrite = btree_gc_mark_node(b, gc);
  1266. if (should_rewrite) {
  1267. n = btree_node_alloc_replacement(b, NULL);
  1268. if (!IS_ERR_OR_NULL(n)) {
  1269. bch_btree_node_write_sync(n);
  1270. bch_btree_set_root(n);
  1271. btree_node_free(b);
  1272. rw_unlock(true, n);
  1273. return -EINTR;
  1274. }
  1275. }
  1276. __bch_btree_mark_key(b->c, b->level + 1, &b->key);
  1277. if (b->level) {
  1278. ret = btree_gc_recurse(b, op, writes, gc);
  1279. if (ret)
  1280. return ret;
  1281. }
  1282. bkey_copy_key(&b->c->gc_done, &b->key);
  1283. return ret;
  1284. }
  1285. static void btree_gc_start(struct cache_set *c)
  1286. {
  1287. struct cache *ca;
  1288. struct bucket *b;
  1289. unsigned i;
  1290. if (!c->gc_mark_valid)
  1291. return;
  1292. mutex_lock(&c->bucket_lock);
  1293. c->gc_mark_valid = 0;
  1294. c->gc_done = ZERO_KEY;
  1295. for_each_cache(ca, c, i)
  1296. for_each_bucket(b, ca) {
  1297. b->last_gc = b->gen;
  1298. if (!atomic_read(&b->pin)) {
  1299. SET_GC_MARK(b, 0);
  1300. SET_GC_SECTORS_USED(b, 0);
  1301. }
  1302. }
  1303. mutex_unlock(&c->bucket_lock);
  1304. }
  1305. static size_t bch_btree_gc_finish(struct cache_set *c)
  1306. {
  1307. size_t available = 0;
  1308. struct bucket *b;
  1309. struct cache *ca;
  1310. unsigned i;
  1311. mutex_lock(&c->bucket_lock);
  1312. set_gc_sectors(c);
  1313. c->gc_mark_valid = 1;
  1314. c->need_gc = 0;
  1315. for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
  1316. SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
  1317. GC_MARK_METADATA);
  1318. /* don't reclaim buckets to which writeback keys point */
  1319. rcu_read_lock();
  1320. for (i = 0; i < c->nr_uuids; i++) {
  1321. struct bcache_device *d = c->devices[i];
  1322. struct cached_dev *dc;
  1323. struct keybuf_key *w, *n;
  1324. unsigned j;
  1325. if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
  1326. continue;
  1327. dc = container_of(d, struct cached_dev, disk);
  1328. spin_lock(&dc->writeback_keys.lock);
  1329. rbtree_postorder_for_each_entry_safe(w, n,
  1330. &dc->writeback_keys.keys, node)
  1331. for (j = 0; j < KEY_PTRS(&w->key); j++)
  1332. SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
  1333. GC_MARK_DIRTY);
  1334. spin_unlock(&dc->writeback_keys.lock);
  1335. }
  1336. rcu_read_unlock();
  1337. for_each_cache(ca, c, i) {
  1338. uint64_t *i;
  1339. ca->invalidate_needs_gc = 0;
  1340. for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
  1341. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1342. for (i = ca->prio_buckets;
  1343. i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
  1344. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1345. for_each_bucket(b, ca) {
  1346. c->need_gc = max(c->need_gc, bucket_gc_gen(b));
  1347. if (atomic_read(&b->pin))
  1348. continue;
  1349. BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
  1350. if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
  1351. available++;
  1352. }
  1353. }
  1354. mutex_unlock(&c->bucket_lock);
  1355. return available;
  1356. }
  1357. static void bch_btree_gc(struct cache_set *c)
  1358. {
  1359. int ret;
  1360. unsigned long available;
  1361. struct gc_stat stats;
  1362. struct closure writes;
  1363. struct btree_op op;
  1364. uint64_t start_time = local_clock();
  1365. trace_bcache_gc_start(c);
  1366. memset(&stats, 0, sizeof(struct gc_stat));
  1367. closure_init_stack(&writes);
  1368. bch_btree_op_init(&op, SHRT_MAX);
  1369. btree_gc_start(c);
  1370. do {
  1371. ret = btree_root(gc_root, c, &op, &writes, &stats);
  1372. closure_sync(&writes);
  1373. cond_resched();
  1374. if (ret && ret != -EAGAIN)
  1375. pr_warn("gc failed!");
  1376. } while (ret);
  1377. available = bch_btree_gc_finish(c);
  1378. wake_up_allocators(c);
  1379. bch_time_stats_update(&c->btree_gc_time, start_time);
  1380. stats.key_bytes *= sizeof(uint64_t);
  1381. stats.data <<= 9;
  1382. stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
  1383. memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
  1384. trace_bcache_gc_end(c);
  1385. bch_moving_gc(c);
  1386. }
  1387. static bool gc_should_run(struct cache_set *c)
  1388. {
  1389. struct cache *ca;
  1390. unsigned i;
  1391. for_each_cache(ca, c, i)
  1392. if (ca->invalidate_needs_gc)
  1393. return true;
  1394. if (atomic_read(&c->sectors_to_gc) < 0)
  1395. return true;
  1396. return false;
  1397. }
  1398. static int bch_gc_thread(void *arg)
  1399. {
  1400. struct cache_set *c = arg;
  1401. while (1) {
  1402. wait_event_interruptible(c->gc_wait,
  1403. kthread_should_stop() || gc_should_run(c));
  1404. if (kthread_should_stop())
  1405. break;
  1406. set_gc_sectors(c);
  1407. bch_btree_gc(c);
  1408. }
  1409. return 0;
  1410. }
  1411. int bch_gc_thread_start(struct cache_set *c)
  1412. {
  1413. c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
  1414. if (IS_ERR(c->gc_thread))
  1415. return PTR_ERR(c->gc_thread);
  1416. return 0;
  1417. }
  1418. /* Initial partial gc */
  1419. static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
  1420. {
  1421. int ret = 0;
  1422. struct bkey *k, *p = NULL;
  1423. struct btree_iter iter;
  1424. for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
  1425. bch_initial_mark_key(b->c, b->level, k);
  1426. bch_initial_mark_key(b->c, b->level + 1, &b->key);
  1427. if (b->level) {
  1428. bch_btree_iter_init(&b->keys, &iter, NULL);
  1429. do {
  1430. k = bch_btree_iter_next_filter(&iter, &b->keys,
  1431. bch_ptr_bad);
  1432. if (k)
  1433. btree_node_prefetch(b, k);
  1434. if (p)
  1435. ret = btree(check_recurse, p, b, op);
  1436. p = k;
  1437. } while (p && !ret);
  1438. }
  1439. return ret;
  1440. }
  1441. int bch_btree_check(struct cache_set *c)
  1442. {
  1443. struct btree_op op;
  1444. bch_btree_op_init(&op, SHRT_MAX);
  1445. return btree_root(check_recurse, c, &op);
  1446. }
  1447. void bch_initial_gc_finish(struct cache_set *c)
  1448. {
  1449. struct cache *ca;
  1450. struct bucket *b;
  1451. unsigned i;
  1452. bch_btree_gc_finish(c);
  1453. mutex_lock(&c->bucket_lock);
  1454. /*
  1455. * We need to put some unused buckets directly on the prio freelist in
  1456. * order to get the allocator thread started - it needs freed buckets in
  1457. * order to rewrite the prios and gens, and it needs to rewrite prios
  1458. * and gens in order to free buckets.
  1459. *
  1460. * This is only safe for buckets that have no live data in them, which
  1461. * there should always be some of.
  1462. */
  1463. for_each_cache(ca, c, i) {
  1464. for_each_bucket(b, ca) {
  1465. if (fifo_full(&ca->free[RESERVE_PRIO]) &&
  1466. fifo_full(&ca->free[RESERVE_BTREE]))
  1467. break;
  1468. if (bch_can_invalidate_bucket(ca, b) &&
  1469. !GC_MARK(b)) {
  1470. __bch_invalidate_one_bucket(ca, b);
  1471. if (!fifo_push(&ca->free[RESERVE_PRIO],
  1472. b - ca->buckets))
  1473. fifo_push(&ca->free[RESERVE_BTREE],
  1474. b - ca->buckets);
  1475. }
  1476. }
  1477. }
  1478. mutex_unlock(&c->bucket_lock);
  1479. }
  1480. /* Btree insertion */
  1481. static bool btree_insert_key(struct btree *b, struct bkey *k,
  1482. struct bkey *replace_key)
  1483. {
  1484. unsigned status;
  1485. BUG_ON(bkey_cmp(k, &b->key) > 0);
  1486. status = bch_btree_insert_key(&b->keys, k, replace_key);
  1487. if (status != BTREE_INSERT_STATUS_NO_INSERT) {
  1488. bch_check_keys(&b->keys, "%u for %s", status,
  1489. replace_key ? "replace" : "insert");
  1490. trace_bcache_btree_insert_key(b, k, replace_key != NULL,
  1491. status);
  1492. return true;
  1493. } else
  1494. return false;
  1495. }
  1496. static size_t insert_u64s_remaining(struct btree *b)
  1497. {
  1498. long ret = bch_btree_keys_u64s_remaining(&b->keys);
  1499. /*
  1500. * Might land in the middle of an existing extent and have to split it
  1501. */
  1502. if (b->keys.ops->is_extents)
  1503. ret -= KEY_MAX_U64S;
  1504. return max(ret, 0L);
  1505. }
  1506. static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
  1507. struct keylist *insert_keys,
  1508. struct bkey *replace_key)
  1509. {
  1510. bool ret = false;
  1511. int oldsize = bch_count_data(&b->keys);
  1512. while (!bch_keylist_empty(insert_keys)) {
  1513. struct bkey *k = insert_keys->keys;
  1514. if (bkey_u64s(k) > insert_u64s_remaining(b))
  1515. break;
  1516. if (bkey_cmp(k, &b->key) <= 0) {
  1517. if (!b->level)
  1518. bkey_put(b->c, k);
  1519. ret |= btree_insert_key(b, k, replace_key);
  1520. bch_keylist_pop_front(insert_keys);
  1521. } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
  1522. BKEY_PADDED(key) temp;
  1523. bkey_copy(&temp.key, insert_keys->keys);
  1524. bch_cut_back(&b->key, &temp.key);
  1525. bch_cut_front(&b->key, insert_keys->keys);
  1526. ret |= btree_insert_key(b, &temp.key, replace_key);
  1527. break;
  1528. } else {
  1529. break;
  1530. }
  1531. }
  1532. if (!ret)
  1533. op->insert_collision = true;
  1534. BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
  1535. BUG_ON(bch_count_data(&b->keys) < oldsize);
  1536. return ret;
  1537. }
  1538. static int btree_split(struct btree *b, struct btree_op *op,
  1539. struct keylist *insert_keys,
  1540. struct bkey *replace_key)
  1541. {
  1542. bool split;
  1543. struct btree *n1, *n2 = NULL, *n3 = NULL;
  1544. uint64_t start_time = local_clock();
  1545. struct closure cl;
  1546. struct keylist parent_keys;
  1547. closure_init_stack(&cl);
  1548. bch_keylist_init(&parent_keys);
  1549. if (btree_check_reserve(b, op)) {
  1550. if (!b->level)
  1551. return -EINTR;
  1552. else
  1553. WARN(1, "insufficient reserve for split\n");
  1554. }
  1555. n1 = btree_node_alloc_replacement(b, op);
  1556. if (IS_ERR(n1))
  1557. goto err;
  1558. split = set_blocks(btree_bset_first(n1),
  1559. block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
  1560. if (split) {
  1561. unsigned keys = 0;
  1562. trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
  1563. n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
  1564. if (IS_ERR(n2))
  1565. goto err_free1;
  1566. if (!b->parent) {
  1567. n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
  1568. if (IS_ERR(n3))
  1569. goto err_free2;
  1570. }
  1571. mutex_lock(&n1->write_lock);
  1572. mutex_lock(&n2->write_lock);
  1573. bch_btree_insert_keys(n1, op, insert_keys, replace_key);
  1574. /*
  1575. * Has to be a linear search because we don't have an auxiliary
  1576. * search tree yet
  1577. */
  1578. while (keys < (btree_bset_first(n1)->keys * 3) / 5)
  1579. keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
  1580. keys));
  1581. bkey_copy_key(&n1->key,
  1582. bset_bkey_idx(btree_bset_first(n1), keys));
  1583. keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
  1584. btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
  1585. btree_bset_first(n1)->keys = keys;
  1586. memcpy(btree_bset_first(n2)->start,
  1587. bset_bkey_last(btree_bset_first(n1)),
  1588. btree_bset_first(n2)->keys * sizeof(uint64_t));
  1589. bkey_copy_key(&n2->key, &b->key);
  1590. bch_keylist_add(&parent_keys, &n2->key);
  1591. bch_btree_node_write(n2, &cl);
  1592. mutex_unlock(&n2->write_lock);
  1593. rw_unlock(true, n2);
  1594. } else {
  1595. trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
  1596. mutex_lock(&n1->write_lock);
  1597. bch_btree_insert_keys(n1, op, insert_keys, replace_key);
  1598. }
  1599. bch_keylist_add(&parent_keys, &n1->key);
  1600. bch_btree_node_write(n1, &cl);
  1601. mutex_unlock(&n1->write_lock);
  1602. if (n3) {
  1603. /* Depth increases, make a new root */
  1604. mutex_lock(&n3->write_lock);
  1605. bkey_copy_key(&n3->key, &MAX_KEY);
  1606. bch_btree_insert_keys(n3, op, &parent_keys, NULL);
  1607. bch_btree_node_write(n3, &cl);
  1608. mutex_unlock(&n3->write_lock);
  1609. closure_sync(&cl);
  1610. bch_btree_set_root(n3);
  1611. rw_unlock(true, n3);
  1612. } else if (!b->parent) {
  1613. /* Root filled up but didn't need to be split */
  1614. closure_sync(&cl);
  1615. bch_btree_set_root(n1);
  1616. } else {
  1617. /* Split a non root node */
  1618. closure_sync(&cl);
  1619. make_btree_freeing_key(b, parent_keys.top);
  1620. bch_keylist_push(&parent_keys);
  1621. bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
  1622. BUG_ON(!bch_keylist_empty(&parent_keys));
  1623. }
  1624. btree_node_free(b);
  1625. rw_unlock(true, n1);
  1626. bch_time_stats_update(&b->c->btree_split_time, start_time);
  1627. return 0;
  1628. err_free2:
  1629. bkey_put(b->c, &n2->key);
  1630. btree_node_free(n2);
  1631. rw_unlock(true, n2);
  1632. err_free1:
  1633. bkey_put(b->c, &n1->key);
  1634. btree_node_free(n1);
  1635. rw_unlock(true, n1);
  1636. err:
  1637. WARN(1, "bcache: btree split failed (level %u)", b->level);
  1638. if (n3 == ERR_PTR(-EAGAIN) ||
  1639. n2 == ERR_PTR(-EAGAIN) ||
  1640. n1 == ERR_PTR(-EAGAIN))
  1641. return -EAGAIN;
  1642. return -ENOMEM;
  1643. }
  1644. static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
  1645. struct keylist *insert_keys,
  1646. atomic_t *journal_ref,
  1647. struct bkey *replace_key)
  1648. {
  1649. struct closure cl;
  1650. BUG_ON(b->level && replace_key);
  1651. closure_init_stack(&cl);
  1652. mutex_lock(&b->write_lock);
  1653. if (write_block(b) != btree_bset_last(b) &&
  1654. b->keys.last_set_unwritten)
  1655. bch_btree_init_next(b); /* just wrote a set */
  1656. if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
  1657. mutex_unlock(&b->write_lock);
  1658. goto split;
  1659. }
  1660. BUG_ON(write_block(b) != btree_bset_last(b));
  1661. if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
  1662. if (!b->level)
  1663. bch_btree_leaf_dirty(b, journal_ref);
  1664. else
  1665. bch_btree_node_write(b, &cl);
  1666. }
  1667. mutex_unlock(&b->write_lock);
  1668. /* wait for btree node write if necessary, after unlock */
  1669. closure_sync(&cl);
  1670. return 0;
  1671. split:
  1672. if (current->bio_list) {
  1673. op->lock = b->c->root->level + 1;
  1674. return -EAGAIN;
  1675. } else if (op->lock <= b->c->root->level) {
  1676. op->lock = b->c->root->level + 1;
  1677. return -EINTR;
  1678. } else {
  1679. /* Invalidated all iterators */
  1680. int ret = btree_split(b, op, insert_keys, replace_key);
  1681. if (bch_keylist_empty(insert_keys))
  1682. return 0;
  1683. else if (!ret)
  1684. return -EINTR;
  1685. return ret;
  1686. }
  1687. }
  1688. int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
  1689. struct bkey *check_key)
  1690. {
  1691. int ret = -EINTR;
  1692. uint64_t btree_ptr = b->key.ptr[0];
  1693. unsigned long seq = b->seq;
  1694. struct keylist insert;
  1695. bool upgrade = op->lock == -1;
  1696. bch_keylist_init(&insert);
  1697. if (upgrade) {
  1698. rw_unlock(false, b);
  1699. rw_lock(true, b, b->level);
  1700. if (b->key.ptr[0] != btree_ptr ||
  1701. b->seq != seq + 1) {
  1702. op->lock = b->level;
  1703. goto out;
  1704. }
  1705. }
  1706. SET_KEY_PTRS(check_key, 1);
  1707. get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
  1708. SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
  1709. bch_keylist_add(&insert, check_key);
  1710. ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
  1711. BUG_ON(!ret && !bch_keylist_empty(&insert));
  1712. out:
  1713. if (upgrade)
  1714. downgrade_write(&b->lock);
  1715. return ret;
  1716. }
  1717. struct btree_insert_op {
  1718. struct btree_op op;
  1719. struct keylist *keys;
  1720. atomic_t *journal_ref;
  1721. struct bkey *replace_key;
  1722. };
  1723. static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
  1724. {
  1725. struct btree_insert_op *op = container_of(b_op,
  1726. struct btree_insert_op, op);
  1727. int ret = bch_btree_insert_node(b, &op->op, op->keys,
  1728. op->journal_ref, op->replace_key);
  1729. if (ret && !bch_keylist_empty(op->keys))
  1730. return ret;
  1731. else
  1732. return MAP_DONE;
  1733. }
  1734. int bch_btree_insert(struct cache_set *c, struct keylist *keys,
  1735. atomic_t *journal_ref, struct bkey *replace_key)
  1736. {
  1737. struct btree_insert_op op;
  1738. int ret = 0;
  1739. BUG_ON(current->bio_list);
  1740. BUG_ON(bch_keylist_empty(keys));
  1741. bch_btree_op_init(&op.op, 0);
  1742. op.keys = keys;
  1743. op.journal_ref = journal_ref;
  1744. op.replace_key = replace_key;
  1745. while (!ret && !bch_keylist_empty(keys)) {
  1746. op.op.lock = 0;
  1747. ret = bch_btree_map_leaf_nodes(&op.op, c,
  1748. &START_KEY(keys->keys),
  1749. btree_insert_fn);
  1750. }
  1751. if (ret) {
  1752. struct bkey *k;
  1753. pr_err("error %i", ret);
  1754. while ((k = bch_keylist_pop(keys)))
  1755. bkey_put(c, k);
  1756. } else if (op.op.insert_collision)
  1757. ret = -ESRCH;
  1758. return ret;
  1759. }
  1760. void bch_btree_set_root(struct btree *b)
  1761. {
  1762. unsigned i;
  1763. struct closure cl;
  1764. closure_init_stack(&cl);
  1765. trace_bcache_btree_set_root(b);
  1766. BUG_ON(!b->written);
  1767. for (i = 0; i < KEY_PTRS(&b->key); i++)
  1768. BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
  1769. mutex_lock(&b->c->bucket_lock);
  1770. list_del_init(&b->list);
  1771. mutex_unlock(&b->c->bucket_lock);
  1772. b->c->root = b;
  1773. bch_journal_meta(b->c, &cl);
  1774. closure_sync(&cl);
  1775. }
  1776. /* Map across nodes or keys */
  1777. static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
  1778. struct bkey *from,
  1779. btree_map_nodes_fn *fn, int flags)
  1780. {
  1781. int ret = MAP_CONTINUE;
  1782. if (b->level) {
  1783. struct bkey *k;
  1784. struct btree_iter iter;
  1785. bch_btree_iter_init(&b->keys, &iter, from);
  1786. while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
  1787. bch_ptr_bad))) {
  1788. ret = btree(map_nodes_recurse, k, b,
  1789. op, from, fn, flags);
  1790. from = NULL;
  1791. if (ret != MAP_CONTINUE)
  1792. return ret;
  1793. }
  1794. }
  1795. if (!b->level || flags == MAP_ALL_NODES)
  1796. ret = fn(op, b);
  1797. return ret;
  1798. }
  1799. int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
  1800. struct bkey *from, btree_map_nodes_fn *fn, int flags)
  1801. {
  1802. return btree_root(map_nodes_recurse, c, op, from, fn, flags);
  1803. }
  1804. static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
  1805. struct bkey *from, btree_map_keys_fn *fn,
  1806. int flags)
  1807. {
  1808. int ret = MAP_CONTINUE;
  1809. struct bkey *k;
  1810. struct btree_iter iter;
  1811. bch_btree_iter_init(&b->keys, &iter, from);
  1812. while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
  1813. ret = !b->level
  1814. ? fn(op, b, k)
  1815. : btree(map_keys_recurse, k, b, op, from, fn, flags);
  1816. from = NULL;
  1817. if (ret != MAP_CONTINUE)
  1818. return ret;
  1819. }
  1820. if (!b->level && (flags & MAP_END_KEY))
  1821. ret = fn(op, b, &KEY(KEY_INODE(&b->key),
  1822. KEY_OFFSET(&b->key), 0));
  1823. return ret;
  1824. }
  1825. int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
  1826. struct bkey *from, btree_map_keys_fn *fn, int flags)
  1827. {
  1828. return btree_root(map_keys_recurse, c, op, from, fn, flags);
  1829. }
  1830. /* Keybuf code */
  1831. static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
  1832. {
  1833. /* Overlapping keys compare equal */
  1834. if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
  1835. return -1;
  1836. if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
  1837. return 1;
  1838. return 0;
  1839. }
  1840. static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
  1841. struct keybuf_key *r)
  1842. {
  1843. return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
  1844. }
  1845. struct refill {
  1846. struct btree_op op;
  1847. unsigned nr_found;
  1848. struct keybuf *buf;
  1849. struct bkey *end;
  1850. keybuf_pred_fn *pred;
  1851. };
  1852. static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
  1853. struct bkey *k)
  1854. {
  1855. struct refill *refill = container_of(op, struct refill, op);
  1856. struct keybuf *buf = refill->buf;
  1857. int ret = MAP_CONTINUE;
  1858. if (bkey_cmp(k, refill->end) >= 0) {
  1859. ret = MAP_DONE;
  1860. goto out;
  1861. }
  1862. if (!KEY_SIZE(k)) /* end key */
  1863. goto out;
  1864. if (refill->pred(buf, k)) {
  1865. struct keybuf_key *w;
  1866. spin_lock(&buf->lock);
  1867. w = array_alloc(&buf->freelist);
  1868. if (!w) {
  1869. spin_unlock(&buf->lock);
  1870. return MAP_DONE;
  1871. }
  1872. w->private = NULL;
  1873. bkey_copy(&w->key, k);
  1874. if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
  1875. array_free(&buf->freelist, w);
  1876. else
  1877. refill->nr_found++;
  1878. if (array_freelist_empty(&buf->freelist))
  1879. ret = MAP_DONE;
  1880. spin_unlock(&buf->lock);
  1881. }
  1882. out:
  1883. buf->last_scanned = *k;
  1884. return ret;
  1885. }
  1886. void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
  1887. struct bkey *end, keybuf_pred_fn *pred)
  1888. {
  1889. struct bkey start = buf->last_scanned;
  1890. struct refill refill;
  1891. cond_resched();
  1892. bch_btree_op_init(&refill.op, -1);
  1893. refill.nr_found = 0;
  1894. refill.buf = buf;
  1895. refill.end = end;
  1896. refill.pred = pred;
  1897. bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
  1898. refill_keybuf_fn, MAP_END_KEY);
  1899. trace_bcache_keyscan(refill.nr_found,
  1900. KEY_INODE(&start), KEY_OFFSET(&start),
  1901. KEY_INODE(&buf->last_scanned),
  1902. KEY_OFFSET(&buf->last_scanned));
  1903. spin_lock(&buf->lock);
  1904. if (!RB_EMPTY_ROOT(&buf->keys)) {
  1905. struct keybuf_key *w;
  1906. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1907. buf->start = START_KEY(&w->key);
  1908. w = RB_LAST(&buf->keys, struct keybuf_key, node);
  1909. buf->end = w->key;
  1910. } else {
  1911. buf->start = MAX_KEY;
  1912. buf->end = MAX_KEY;
  1913. }
  1914. spin_unlock(&buf->lock);
  1915. }
  1916. static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1917. {
  1918. rb_erase(&w->node, &buf->keys);
  1919. array_free(&buf->freelist, w);
  1920. }
  1921. void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1922. {
  1923. spin_lock(&buf->lock);
  1924. __bch_keybuf_del(buf, w);
  1925. spin_unlock(&buf->lock);
  1926. }
  1927. bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
  1928. struct bkey *end)
  1929. {
  1930. bool ret = false;
  1931. struct keybuf_key *p, *w, s;
  1932. s.key = *start;
  1933. if (bkey_cmp(end, &buf->start) <= 0 ||
  1934. bkey_cmp(start, &buf->end) >= 0)
  1935. return false;
  1936. spin_lock(&buf->lock);
  1937. w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
  1938. while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
  1939. p = w;
  1940. w = RB_NEXT(w, node);
  1941. if (p->private)
  1942. ret = true;
  1943. else
  1944. __bch_keybuf_del(buf, p);
  1945. }
  1946. spin_unlock(&buf->lock);
  1947. return ret;
  1948. }
  1949. struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
  1950. {
  1951. struct keybuf_key *w;
  1952. spin_lock(&buf->lock);
  1953. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1954. while (w && w->private)
  1955. w = RB_NEXT(w, node);
  1956. if (w)
  1957. w->private = ERR_PTR(-EINTR);
  1958. spin_unlock(&buf->lock);
  1959. return w;
  1960. }
  1961. struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
  1962. struct keybuf *buf,
  1963. struct bkey *end,
  1964. keybuf_pred_fn *pred)
  1965. {
  1966. struct keybuf_key *ret;
  1967. while (1) {
  1968. ret = bch_keybuf_next(buf);
  1969. if (ret)
  1970. break;
  1971. if (bkey_cmp(&buf->last_scanned, end) >= 0) {
  1972. pr_debug("scan finished");
  1973. break;
  1974. }
  1975. bch_refill_keybuf(c, buf, end, pred);
  1976. }
  1977. return ret;
  1978. }
  1979. void bch_keybuf_init(struct keybuf *buf)
  1980. {
  1981. buf->last_scanned = MAX_KEY;
  1982. buf->keys = RB_ROOT;
  1983. spin_lock_init(&buf->lock);
  1984. array_allocator_init(&buf->freelist);
  1985. }