rmi_f12.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. /*
  2. * Copyright (c) 2012-2016 Synaptics Incorporated
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License version 2 as published by
  6. * the Free Software Foundation.
  7. */
  8. #include <linux/input.h>
  9. #include <linux/input/mt.h>
  10. #include <linux/rmi.h>
  11. #include "rmi_driver.h"
  12. #include "rmi_2d_sensor.h"
  13. enum rmi_f12_object_type {
  14. RMI_F12_OBJECT_NONE = 0x00,
  15. RMI_F12_OBJECT_FINGER = 0x01,
  16. RMI_F12_OBJECT_STYLUS = 0x02,
  17. RMI_F12_OBJECT_PALM = 0x03,
  18. RMI_F12_OBJECT_UNCLASSIFIED = 0x04,
  19. RMI_F12_OBJECT_GLOVED_FINGER = 0x06,
  20. RMI_F12_OBJECT_NARROW_OBJECT = 0x07,
  21. RMI_F12_OBJECT_HAND_EDGE = 0x08,
  22. RMI_F12_OBJECT_COVER = 0x0A,
  23. RMI_F12_OBJECT_STYLUS_2 = 0x0B,
  24. RMI_F12_OBJECT_ERASER = 0x0C,
  25. RMI_F12_OBJECT_SMALL_OBJECT = 0x0D,
  26. };
  27. struct f12_data {
  28. struct rmi_2d_sensor sensor;
  29. struct rmi_2d_sensor_platform_data sensor_pdata;
  30. u16 data_addr;
  31. struct rmi_register_descriptor query_reg_desc;
  32. struct rmi_register_descriptor control_reg_desc;
  33. struct rmi_register_descriptor data_reg_desc;
  34. /* F12 Data1 describes sensed objects */
  35. const struct rmi_register_desc_item *data1;
  36. u16 data1_offset;
  37. /* F12 Data5 describes finger ACM */
  38. const struct rmi_register_desc_item *data5;
  39. u16 data5_offset;
  40. /* F12 Data5 describes Pen */
  41. const struct rmi_register_desc_item *data6;
  42. u16 data6_offset;
  43. /* F12 Data9 reports relative data */
  44. const struct rmi_register_desc_item *data9;
  45. u16 data9_offset;
  46. const struct rmi_register_desc_item *data15;
  47. u16 data15_offset;
  48. };
  49. static int rmi_f12_read_sensor_tuning(struct f12_data *f12)
  50. {
  51. const struct rmi_register_desc_item *item;
  52. struct rmi_2d_sensor *sensor = &f12->sensor;
  53. struct rmi_function *fn = sensor->fn;
  54. struct rmi_device *rmi_dev = fn->rmi_dev;
  55. int ret;
  56. int offset;
  57. u8 buf[15];
  58. int pitch_x = 0;
  59. int pitch_y = 0;
  60. int clip_x_low = 0;
  61. int clip_x_high = 0;
  62. int clip_y_low = 0;
  63. int clip_y_high = 0;
  64. int rx_receivers = 0;
  65. int tx_receivers = 0;
  66. int sensor_flags = 0;
  67. item = rmi_get_register_desc_item(&f12->control_reg_desc, 8);
  68. if (!item) {
  69. dev_err(&fn->dev,
  70. "F12 does not have the sensor tuning control register\n");
  71. return -ENODEV;
  72. }
  73. offset = rmi_register_desc_calc_reg_offset(&f12->control_reg_desc, 8);
  74. if (item->reg_size > sizeof(buf)) {
  75. dev_err(&fn->dev,
  76. "F12 control8 should be no bigger than %zd bytes, not: %ld\n",
  77. sizeof(buf), item->reg_size);
  78. return -ENODEV;
  79. }
  80. ret = rmi_read_block(rmi_dev, fn->fd.control_base_addr + offset, buf,
  81. item->reg_size);
  82. if (ret)
  83. return ret;
  84. offset = 0;
  85. if (rmi_register_desc_has_subpacket(item, 0)) {
  86. sensor->max_x = (buf[offset + 1] << 8) | buf[offset];
  87. sensor->max_y = (buf[offset + 3] << 8) | buf[offset + 2];
  88. offset += 4;
  89. }
  90. rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: max_x: %d max_y: %d\n", __func__,
  91. sensor->max_x, sensor->max_y);
  92. if (rmi_register_desc_has_subpacket(item, 1)) {
  93. pitch_x = (buf[offset + 1] << 8) | buf[offset];
  94. pitch_y = (buf[offset + 3] << 8) | buf[offset + 2];
  95. offset += 4;
  96. }
  97. if (rmi_register_desc_has_subpacket(item, 2)) {
  98. sensor->axis_align.clip_x_low = buf[offset];
  99. sensor->axis_align.clip_x_high = sensor->max_x
  100. - buf[offset + 1];
  101. sensor->axis_align.clip_y_low = buf[offset + 2];
  102. sensor->axis_align.clip_y_high = sensor->max_y
  103. - buf[offset + 3];
  104. offset += 4;
  105. }
  106. rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: x low: %d x high: %d y low: %d y high: %d\n",
  107. __func__, clip_x_low, clip_x_high, clip_y_low, clip_y_high);
  108. if (rmi_register_desc_has_subpacket(item, 3)) {
  109. rx_receivers = buf[offset];
  110. tx_receivers = buf[offset + 1];
  111. offset += 2;
  112. }
  113. if (rmi_register_desc_has_subpacket(item, 4)) {
  114. sensor_flags = buf[offset];
  115. offset += 1;
  116. }
  117. sensor->x_mm = (pitch_x * rx_receivers) >> 12;
  118. sensor->y_mm = (pitch_y * tx_receivers) >> 12;
  119. rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: x_mm: %d y_mm: %d\n", __func__,
  120. sensor->x_mm, sensor->y_mm);
  121. return 0;
  122. }
  123. static void rmi_f12_process_objects(struct f12_data *f12, u8 *data1)
  124. {
  125. int i;
  126. struct rmi_2d_sensor *sensor = &f12->sensor;
  127. for (i = 0; i < f12->data1->num_subpackets; i++) {
  128. struct rmi_2d_sensor_abs_object *obj = &sensor->objs[i];
  129. obj->type = RMI_2D_OBJECT_NONE;
  130. obj->mt_tool = MT_TOOL_FINGER;
  131. switch (data1[0]) {
  132. case RMI_F12_OBJECT_FINGER:
  133. obj->type = RMI_2D_OBJECT_FINGER;
  134. break;
  135. case RMI_F12_OBJECT_STYLUS:
  136. obj->type = RMI_2D_OBJECT_STYLUS;
  137. obj->mt_tool = MT_TOOL_PEN;
  138. break;
  139. case RMI_F12_OBJECT_PALM:
  140. obj->type = RMI_2D_OBJECT_PALM;
  141. obj->mt_tool = MT_TOOL_PALM;
  142. break;
  143. case RMI_F12_OBJECT_UNCLASSIFIED:
  144. obj->type = RMI_2D_OBJECT_UNCLASSIFIED;
  145. break;
  146. }
  147. obj->x = (data1[2] << 8) | data1[1];
  148. obj->y = (data1[4] << 8) | data1[3];
  149. obj->z = data1[5];
  150. obj->wx = data1[6];
  151. obj->wy = data1[7];
  152. rmi_2d_sensor_abs_process(sensor, obj, i);
  153. data1 += 8;
  154. }
  155. if (sensor->kernel_tracking)
  156. input_mt_assign_slots(sensor->input,
  157. sensor->tracking_slots,
  158. sensor->tracking_pos,
  159. sensor->nbr_fingers,
  160. sensor->dmax);
  161. for (i = 0; i < sensor->nbr_fingers; i++)
  162. rmi_2d_sensor_abs_report(sensor, &sensor->objs[i], i);
  163. }
  164. static int rmi_f12_attention(struct rmi_function *fn,
  165. unsigned long *irq_nr_regs)
  166. {
  167. int retval;
  168. struct rmi_device *rmi_dev = fn->rmi_dev;
  169. struct f12_data *f12 = dev_get_drvdata(&fn->dev);
  170. struct rmi_2d_sensor *sensor = &f12->sensor;
  171. if (rmi_dev->xport->attn_data) {
  172. memcpy(sensor->data_pkt, rmi_dev->xport->attn_data,
  173. sensor->attn_size);
  174. rmi_dev->xport->attn_data += sensor->attn_size;
  175. rmi_dev->xport->attn_size -= sensor->attn_size;
  176. } else {
  177. retval = rmi_read_block(rmi_dev, f12->data_addr,
  178. sensor->data_pkt, sensor->pkt_size);
  179. if (retval < 0) {
  180. dev_err(&fn->dev, "Failed to read object data. Code: %d.\n",
  181. retval);
  182. return retval;
  183. }
  184. }
  185. if (f12->data1)
  186. rmi_f12_process_objects(f12,
  187. &sensor->data_pkt[f12->data1_offset]);
  188. input_mt_sync_frame(sensor->input);
  189. return 0;
  190. }
  191. static int rmi_f12_config(struct rmi_function *fn)
  192. {
  193. struct rmi_driver *drv = fn->rmi_dev->driver;
  194. drv->set_irq_bits(fn->rmi_dev, fn->irq_mask);
  195. return 0;
  196. }
  197. static int rmi_f12_probe(struct rmi_function *fn)
  198. {
  199. struct f12_data *f12;
  200. int ret;
  201. struct rmi_device *rmi_dev = fn->rmi_dev;
  202. char buf;
  203. u16 query_addr = fn->fd.query_base_addr;
  204. const struct rmi_register_desc_item *item;
  205. struct rmi_2d_sensor *sensor;
  206. struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
  207. struct rmi_transport_dev *xport = rmi_dev->xport;
  208. u16 data_offset = 0;
  209. rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s\n", __func__);
  210. ret = rmi_read(fn->rmi_dev, query_addr, &buf);
  211. if (ret < 0) {
  212. dev_err(&fn->dev, "Failed to read general info register: %d\n",
  213. ret);
  214. return -ENODEV;
  215. }
  216. ++query_addr;
  217. if (!(buf & 0x1)) {
  218. dev_err(&fn->dev,
  219. "Behavior of F12 without register descriptors is undefined.\n");
  220. return -ENODEV;
  221. }
  222. f12 = devm_kzalloc(&fn->dev, sizeof(struct f12_data), GFP_KERNEL);
  223. if (!f12)
  224. return -ENOMEM;
  225. if (fn->dev.of_node) {
  226. ret = rmi_2d_sensor_of_probe(&fn->dev, &f12->sensor_pdata);
  227. if (ret)
  228. return ret;
  229. } else if (pdata->sensor_pdata) {
  230. f12->sensor_pdata = *pdata->sensor_pdata;
  231. }
  232. ret = rmi_read_register_desc(rmi_dev, query_addr,
  233. &f12->query_reg_desc);
  234. if (ret) {
  235. dev_err(&fn->dev,
  236. "Failed to read the Query Register Descriptor: %d\n",
  237. ret);
  238. return ret;
  239. }
  240. query_addr += 3;
  241. ret = rmi_read_register_desc(rmi_dev, query_addr,
  242. &f12->control_reg_desc);
  243. if (ret) {
  244. dev_err(&fn->dev,
  245. "Failed to read the Control Register Descriptor: %d\n",
  246. ret);
  247. return ret;
  248. }
  249. query_addr += 3;
  250. ret = rmi_read_register_desc(rmi_dev, query_addr,
  251. &f12->data_reg_desc);
  252. if (ret) {
  253. dev_err(&fn->dev,
  254. "Failed to read the Data Register Descriptor: %d\n",
  255. ret);
  256. return ret;
  257. }
  258. query_addr += 3;
  259. sensor = &f12->sensor;
  260. sensor->fn = fn;
  261. f12->data_addr = fn->fd.data_base_addr;
  262. sensor->pkt_size = rmi_register_desc_calc_size(&f12->data_reg_desc);
  263. sensor->axis_align =
  264. f12->sensor_pdata.axis_align;
  265. sensor->x_mm = f12->sensor_pdata.x_mm;
  266. sensor->y_mm = f12->sensor_pdata.y_mm;
  267. if (sensor->sensor_type == rmi_sensor_default)
  268. sensor->sensor_type =
  269. f12->sensor_pdata.sensor_type;
  270. rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: data packet size: %d\n", __func__,
  271. sensor->pkt_size);
  272. sensor->data_pkt = devm_kzalloc(&fn->dev, sensor->pkt_size, GFP_KERNEL);
  273. if (!sensor->data_pkt)
  274. return -ENOMEM;
  275. dev_set_drvdata(&fn->dev, f12);
  276. ret = rmi_f12_read_sensor_tuning(f12);
  277. if (ret)
  278. return ret;
  279. /*
  280. * Figure out what data is contained in the data registers. HID devices
  281. * may have registers defined, but their data is not reported in the
  282. * HID attention report. Registers which are not reported in the HID
  283. * attention report check to see if the device is receiving data from
  284. * HID attention reports.
  285. */
  286. item = rmi_get_register_desc_item(&f12->data_reg_desc, 0);
  287. if (item && !xport->attn_data)
  288. data_offset += item->reg_size;
  289. item = rmi_get_register_desc_item(&f12->data_reg_desc, 1);
  290. if (item) {
  291. f12->data1 = item;
  292. f12->data1_offset = data_offset;
  293. data_offset += item->reg_size;
  294. sensor->nbr_fingers = item->num_subpackets;
  295. sensor->report_abs = 1;
  296. sensor->attn_size += item->reg_size;
  297. }
  298. item = rmi_get_register_desc_item(&f12->data_reg_desc, 2);
  299. if (item && !xport->attn_data)
  300. data_offset += item->reg_size;
  301. item = rmi_get_register_desc_item(&f12->data_reg_desc, 3);
  302. if (item && !xport->attn_data)
  303. data_offset += item->reg_size;
  304. item = rmi_get_register_desc_item(&f12->data_reg_desc, 4);
  305. if (item && !xport->attn_data)
  306. data_offset += item->reg_size;
  307. item = rmi_get_register_desc_item(&f12->data_reg_desc, 5);
  308. if (item) {
  309. f12->data5 = item;
  310. f12->data5_offset = data_offset;
  311. data_offset += item->reg_size;
  312. sensor->attn_size += item->reg_size;
  313. }
  314. item = rmi_get_register_desc_item(&f12->data_reg_desc, 6);
  315. if (item && !xport->attn_data) {
  316. f12->data6 = item;
  317. f12->data6_offset = data_offset;
  318. data_offset += item->reg_size;
  319. }
  320. item = rmi_get_register_desc_item(&f12->data_reg_desc, 7);
  321. if (item && !xport->attn_data)
  322. data_offset += item->reg_size;
  323. item = rmi_get_register_desc_item(&f12->data_reg_desc, 8);
  324. if (item && !xport->attn_data)
  325. data_offset += item->reg_size;
  326. item = rmi_get_register_desc_item(&f12->data_reg_desc, 9);
  327. if (item && !xport->attn_data) {
  328. f12->data9 = item;
  329. f12->data9_offset = data_offset;
  330. data_offset += item->reg_size;
  331. if (!sensor->report_abs)
  332. sensor->report_rel = 1;
  333. }
  334. item = rmi_get_register_desc_item(&f12->data_reg_desc, 10);
  335. if (item && !xport->attn_data)
  336. data_offset += item->reg_size;
  337. item = rmi_get_register_desc_item(&f12->data_reg_desc, 11);
  338. if (item && !xport->attn_data)
  339. data_offset += item->reg_size;
  340. item = rmi_get_register_desc_item(&f12->data_reg_desc, 12);
  341. if (item && !xport->attn_data)
  342. data_offset += item->reg_size;
  343. item = rmi_get_register_desc_item(&f12->data_reg_desc, 13);
  344. if (item && !xport->attn_data)
  345. data_offset += item->reg_size;
  346. item = rmi_get_register_desc_item(&f12->data_reg_desc, 14);
  347. if (item && !xport->attn_data)
  348. data_offset += item->reg_size;
  349. item = rmi_get_register_desc_item(&f12->data_reg_desc, 15);
  350. if (item && !xport->attn_data) {
  351. f12->data15 = item;
  352. f12->data15_offset = data_offset;
  353. data_offset += item->reg_size;
  354. }
  355. /* allocate the in-kernel tracking buffers */
  356. sensor->tracking_pos = devm_kzalloc(&fn->dev,
  357. sizeof(struct input_mt_pos) * sensor->nbr_fingers,
  358. GFP_KERNEL);
  359. sensor->tracking_slots = devm_kzalloc(&fn->dev,
  360. sizeof(int) * sensor->nbr_fingers, GFP_KERNEL);
  361. sensor->objs = devm_kzalloc(&fn->dev,
  362. sizeof(struct rmi_2d_sensor_abs_object)
  363. * sensor->nbr_fingers, GFP_KERNEL);
  364. if (!sensor->tracking_pos || !sensor->tracking_slots || !sensor->objs)
  365. return -ENOMEM;
  366. ret = rmi_2d_sensor_configure_input(fn, sensor);
  367. if (ret)
  368. return ret;
  369. return 0;
  370. }
  371. struct rmi_function_handler rmi_f12_handler = {
  372. .driver = {
  373. .name = "rmi4_f12",
  374. },
  375. .func = 0x12,
  376. .probe = rmi_f12_probe,
  377. .config = rmi_f12_config,
  378. .attention = rmi_f12_attention,
  379. };