123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557 |
- /*
- * drivers/cpufreq/cpufreq_governor.c
- *
- * CPUFREQ governors common code
- *
- * Copyright (C) 2001 Russell King
- * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
- * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
- * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
- * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
- #include <linux/export.h>
- #include <linux/kernel_stat.h>
- #include <linux/sched.h>
- #include <linux/slab.h>
- #include "cpufreq_governor.h"
- static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
- static DEFINE_MUTEX(gov_dbs_data_mutex);
- /* Common sysfs tunables */
- /**
- * store_sampling_rate - update sampling rate effective immediately if needed.
- *
- * If new rate is smaller than the old, simply updating
- * dbs.sampling_rate might not be appropriate. For example, if the
- * original sampling_rate was 1 second and the requested new sampling rate is 10
- * ms because the user needs immediate reaction from ondemand governor, but not
- * sure if higher frequency will be required or not, then, the governor may
- * change the sampling rate too late; up to 1 second later. Thus, if we are
- * reducing the sampling rate, we need to make the new value effective
- * immediately.
- *
- * This must be called with dbs_data->mutex held, otherwise traversing
- * policy_dbs_list isn't safe.
- */
- ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
- size_t count)
- {
- struct dbs_data *dbs_data = to_dbs_data(attr_set);
- struct policy_dbs_info *policy_dbs;
- unsigned int rate;
- int ret;
- ret = sscanf(buf, "%u", &rate);
- if (ret != 1)
- return -EINVAL;
- dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
- /*
- * We are operating under dbs_data->mutex and so the list and its
- * entries can't be freed concurrently.
- */
- list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
- mutex_lock(&policy_dbs->timer_mutex);
- /*
- * On 32-bit architectures this may race with the
- * sample_delay_ns read in dbs_update_util_handler(), but that
- * really doesn't matter. If the read returns a value that's
- * too big, the sample will be skipped, but the next invocation
- * of dbs_update_util_handler() (when the update has been
- * completed) will take a sample.
- *
- * If this runs in parallel with dbs_work_handler(), we may end
- * up overwriting the sample_delay_ns value that it has just
- * written, but it will be corrected next time a sample is
- * taken, so it shouldn't be significant.
- */
- gov_update_sample_delay(policy_dbs, 0);
- mutex_unlock(&policy_dbs->timer_mutex);
- }
- return count;
- }
- EXPORT_SYMBOL_GPL(store_sampling_rate);
- /**
- * gov_update_cpu_data - Update CPU load data.
- * @dbs_data: Top-level governor data pointer.
- *
- * Update CPU load data for all CPUs in the domain governed by @dbs_data
- * (that may be a single policy or a bunch of them if governor tunables are
- * system-wide).
- *
- * Call under the @dbs_data mutex.
- */
- void gov_update_cpu_data(struct dbs_data *dbs_data)
- {
- struct policy_dbs_info *policy_dbs;
- list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
- unsigned int j;
- for_each_cpu(j, policy_dbs->policy->cpus) {
- struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
- j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
- dbs_data->io_is_busy);
- if (dbs_data->ignore_nice_load)
- j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
- }
- }
- }
- EXPORT_SYMBOL_GPL(gov_update_cpu_data);
- unsigned int dbs_update(struct cpufreq_policy *policy)
- {
- struct policy_dbs_info *policy_dbs = policy->governor_data;
- struct dbs_data *dbs_data = policy_dbs->dbs_data;
- unsigned int ignore_nice = dbs_data->ignore_nice_load;
- unsigned int max_load = 0;
- unsigned int sampling_rate, io_busy, j;
- /*
- * Sometimes governors may use an additional multiplier to increase
- * sample delays temporarily. Apply that multiplier to sampling_rate
- * so as to keep the wake-up-from-idle detection logic a bit
- * conservative.
- */
- sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
- /*
- * For the purpose of ondemand, waiting for disk IO is an indication
- * that you're performance critical, and not that the system is actually
- * idle, so do not add the iowait time to the CPU idle time then.
- */
- io_busy = dbs_data->io_is_busy;
- /* Get Absolute Load */
- for_each_cpu(j, policy->cpus) {
- struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
- u64 update_time, cur_idle_time;
- unsigned int idle_time, time_elapsed;
- unsigned int load;
- cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
- time_elapsed = update_time - j_cdbs->prev_update_time;
- j_cdbs->prev_update_time = update_time;
- idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
- j_cdbs->prev_cpu_idle = cur_idle_time;
- if (ignore_nice) {
- u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
- idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice);
- j_cdbs->prev_cpu_nice = cur_nice;
- }
- if (unlikely(!time_elapsed)) {
- /*
- * That can only happen when this function is called
- * twice in a row with a very short interval between the
- * calls, so the previous load value can be used then.
- */
- load = j_cdbs->prev_load;
- } else if (unlikely(time_elapsed > 2 * sampling_rate &&
- j_cdbs->prev_load)) {
- /*
- * If the CPU had gone completely idle and a task has
- * just woken up on this CPU now, it would be unfair to
- * calculate 'load' the usual way for this elapsed
- * time-window, because it would show near-zero load,
- * irrespective of how CPU intensive that task actually
- * was. This is undesirable for latency-sensitive bursty
- * workloads.
- *
- * To avoid this, reuse the 'load' from the previous
- * time-window and give this task a chance to start with
- * a reasonably high CPU frequency. However, that
- * shouldn't be over-done, lest we get stuck at a high
- * load (high frequency) for too long, even when the
- * current system load has actually dropped down, so
- * clear prev_load to guarantee that the load will be
- * computed again next time.
- *
- * Detecting this situation is easy: the governor's
- * utilization update handler would not have run during
- * CPU-idle periods. Hence, an unusually large
- * 'time_elapsed' (as compared to the sampling rate)
- * indicates this scenario.
- */
- load = j_cdbs->prev_load;
- j_cdbs->prev_load = 0;
- } else {
- if (time_elapsed >= idle_time) {
- load = 100 * (time_elapsed - idle_time) / time_elapsed;
- } else {
- /*
- * That can happen if idle_time is returned by
- * get_cpu_idle_time_jiffy(). In that case
- * idle_time is roughly equal to the difference
- * between time_elapsed and "busy time" obtained
- * from CPU statistics. Then, the "busy time"
- * can end up being greater than time_elapsed
- * (for example, if jiffies_64 and the CPU
- * statistics are updated by different CPUs),
- * so idle_time may in fact be negative. That
- * means, though, that the CPU was busy all
- * the time (on the rough average) during the
- * last sampling interval and 100 can be
- * returned as the load.
- */
- load = (int)idle_time < 0 ? 100 : 0;
- }
- j_cdbs->prev_load = load;
- }
- if (load > max_load)
- max_load = load;
- }
- return max_load;
- }
- EXPORT_SYMBOL_GPL(dbs_update);
- static void dbs_work_handler(struct work_struct *work)
- {
- struct policy_dbs_info *policy_dbs;
- struct cpufreq_policy *policy;
- struct dbs_governor *gov;
- policy_dbs = container_of(work, struct policy_dbs_info, work);
- policy = policy_dbs->policy;
- gov = dbs_governor_of(policy);
- /*
- * Make sure cpufreq_governor_limits() isn't evaluating load or the
- * ondemand governor isn't updating the sampling rate in parallel.
- */
- mutex_lock(&policy_dbs->timer_mutex);
- gov_update_sample_delay(policy_dbs, gov->gov_dbs_timer(policy));
- mutex_unlock(&policy_dbs->timer_mutex);
- /* Allow the utilization update handler to queue up more work. */
- atomic_set(&policy_dbs->work_count, 0);
- /*
- * If the update below is reordered with respect to the sample delay
- * modification, the utilization update handler may end up using a stale
- * sample delay value.
- */
- smp_wmb();
- policy_dbs->work_in_progress = false;
- }
- static void dbs_irq_work(struct irq_work *irq_work)
- {
- struct policy_dbs_info *policy_dbs;
- policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
- schedule_work_on(smp_processor_id(), &policy_dbs->work);
- }
- static void dbs_update_util_handler(struct update_util_data *data, u64 time,
- unsigned int flags)
- {
- struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
- struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
- u64 delta_ns, lst;
- /*
- * The work may not be allowed to be queued up right now.
- * Possible reasons:
- * - Work has already been queued up or is in progress.
- * - It is too early (too little time from the previous sample).
- */
- if (policy_dbs->work_in_progress)
- return;
- /*
- * If the reads below are reordered before the check above, the value
- * of sample_delay_ns used in the computation may be stale.
- */
- smp_rmb();
- lst = READ_ONCE(policy_dbs->last_sample_time);
- delta_ns = time - lst;
- if ((s64)delta_ns < policy_dbs->sample_delay_ns)
- return;
- /*
- * If the policy is not shared, the irq_work may be queued up right away
- * at this point. Otherwise, we need to ensure that only one of the
- * CPUs sharing the policy will do that.
- */
- if (policy_dbs->is_shared) {
- if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
- return;
- /*
- * If another CPU updated last_sample_time in the meantime, we
- * shouldn't be here, so clear the work counter and bail out.
- */
- if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
- atomic_set(&policy_dbs->work_count, 0);
- return;
- }
- }
- policy_dbs->last_sample_time = time;
- policy_dbs->work_in_progress = true;
- irq_work_queue(&policy_dbs->irq_work);
- }
- static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
- unsigned int delay_us)
- {
- struct cpufreq_policy *policy = policy_dbs->policy;
- int cpu;
- gov_update_sample_delay(policy_dbs, delay_us);
- policy_dbs->last_sample_time = 0;
- for_each_cpu(cpu, policy->cpus) {
- struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
- cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
- dbs_update_util_handler);
- }
- }
- static inline void gov_clear_update_util(struct cpufreq_policy *policy)
- {
- int i;
- for_each_cpu(i, policy->cpus)
- cpufreq_remove_update_util_hook(i);
- synchronize_sched();
- }
- static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
- struct dbs_governor *gov)
- {
- struct policy_dbs_info *policy_dbs;
- int j;
- /* Allocate memory for per-policy governor data. */
- policy_dbs = gov->alloc();
- if (!policy_dbs)
- return NULL;
- policy_dbs->policy = policy;
- mutex_init(&policy_dbs->timer_mutex);
- atomic_set(&policy_dbs->work_count, 0);
- init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
- INIT_WORK(&policy_dbs->work, dbs_work_handler);
- /* Set policy_dbs for all CPUs, online+offline */
- for_each_cpu(j, policy->related_cpus) {
- struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
- j_cdbs->policy_dbs = policy_dbs;
- }
- return policy_dbs;
- }
- static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
- struct dbs_governor *gov)
- {
- int j;
- mutex_destroy(&policy_dbs->timer_mutex);
- for_each_cpu(j, policy_dbs->policy->related_cpus) {
- struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
- j_cdbs->policy_dbs = NULL;
- j_cdbs->update_util.func = NULL;
- }
- gov->free(policy_dbs);
- }
- int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
- {
- struct dbs_governor *gov = dbs_governor_of(policy);
- struct dbs_data *dbs_data;
- struct policy_dbs_info *policy_dbs;
- unsigned int latency;
- int ret = 0;
- /* State should be equivalent to EXIT */
- if (policy->governor_data)
- return -EBUSY;
- policy_dbs = alloc_policy_dbs_info(policy, gov);
- if (!policy_dbs)
- return -ENOMEM;
- /* Protect gov->gdbs_data against concurrent updates. */
- mutex_lock(&gov_dbs_data_mutex);
- dbs_data = gov->gdbs_data;
- if (dbs_data) {
- if (WARN_ON(have_governor_per_policy())) {
- ret = -EINVAL;
- goto free_policy_dbs_info;
- }
- policy_dbs->dbs_data = dbs_data;
- policy->governor_data = policy_dbs;
- gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
- goto out;
- }
- dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
- if (!dbs_data) {
- ret = -ENOMEM;
- goto free_policy_dbs_info;
- }
- gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
- ret = gov->init(dbs_data);
- if (ret)
- goto free_policy_dbs_info;
- /* policy latency is in ns. Convert it to us first */
- latency = policy->cpuinfo.transition_latency / 1000;
- if (latency == 0)
- latency = 1;
- /* Bring kernel and HW constraints together */
- dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
- MIN_LATENCY_MULTIPLIER * latency);
- dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
- LATENCY_MULTIPLIER * latency);
- if (!have_governor_per_policy())
- gov->gdbs_data = dbs_data;
- policy_dbs->dbs_data = dbs_data;
- policy->governor_data = policy_dbs;
- gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
- ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
- get_governor_parent_kobj(policy),
- "%s", gov->gov.name);
- if (!ret)
- goto out;
- /* Failure, so roll back. */
- pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
- policy->governor_data = NULL;
- if (!have_governor_per_policy())
- gov->gdbs_data = NULL;
- gov->exit(dbs_data);
- kfree(dbs_data);
- free_policy_dbs_info:
- free_policy_dbs_info(policy_dbs, gov);
- out:
- mutex_unlock(&gov_dbs_data_mutex);
- return ret;
- }
- EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
- void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
- {
- struct dbs_governor *gov = dbs_governor_of(policy);
- struct policy_dbs_info *policy_dbs = policy->governor_data;
- struct dbs_data *dbs_data = policy_dbs->dbs_data;
- unsigned int count;
- /* Protect gov->gdbs_data against concurrent updates. */
- mutex_lock(&gov_dbs_data_mutex);
- count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
- policy->governor_data = NULL;
- if (!count) {
- if (!have_governor_per_policy())
- gov->gdbs_data = NULL;
- gov->exit(dbs_data);
- kfree(dbs_data);
- }
- free_policy_dbs_info(policy_dbs, gov);
- mutex_unlock(&gov_dbs_data_mutex);
- }
- EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
- int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
- {
- struct dbs_governor *gov = dbs_governor_of(policy);
- struct policy_dbs_info *policy_dbs = policy->governor_data;
- struct dbs_data *dbs_data = policy_dbs->dbs_data;
- unsigned int sampling_rate, ignore_nice, j;
- unsigned int io_busy;
- if (!policy->cur)
- return -EINVAL;
- policy_dbs->is_shared = policy_is_shared(policy);
- policy_dbs->rate_mult = 1;
- sampling_rate = dbs_data->sampling_rate;
- ignore_nice = dbs_data->ignore_nice_load;
- io_busy = dbs_data->io_is_busy;
- for_each_cpu(j, policy->cpus) {
- struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
- j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
- /*
- * Make the first invocation of dbs_update() compute the load.
- */
- j_cdbs->prev_load = 0;
- if (ignore_nice)
- j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
- }
- gov->start(policy);
- gov_set_update_util(policy_dbs, sampling_rate);
- return 0;
- }
- EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
- void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
- {
- struct policy_dbs_info *policy_dbs = policy->governor_data;
- gov_clear_update_util(policy_dbs->policy);
- irq_work_sync(&policy_dbs->irq_work);
- cancel_work_sync(&policy_dbs->work);
- atomic_set(&policy_dbs->work_count, 0);
- policy_dbs->work_in_progress = false;
- }
- EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
- void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
- {
- struct policy_dbs_info *policy_dbs = policy->governor_data;
- mutex_lock(&policy_dbs->timer_mutex);
- cpufreq_policy_apply_limits(policy);
- gov_update_sample_delay(policy_dbs, 0);
- mutex_unlock(&policy_dbs->timer_mutex);
- }
- EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);
|