clk-bcm2835.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926
  1. /*
  2. * Copyright (C) 2010,2015 Broadcom
  3. * Copyright (C) 2012 Stephen Warren
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. */
  16. /**
  17. * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
  18. *
  19. * The clock tree on the 2835 has several levels. There's a root
  20. * oscillator running at 19.2Mhz. After the oscillator there are 5
  21. * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
  22. * and "HDMI displays". Those 5 PLLs each can divide their output to
  23. * produce up to 4 channels. Finally, there is the level of clocks to
  24. * be consumed by other hardware components (like "H264" or "HDMI
  25. * state machine"), which divide off of some subset of the PLL
  26. * channels.
  27. *
  28. * All of the clocks in the tree are exposed in the DT, because the DT
  29. * may want to make assignments of the final layer of clocks to the
  30. * PLL channels, and some components of the hardware will actually
  31. * skip layers of the tree (for example, the pixel clock comes
  32. * directly from the PLLH PIX channel without using a CM_*CTL clock
  33. * generator).
  34. */
  35. #include <linux/clk-provider.h>
  36. #include <linux/clkdev.h>
  37. #include <linux/clk.h>
  38. #include <linux/clk/bcm2835.h>
  39. #include <linux/debugfs.h>
  40. #include <linux/module.h>
  41. #include <linux/of.h>
  42. #include <linux/platform_device.h>
  43. #include <linux/slab.h>
  44. #include <dt-bindings/clock/bcm2835.h>
  45. #define CM_PASSWORD 0x5a000000
  46. #define CM_GNRICCTL 0x000
  47. #define CM_GNRICDIV 0x004
  48. # define CM_DIV_FRAC_BITS 12
  49. # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
  50. #define CM_VPUCTL 0x008
  51. #define CM_VPUDIV 0x00c
  52. #define CM_SYSCTL 0x010
  53. #define CM_SYSDIV 0x014
  54. #define CM_PERIACTL 0x018
  55. #define CM_PERIADIV 0x01c
  56. #define CM_PERIICTL 0x020
  57. #define CM_PERIIDIV 0x024
  58. #define CM_H264CTL 0x028
  59. #define CM_H264DIV 0x02c
  60. #define CM_ISPCTL 0x030
  61. #define CM_ISPDIV 0x034
  62. #define CM_V3DCTL 0x038
  63. #define CM_V3DDIV 0x03c
  64. #define CM_CAM0CTL 0x040
  65. #define CM_CAM0DIV 0x044
  66. #define CM_CAM1CTL 0x048
  67. #define CM_CAM1DIV 0x04c
  68. #define CM_CCP2CTL 0x050
  69. #define CM_CCP2DIV 0x054
  70. #define CM_DSI0ECTL 0x058
  71. #define CM_DSI0EDIV 0x05c
  72. #define CM_DSI0PCTL 0x060
  73. #define CM_DSI0PDIV 0x064
  74. #define CM_DPICTL 0x068
  75. #define CM_DPIDIV 0x06c
  76. #define CM_GP0CTL 0x070
  77. #define CM_GP0DIV 0x074
  78. #define CM_GP1CTL 0x078
  79. #define CM_GP1DIV 0x07c
  80. #define CM_GP2CTL 0x080
  81. #define CM_GP2DIV 0x084
  82. #define CM_HSMCTL 0x088
  83. #define CM_HSMDIV 0x08c
  84. #define CM_OTPCTL 0x090
  85. #define CM_OTPDIV 0x094
  86. #define CM_PCMCTL 0x098
  87. #define CM_PCMDIV 0x09c
  88. #define CM_PWMCTL 0x0a0
  89. #define CM_PWMDIV 0x0a4
  90. #define CM_SLIMCTL 0x0a8
  91. #define CM_SLIMDIV 0x0ac
  92. #define CM_SMICTL 0x0b0
  93. #define CM_SMIDIV 0x0b4
  94. /* no definition for 0x0b8 and 0x0bc */
  95. #define CM_TCNTCTL 0x0c0
  96. #define CM_TCNTDIV 0x0c4
  97. #define CM_TECCTL 0x0c8
  98. #define CM_TECDIV 0x0cc
  99. #define CM_TD0CTL 0x0d0
  100. #define CM_TD0DIV 0x0d4
  101. #define CM_TD1CTL 0x0d8
  102. #define CM_TD1DIV 0x0dc
  103. #define CM_TSENSCTL 0x0e0
  104. #define CM_TSENSDIV 0x0e4
  105. #define CM_TIMERCTL 0x0e8
  106. #define CM_TIMERDIV 0x0ec
  107. #define CM_UARTCTL 0x0f0
  108. #define CM_UARTDIV 0x0f4
  109. #define CM_VECCTL 0x0f8
  110. #define CM_VECDIV 0x0fc
  111. #define CM_PULSECTL 0x190
  112. #define CM_PULSEDIV 0x194
  113. #define CM_SDCCTL 0x1a8
  114. #define CM_SDCDIV 0x1ac
  115. #define CM_ARMCTL 0x1b0
  116. #define CM_AVEOCTL 0x1b8
  117. #define CM_AVEODIV 0x1bc
  118. #define CM_EMMCCTL 0x1c0
  119. #define CM_EMMCDIV 0x1c4
  120. /* General bits for the CM_*CTL regs */
  121. # define CM_ENABLE BIT(4)
  122. # define CM_KILL BIT(5)
  123. # define CM_GATE_BIT 6
  124. # define CM_GATE BIT(CM_GATE_BIT)
  125. # define CM_BUSY BIT(7)
  126. # define CM_BUSYD BIT(8)
  127. # define CM_FRAC BIT(9)
  128. # define CM_SRC_SHIFT 0
  129. # define CM_SRC_BITS 4
  130. # define CM_SRC_MASK 0xf
  131. # define CM_SRC_GND 0
  132. # define CM_SRC_OSC 1
  133. # define CM_SRC_TESTDEBUG0 2
  134. # define CM_SRC_TESTDEBUG1 3
  135. # define CM_SRC_PLLA_CORE 4
  136. # define CM_SRC_PLLA_PER 4
  137. # define CM_SRC_PLLC_CORE0 5
  138. # define CM_SRC_PLLC_PER 5
  139. # define CM_SRC_PLLC_CORE1 8
  140. # define CM_SRC_PLLD_CORE 6
  141. # define CM_SRC_PLLD_PER 6
  142. # define CM_SRC_PLLH_AUX 7
  143. # define CM_SRC_PLLC_CORE1 8
  144. # define CM_SRC_PLLC_CORE2 9
  145. #define CM_OSCCOUNT 0x100
  146. #define CM_PLLA 0x104
  147. # define CM_PLL_ANARST BIT(8)
  148. # define CM_PLLA_HOLDPER BIT(7)
  149. # define CM_PLLA_LOADPER BIT(6)
  150. # define CM_PLLA_HOLDCORE BIT(5)
  151. # define CM_PLLA_LOADCORE BIT(4)
  152. # define CM_PLLA_HOLDCCP2 BIT(3)
  153. # define CM_PLLA_LOADCCP2 BIT(2)
  154. # define CM_PLLA_HOLDDSI0 BIT(1)
  155. # define CM_PLLA_LOADDSI0 BIT(0)
  156. #define CM_PLLC 0x108
  157. # define CM_PLLC_HOLDPER BIT(7)
  158. # define CM_PLLC_LOADPER BIT(6)
  159. # define CM_PLLC_HOLDCORE2 BIT(5)
  160. # define CM_PLLC_LOADCORE2 BIT(4)
  161. # define CM_PLLC_HOLDCORE1 BIT(3)
  162. # define CM_PLLC_LOADCORE1 BIT(2)
  163. # define CM_PLLC_HOLDCORE0 BIT(1)
  164. # define CM_PLLC_LOADCORE0 BIT(0)
  165. #define CM_PLLD 0x10c
  166. # define CM_PLLD_HOLDPER BIT(7)
  167. # define CM_PLLD_LOADPER BIT(6)
  168. # define CM_PLLD_HOLDCORE BIT(5)
  169. # define CM_PLLD_LOADCORE BIT(4)
  170. # define CM_PLLD_HOLDDSI1 BIT(3)
  171. # define CM_PLLD_LOADDSI1 BIT(2)
  172. # define CM_PLLD_HOLDDSI0 BIT(1)
  173. # define CM_PLLD_LOADDSI0 BIT(0)
  174. #define CM_PLLH 0x110
  175. # define CM_PLLH_LOADRCAL BIT(2)
  176. # define CM_PLLH_LOADAUX BIT(1)
  177. # define CM_PLLH_LOADPIX BIT(0)
  178. #define CM_LOCK 0x114
  179. # define CM_LOCK_FLOCKH BIT(12)
  180. # define CM_LOCK_FLOCKD BIT(11)
  181. # define CM_LOCK_FLOCKC BIT(10)
  182. # define CM_LOCK_FLOCKB BIT(9)
  183. # define CM_LOCK_FLOCKA BIT(8)
  184. #define CM_EVENT 0x118
  185. #define CM_DSI1ECTL 0x158
  186. #define CM_DSI1EDIV 0x15c
  187. #define CM_DSI1PCTL 0x160
  188. #define CM_DSI1PDIV 0x164
  189. #define CM_DFTCTL 0x168
  190. #define CM_DFTDIV 0x16c
  191. #define CM_PLLB 0x170
  192. # define CM_PLLB_HOLDARM BIT(1)
  193. # define CM_PLLB_LOADARM BIT(0)
  194. #define A2W_PLLA_CTRL 0x1100
  195. #define A2W_PLLC_CTRL 0x1120
  196. #define A2W_PLLD_CTRL 0x1140
  197. #define A2W_PLLH_CTRL 0x1160
  198. #define A2W_PLLB_CTRL 0x11e0
  199. # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
  200. # define A2W_PLL_CTRL_PWRDN BIT(16)
  201. # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
  202. # define A2W_PLL_CTRL_PDIV_SHIFT 12
  203. # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
  204. # define A2W_PLL_CTRL_NDIV_SHIFT 0
  205. #define A2W_PLLA_ANA0 0x1010
  206. #define A2W_PLLC_ANA0 0x1030
  207. #define A2W_PLLD_ANA0 0x1050
  208. #define A2W_PLLH_ANA0 0x1070
  209. #define A2W_PLLB_ANA0 0x10f0
  210. #define A2W_PLL_KA_SHIFT 7
  211. #define A2W_PLL_KA_MASK GENMASK(9, 7)
  212. #define A2W_PLL_KI_SHIFT 19
  213. #define A2W_PLL_KI_MASK GENMASK(21, 19)
  214. #define A2W_PLL_KP_SHIFT 15
  215. #define A2W_PLL_KP_MASK GENMASK(18, 15)
  216. #define A2W_PLLH_KA_SHIFT 19
  217. #define A2W_PLLH_KA_MASK GENMASK(21, 19)
  218. #define A2W_PLLH_KI_LOW_SHIFT 22
  219. #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
  220. #define A2W_PLLH_KI_HIGH_SHIFT 0
  221. #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
  222. #define A2W_PLLH_KP_SHIFT 1
  223. #define A2W_PLLH_KP_MASK GENMASK(4, 1)
  224. #define A2W_XOSC_CTRL 0x1190
  225. # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
  226. # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
  227. # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
  228. # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
  229. # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
  230. # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
  231. # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
  232. # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
  233. #define A2W_PLLA_FRAC 0x1200
  234. #define A2W_PLLC_FRAC 0x1220
  235. #define A2W_PLLD_FRAC 0x1240
  236. #define A2W_PLLH_FRAC 0x1260
  237. #define A2W_PLLB_FRAC 0x12e0
  238. # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
  239. # define A2W_PLL_FRAC_BITS 20
  240. #define A2W_PLL_CHANNEL_DISABLE BIT(8)
  241. #define A2W_PLL_DIV_BITS 8
  242. #define A2W_PLL_DIV_SHIFT 0
  243. #define A2W_PLLA_DSI0 0x1300
  244. #define A2W_PLLA_CORE 0x1400
  245. #define A2W_PLLA_PER 0x1500
  246. #define A2W_PLLA_CCP2 0x1600
  247. #define A2W_PLLC_CORE2 0x1320
  248. #define A2W_PLLC_CORE1 0x1420
  249. #define A2W_PLLC_PER 0x1520
  250. #define A2W_PLLC_CORE0 0x1620
  251. #define A2W_PLLD_DSI0 0x1340
  252. #define A2W_PLLD_CORE 0x1440
  253. #define A2W_PLLD_PER 0x1540
  254. #define A2W_PLLD_DSI1 0x1640
  255. #define A2W_PLLH_AUX 0x1360
  256. #define A2W_PLLH_RCAL 0x1460
  257. #define A2W_PLLH_PIX 0x1560
  258. #define A2W_PLLH_STS 0x1660
  259. #define A2W_PLLH_CTRLR 0x1960
  260. #define A2W_PLLH_FRACR 0x1a60
  261. #define A2W_PLLH_AUXR 0x1b60
  262. #define A2W_PLLH_RCALR 0x1c60
  263. #define A2W_PLLH_PIXR 0x1d60
  264. #define A2W_PLLH_STSR 0x1e60
  265. #define A2W_PLLB_ARM 0x13e0
  266. #define A2W_PLLB_SP0 0x14e0
  267. #define A2W_PLLB_SP1 0x15e0
  268. #define A2W_PLLB_SP2 0x16e0
  269. #define LOCK_TIMEOUT_NS 100000000
  270. #define BCM2835_MAX_FB_RATE 1750000000u
  271. struct bcm2835_cprman {
  272. struct device *dev;
  273. void __iomem *regs;
  274. spinlock_t regs_lock; /* spinlock for all clocks */
  275. const char *osc_name;
  276. /* Must be last */
  277. struct clk_hw_onecell_data onecell;
  278. };
  279. static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
  280. {
  281. writel(CM_PASSWORD | val, cprman->regs + reg);
  282. }
  283. static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
  284. {
  285. return readl(cprman->regs + reg);
  286. }
  287. static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
  288. struct debugfs_reg32 *regs, size_t nregs,
  289. struct dentry *dentry)
  290. {
  291. struct dentry *regdump;
  292. struct debugfs_regset32 *regset;
  293. regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
  294. if (!regset)
  295. return -ENOMEM;
  296. regset->regs = regs;
  297. regset->nregs = nregs;
  298. regset->base = cprman->regs + base;
  299. regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
  300. regset);
  301. return regdump ? 0 : -ENOMEM;
  302. }
  303. /*
  304. * These are fixed clocks. They're probably not all root clocks and it may
  305. * be possible to turn them on and off but until this is mapped out better
  306. * it's the only way they can be used.
  307. */
  308. void __init bcm2835_init_clocks(void)
  309. {
  310. struct clk_hw *hw;
  311. int ret;
  312. hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
  313. if (IS_ERR(hw))
  314. pr_err("apb_pclk not registered\n");
  315. hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
  316. if (IS_ERR(hw))
  317. pr_err("uart0_pclk not registered\n");
  318. ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
  319. if (ret)
  320. pr_err("uart0_pclk alias not registered\n");
  321. hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
  322. if (IS_ERR(hw))
  323. pr_err("uart1_pclk not registered\n");
  324. ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
  325. if (ret)
  326. pr_err("uart1_pclk alias not registered\n");
  327. }
  328. struct bcm2835_pll_data {
  329. const char *name;
  330. u32 cm_ctrl_reg;
  331. u32 a2w_ctrl_reg;
  332. u32 frac_reg;
  333. u32 ana_reg_base;
  334. u32 reference_enable_mask;
  335. /* Bit in CM_LOCK to indicate when the PLL has locked. */
  336. u32 lock_mask;
  337. const struct bcm2835_pll_ana_bits *ana;
  338. unsigned long min_rate;
  339. unsigned long max_rate;
  340. /*
  341. * Highest rate for the VCO before we have to use the
  342. * pre-divide-by-2.
  343. */
  344. unsigned long max_fb_rate;
  345. };
  346. struct bcm2835_pll_ana_bits {
  347. u32 mask0;
  348. u32 set0;
  349. u32 mask1;
  350. u32 set1;
  351. u32 mask3;
  352. u32 set3;
  353. u32 fb_prediv_mask;
  354. };
  355. static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
  356. .mask0 = 0,
  357. .set0 = 0,
  358. .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
  359. .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
  360. .mask3 = A2W_PLL_KA_MASK,
  361. .set3 = (2 << A2W_PLL_KA_SHIFT),
  362. .fb_prediv_mask = BIT(14),
  363. };
  364. static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
  365. .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
  366. .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
  367. .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
  368. .set1 = (6 << A2W_PLLH_KP_SHIFT),
  369. .mask3 = 0,
  370. .set3 = 0,
  371. .fb_prediv_mask = BIT(11),
  372. };
  373. struct bcm2835_pll_divider_data {
  374. const char *name;
  375. const char *source_pll;
  376. u32 cm_reg;
  377. u32 a2w_reg;
  378. u32 load_mask;
  379. u32 hold_mask;
  380. u32 fixed_divider;
  381. };
  382. struct bcm2835_clock_data {
  383. const char *name;
  384. const char *const *parents;
  385. int num_mux_parents;
  386. u32 ctl_reg;
  387. u32 div_reg;
  388. /* Number of integer bits in the divider */
  389. u32 int_bits;
  390. /* Number of fractional bits in the divider */
  391. u32 frac_bits;
  392. u32 flags;
  393. bool is_vpu_clock;
  394. bool is_mash_clock;
  395. };
  396. struct bcm2835_gate_data {
  397. const char *name;
  398. const char *parent;
  399. u32 ctl_reg;
  400. };
  401. struct bcm2835_pll {
  402. struct clk_hw hw;
  403. struct bcm2835_cprman *cprman;
  404. const struct bcm2835_pll_data *data;
  405. };
  406. static int bcm2835_pll_is_on(struct clk_hw *hw)
  407. {
  408. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  409. struct bcm2835_cprman *cprman = pll->cprman;
  410. const struct bcm2835_pll_data *data = pll->data;
  411. return cprman_read(cprman, data->a2w_ctrl_reg) &
  412. A2W_PLL_CTRL_PRST_DISABLE;
  413. }
  414. static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
  415. unsigned long parent_rate,
  416. u32 *ndiv, u32 *fdiv)
  417. {
  418. u64 div;
  419. div = (u64)rate << A2W_PLL_FRAC_BITS;
  420. do_div(div, parent_rate);
  421. *ndiv = div >> A2W_PLL_FRAC_BITS;
  422. *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
  423. }
  424. static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
  425. u32 ndiv, u32 fdiv, u32 pdiv)
  426. {
  427. u64 rate;
  428. if (pdiv == 0)
  429. return 0;
  430. rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
  431. do_div(rate, pdiv);
  432. return rate >> A2W_PLL_FRAC_BITS;
  433. }
  434. static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
  435. unsigned long *parent_rate)
  436. {
  437. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  438. const struct bcm2835_pll_data *data = pll->data;
  439. u32 ndiv, fdiv;
  440. rate = clamp(rate, data->min_rate, data->max_rate);
  441. bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
  442. return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
  443. }
  444. static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
  445. unsigned long parent_rate)
  446. {
  447. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  448. struct bcm2835_cprman *cprman = pll->cprman;
  449. const struct bcm2835_pll_data *data = pll->data;
  450. u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
  451. u32 ndiv, pdiv, fdiv;
  452. bool using_prediv;
  453. if (parent_rate == 0)
  454. return 0;
  455. fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
  456. ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
  457. pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
  458. using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
  459. data->ana->fb_prediv_mask;
  460. if (using_prediv)
  461. ndiv *= 2;
  462. return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
  463. }
  464. static void bcm2835_pll_off(struct clk_hw *hw)
  465. {
  466. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  467. struct bcm2835_cprman *cprman = pll->cprman;
  468. const struct bcm2835_pll_data *data = pll->data;
  469. spin_lock(&cprman->regs_lock);
  470. cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
  471. cprman_write(cprman, data->a2w_ctrl_reg,
  472. cprman_read(cprman, data->a2w_ctrl_reg) |
  473. A2W_PLL_CTRL_PWRDN);
  474. spin_unlock(&cprman->regs_lock);
  475. }
  476. static int bcm2835_pll_on(struct clk_hw *hw)
  477. {
  478. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  479. struct bcm2835_cprman *cprman = pll->cprman;
  480. const struct bcm2835_pll_data *data = pll->data;
  481. ktime_t timeout;
  482. cprman_write(cprman, data->a2w_ctrl_reg,
  483. cprman_read(cprman, data->a2w_ctrl_reg) &
  484. ~A2W_PLL_CTRL_PWRDN);
  485. /* Take the PLL out of reset. */
  486. spin_lock(&cprman->regs_lock);
  487. cprman_write(cprman, data->cm_ctrl_reg,
  488. cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
  489. spin_unlock(&cprman->regs_lock);
  490. /* Wait for the PLL to lock. */
  491. timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
  492. while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
  493. if (ktime_after(ktime_get(), timeout)) {
  494. dev_err(cprman->dev, "%s: couldn't lock PLL\n",
  495. clk_hw_get_name(hw));
  496. return -ETIMEDOUT;
  497. }
  498. cpu_relax();
  499. }
  500. cprman_write(cprman, data->a2w_ctrl_reg,
  501. cprman_read(cprman, data->a2w_ctrl_reg) |
  502. A2W_PLL_CTRL_PRST_DISABLE);
  503. return 0;
  504. }
  505. static void
  506. bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
  507. {
  508. int i;
  509. /*
  510. * ANA register setup is done as a series of writes to
  511. * ANA3-ANA0, in that order. This lets us write all 4
  512. * registers as a single cycle of the serdes interface (taking
  513. * 100 xosc clocks), whereas if we were to update ana0, 1, and
  514. * 3 individually through their partial-write registers, each
  515. * would be their own serdes cycle.
  516. */
  517. for (i = 3; i >= 0; i--)
  518. cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
  519. }
  520. static int bcm2835_pll_set_rate(struct clk_hw *hw,
  521. unsigned long rate, unsigned long parent_rate)
  522. {
  523. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  524. struct bcm2835_cprman *cprman = pll->cprman;
  525. const struct bcm2835_pll_data *data = pll->data;
  526. bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
  527. u32 ndiv, fdiv, a2w_ctl;
  528. u32 ana[4];
  529. int i;
  530. if (rate > data->max_fb_rate) {
  531. use_fb_prediv = true;
  532. rate /= 2;
  533. } else {
  534. use_fb_prediv = false;
  535. }
  536. bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
  537. for (i = 3; i >= 0; i--)
  538. ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
  539. was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
  540. ana[0] &= ~data->ana->mask0;
  541. ana[0] |= data->ana->set0;
  542. ana[1] &= ~data->ana->mask1;
  543. ana[1] |= data->ana->set1;
  544. ana[3] &= ~data->ana->mask3;
  545. ana[3] |= data->ana->set3;
  546. if (was_using_prediv && !use_fb_prediv) {
  547. ana[1] &= ~data->ana->fb_prediv_mask;
  548. do_ana_setup_first = true;
  549. } else if (!was_using_prediv && use_fb_prediv) {
  550. ana[1] |= data->ana->fb_prediv_mask;
  551. do_ana_setup_first = false;
  552. } else {
  553. do_ana_setup_first = true;
  554. }
  555. /* Unmask the reference clock from the oscillator. */
  556. spin_lock(&cprman->regs_lock);
  557. cprman_write(cprman, A2W_XOSC_CTRL,
  558. cprman_read(cprman, A2W_XOSC_CTRL) |
  559. data->reference_enable_mask);
  560. spin_unlock(&cprman->regs_lock);
  561. if (do_ana_setup_first)
  562. bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
  563. /* Set the PLL multiplier from the oscillator. */
  564. cprman_write(cprman, data->frac_reg, fdiv);
  565. a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
  566. a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
  567. a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
  568. a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
  569. a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
  570. cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
  571. if (!do_ana_setup_first)
  572. bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
  573. return 0;
  574. }
  575. static int bcm2835_pll_debug_init(struct clk_hw *hw,
  576. struct dentry *dentry)
  577. {
  578. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  579. struct bcm2835_cprman *cprman = pll->cprman;
  580. const struct bcm2835_pll_data *data = pll->data;
  581. struct debugfs_reg32 *regs;
  582. regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
  583. if (!regs)
  584. return -ENOMEM;
  585. regs[0].name = "cm_ctrl";
  586. regs[0].offset = data->cm_ctrl_reg;
  587. regs[1].name = "a2w_ctrl";
  588. regs[1].offset = data->a2w_ctrl_reg;
  589. regs[2].name = "frac";
  590. regs[2].offset = data->frac_reg;
  591. regs[3].name = "ana0";
  592. regs[3].offset = data->ana_reg_base + 0 * 4;
  593. regs[4].name = "ana1";
  594. regs[4].offset = data->ana_reg_base + 1 * 4;
  595. regs[5].name = "ana2";
  596. regs[5].offset = data->ana_reg_base + 2 * 4;
  597. regs[6].name = "ana3";
  598. regs[6].offset = data->ana_reg_base + 3 * 4;
  599. return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
  600. }
  601. static const struct clk_ops bcm2835_pll_clk_ops = {
  602. .is_prepared = bcm2835_pll_is_on,
  603. .prepare = bcm2835_pll_on,
  604. .unprepare = bcm2835_pll_off,
  605. .recalc_rate = bcm2835_pll_get_rate,
  606. .set_rate = bcm2835_pll_set_rate,
  607. .round_rate = bcm2835_pll_round_rate,
  608. .debug_init = bcm2835_pll_debug_init,
  609. };
  610. struct bcm2835_pll_divider {
  611. struct clk_divider div;
  612. struct bcm2835_cprman *cprman;
  613. const struct bcm2835_pll_divider_data *data;
  614. };
  615. static struct bcm2835_pll_divider *
  616. bcm2835_pll_divider_from_hw(struct clk_hw *hw)
  617. {
  618. return container_of(hw, struct bcm2835_pll_divider, div.hw);
  619. }
  620. static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
  621. {
  622. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  623. struct bcm2835_cprman *cprman = divider->cprman;
  624. const struct bcm2835_pll_divider_data *data = divider->data;
  625. return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
  626. }
  627. static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
  628. unsigned long rate,
  629. unsigned long *parent_rate)
  630. {
  631. return clk_divider_ops.round_rate(hw, rate, parent_rate);
  632. }
  633. static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
  634. unsigned long parent_rate)
  635. {
  636. return clk_divider_ops.recalc_rate(hw, parent_rate);
  637. }
  638. static void bcm2835_pll_divider_off(struct clk_hw *hw)
  639. {
  640. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  641. struct bcm2835_cprman *cprman = divider->cprman;
  642. const struct bcm2835_pll_divider_data *data = divider->data;
  643. spin_lock(&cprman->regs_lock);
  644. cprman_write(cprman, data->cm_reg,
  645. (cprman_read(cprman, data->cm_reg) &
  646. ~data->load_mask) | data->hold_mask);
  647. cprman_write(cprman, data->a2w_reg,
  648. cprman_read(cprman, data->a2w_reg) |
  649. A2W_PLL_CHANNEL_DISABLE);
  650. spin_unlock(&cprman->regs_lock);
  651. }
  652. static int bcm2835_pll_divider_on(struct clk_hw *hw)
  653. {
  654. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  655. struct bcm2835_cprman *cprman = divider->cprman;
  656. const struct bcm2835_pll_divider_data *data = divider->data;
  657. spin_lock(&cprman->regs_lock);
  658. cprman_write(cprman, data->a2w_reg,
  659. cprman_read(cprman, data->a2w_reg) &
  660. ~A2W_PLL_CHANNEL_DISABLE);
  661. cprman_write(cprman, data->cm_reg,
  662. cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
  663. spin_unlock(&cprman->regs_lock);
  664. return 0;
  665. }
  666. static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
  667. unsigned long rate,
  668. unsigned long parent_rate)
  669. {
  670. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  671. struct bcm2835_cprman *cprman = divider->cprman;
  672. const struct bcm2835_pll_divider_data *data = divider->data;
  673. u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
  674. div = DIV_ROUND_UP_ULL(parent_rate, rate);
  675. div = min(div, max_div);
  676. if (div == max_div)
  677. div = 0;
  678. cprman_write(cprman, data->a2w_reg, div);
  679. cm = cprman_read(cprman, data->cm_reg);
  680. cprman_write(cprman, data->cm_reg, cm | data->load_mask);
  681. cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
  682. return 0;
  683. }
  684. static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
  685. struct dentry *dentry)
  686. {
  687. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  688. struct bcm2835_cprman *cprman = divider->cprman;
  689. const struct bcm2835_pll_divider_data *data = divider->data;
  690. struct debugfs_reg32 *regs;
  691. regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
  692. if (!regs)
  693. return -ENOMEM;
  694. regs[0].name = "cm";
  695. regs[0].offset = data->cm_reg;
  696. regs[1].name = "a2w";
  697. regs[1].offset = data->a2w_reg;
  698. return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
  699. }
  700. static const struct clk_ops bcm2835_pll_divider_clk_ops = {
  701. .is_prepared = bcm2835_pll_divider_is_on,
  702. .prepare = bcm2835_pll_divider_on,
  703. .unprepare = bcm2835_pll_divider_off,
  704. .recalc_rate = bcm2835_pll_divider_get_rate,
  705. .set_rate = bcm2835_pll_divider_set_rate,
  706. .round_rate = bcm2835_pll_divider_round_rate,
  707. .debug_init = bcm2835_pll_divider_debug_init,
  708. };
  709. /*
  710. * The CM dividers do fixed-point division, so we can't use the
  711. * generic integer divider code like the PLL dividers do (and we can't
  712. * fake it by having some fixed shifts preceding it in the clock tree,
  713. * because we'd run out of bits in a 32-bit unsigned long).
  714. */
  715. struct bcm2835_clock {
  716. struct clk_hw hw;
  717. struct bcm2835_cprman *cprman;
  718. const struct bcm2835_clock_data *data;
  719. };
  720. static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
  721. {
  722. return container_of(hw, struct bcm2835_clock, hw);
  723. }
  724. static int bcm2835_clock_is_on(struct clk_hw *hw)
  725. {
  726. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  727. struct bcm2835_cprman *cprman = clock->cprman;
  728. const struct bcm2835_clock_data *data = clock->data;
  729. return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
  730. }
  731. static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
  732. unsigned long rate,
  733. unsigned long parent_rate,
  734. bool round_up)
  735. {
  736. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  737. const struct bcm2835_clock_data *data = clock->data;
  738. u32 unused_frac_mask =
  739. GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
  740. u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
  741. u64 rem;
  742. u32 div, mindiv, maxdiv;
  743. rem = do_div(temp, rate);
  744. div = temp;
  745. /* Round up and mask off the unused bits */
  746. if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
  747. div += unused_frac_mask + 1;
  748. div &= ~unused_frac_mask;
  749. /* different clamping limits apply for a mash clock */
  750. if (data->is_mash_clock) {
  751. /* clamp to min divider of 2 */
  752. mindiv = 2 << CM_DIV_FRAC_BITS;
  753. /* clamp to the highest possible integer divider */
  754. maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
  755. } else {
  756. /* clamp to min divider of 1 */
  757. mindiv = 1 << CM_DIV_FRAC_BITS;
  758. /* clamp to the highest possible fractional divider */
  759. maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
  760. CM_DIV_FRAC_BITS - data->frac_bits);
  761. }
  762. /* apply the clamping limits */
  763. div = max_t(u32, div, mindiv);
  764. div = min_t(u32, div, maxdiv);
  765. return div;
  766. }
  767. static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
  768. unsigned long parent_rate,
  769. u32 div)
  770. {
  771. const struct bcm2835_clock_data *data = clock->data;
  772. u64 temp;
  773. /*
  774. * The divisor is a 12.12 fixed point field, but only some of
  775. * the bits are populated in any given clock.
  776. */
  777. div >>= CM_DIV_FRAC_BITS - data->frac_bits;
  778. div &= (1 << (data->int_bits + data->frac_bits)) - 1;
  779. if (div == 0)
  780. return 0;
  781. temp = (u64)parent_rate << data->frac_bits;
  782. do_div(temp, div);
  783. return temp;
  784. }
  785. static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
  786. unsigned long parent_rate)
  787. {
  788. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  789. struct bcm2835_cprman *cprman = clock->cprman;
  790. const struct bcm2835_clock_data *data = clock->data;
  791. u32 div = cprman_read(cprman, data->div_reg);
  792. return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
  793. }
  794. static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
  795. {
  796. struct bcm2835_cprman *cprman = clock->cprman;
  797. const struct bcm2835_clock_data *data = clock->data;
  798. ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
  799. while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
  800. if (ktime_after(ktime_get(), timeout)) {
  801. dev_err(cprman->dev, "%s: couldn't lock PLL\n",
  802. clk_hw_get_name(&clock->hw));
  803. return;
  804. }
  805. cpu_relax();
  806. }
  807. }
  808. static void bcm2835_clock_off(struct clk_hw *hw)
  809. {
  810. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  811. struct bcm2835_cprman *cprman = clock->cprman;
  812. const struct bcm2835_clock_data *data = clock->data;
  813. spin_lock(&cprman->regs_lock);
  814. cprman_write(cprman, data->ctl_reg,
  815. cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
  816. spin_unlock(&cprman->regs_lock);
  817. /* BUSY will remain high until the divider completes its cycle. */
  818. bcm2835_clock_wait_busy(clock);
  819. }
  820. static int bcm2835_clock_on(struct clk_hw *hw)
  821. {
  822. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  823. struct bcm2835_cprman *cprman = clock->cprman;
  824. const struct bcm2835_clock_data *data = clock->data;
  825. spin_lock(&cprman->regs_lock);
  826. cprman_write(cprman, data->ctl_reg,
  827. cprman_read(cprman, data->ctl_reg) |
  828. CM_ENABLE |
  829. CM_GATE);
  830. spin_unlock(&cprman->regs_lock);
  831. return 0;
  832. }
  833. static int bcm2835_clock_set_rate(struct clk_hw *hw,
  834. unsigned long rate, unsigned long parent_rate)
  835. {
  836. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  837. struct bcm2835_cprman *cprman = clock->cprman;
  838. const struct bcm2835_clock_data *data = clock->data;
  839. u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
  840. u32 ctl;
  841. spin_lock(&cprman->regs_lock);
  842. /*
  843. * Setting up frac support
  844. *
  845. * In principle it is recommended to stop/start the clock first,
  846. * but as we set CLK_SET_RATE_GATE during registration of the
  847. * clock this requirement should be take care of by the
  848. * clk-framework.
  849. */
  850. ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
  851. ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
  852. cprman_write(cprman, data->ctl_reg, ctl);
  853. cprman_write(cprman, data->div_reg, div);
  854. spin_unlock(&cprman->regs_lock);
  855. return 0;
  856. }
  857. static bool
  858. bcm2835_clk_is_pllc(struct clk_hw *hw)
  859. {
  860. if (!hw)
  861. return false;
  862. return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
  863. }
  864. static int bcm2835_clock_determine_rate(struct clk_hw *hw,
  865. struct clk_rate_request *req)
  866. {
  867. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  868. struct clk_hw *parent, *best_parent = NULL;
  869. bool current_parent_is_pllc;
  870. unsigned long rate, best_rate = 0;
  871. unsigned long prate, best_prate = 0;
  872. size_t i;
  873. u32 div;
  874. current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
  875. /*
  876. * Select parent clock that results in the closest but lower rate
  877. */
  878. for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
  879. parent = clk_hw_get_parent_by_index(hw, i);
  880. if (!parent)
  881. continue;
  882. /*
  883. * Don't choose a PLLC-derived clock as our parent
  884. * unless it had been manually set that way. PLLC's
  885. * frequency gets adjusted by the firmware due to
  886. * over-temp or under-voltage conditions, without
  887. * prior notification to our clock consumer.
  888. */
  889. if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
  890. continue;
  891. prate = clk_hw_get_rate(parent);
  892. div = bcm2835_clock_choose_div(hw, req->rate, prate, true);
  893. rate = bcm2835_clock_rate_from_divisor(clock, prate, div);
  894. if (rate > best_rate && rate <= req->rate) {
  895. best_parent = parent;
  896. best_prate = prate;
  897. best_rate = rate;
  898. }
  899. }
  900. if (!best_parent)
  901. return -EINVAL;
  902. req->best_parent_hw = best_parent;
  903. req->best_parent_rate = best_prate;
  904. req->rate = best_rate;
  905. return 0;
  906. }
  907. static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
  908. {
  909. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  910. struct bcm2835_cprman *cprman = clock->cprman;
  911. const struct bcm2835_clock_data *data = clock->data;
  912. u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
  913. cprman_write(cprman, data->ctl_reg, src);
  914. return 0;
  915. }
  916. static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
  917. {
  918. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  919. struct bcm2835_cprman *cprman = clock->cprman;
  920. const struct bcm2835_clock_data *data = clock->data;
  921. u32 src = cprman_read(cprman, data->ctl_reg);
  922. return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
  923. }
  924. static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
  925. {
  926. .name = "ctl",
  927. .offset = 0,
  928. },
  929. {
  930. .name = "div",
  931. .offset = 4,
  932. },
  933. };
  934. static int bcm2835_clock_debug_init(struct clk_hw *hw,
  935. struct dentry *dentry)
  936. {
  937. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  938. struct bcm2835_cprman *cprman = clock->cprman;
  939. const struct bcm2835_clock_data *data = clock->data;
  940. return bcm2835_debugfs_regset(
  941. cprman, data->ctl_reg,
  942. bcm2835_debugfs_clock_reg32,
  943. ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
  944. dentry);
  945. }
  946. static const struct clk_ops bcm2835_clock_clk_ops = {
  947. .is_prepared = bcm2835_clock_is_on,
  948. .prepare = bcm2835_clock_on,
  949. .unprepare = bcm2835_clock_off,
  950. .recalc_rate = bcm2835_clock_get_rate,
  951. .set_rate = bcm2835_clock_set_rate,
  952. .determine_rate = bcm2835_clock_determine_rate,
  953. .set_parent = bcm2835_clock_set_parent,
  954. .get_parent = bcm2835_clock_get_parent,
  955. .debug_init = bcm2835_clock_debug_init,
  956. };
  957. static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
  958. {
  959. return true;
  960. }
  961. /*
  962. * The VPU clock can never be disabled (it doesn't have an ENABLE
  963. * bit), so it gets its own set of clock ops.
  964. */
  965. static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
  966. .is_prepared = bcm2835_vpu_clock_is_on,
  967. .recalc_rate = bcm2835_clock_get_rate,
  968. .set_rate = bcm2835_clock_set_rate,
  969. .determine_rate = bcm2835_clock_determine_rate,
  970. .set_parent = bcm2835_clock_set_parent,
  971. .get_parent = bcm2835_clock_get_parent,
  972. .debug_init = bcm2835_clock_debug_init,
  973. };
  974. static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
  975. const struct bcm2835_pll_data *data)
  976. {
  977. struct bcm2835_pll *pll;
  978. struct clk_init_data init;
  979. int ret;
  980. memset(&init, 0, sizeof(init));
  981. /* All of the PLLs derive from the external oscillator. */
  982. init.parent_names = &cprman->osc_name;
  983. init.num_parents = 1;
  984. init.name = data->name;
  985. init.ops = &bcm2835_pll_clk_ops;
  986. init.flags = CLK_IGNORE_UNUSED;
  987. pll = kzalloc(sizeof(*pll), GFP_KERNEL);
  988. if (!pll)
  989. return NULL;
  990. pll->cprman = cprman;
  991. pll->data = data;
  992. pll->hw.init = &init;
  993. ret = devm_clk_hw_register(cprman->dev, &pll->hw);
  994. if (ret)
  995. return NULL;
  996. return &pll->hw;
  997. }
  998. static struct clk_hw *
  999. bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
  1000. const struct bcm2835_pll_divider_data *data)
  1001. {
  1002. struct bcm2835_pll_divider *divider;
  1003. struct clk_init_data init;
  1004. const char *divider_name;
  1005. int ret;
  1006. if (data->fixed_divider != 1) {
  1007. divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
  1008. "%s_prediv", data->name);
  1009. if (!divider_name)
  1010. return NULL;
  1011. } else {
  1012. divider_name = data->name;
  1013. }
  1014. memset(&init, 0, sizeof(init));
  1015. init.parent_names = &data->source_pll;
  1016. init.num_parents = 1;
  1017. init.name = divider_name;
  1018. init.ops = &bcm2835_pll_divider_clk_ops;
  1019. init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
  1020. divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
  1021. if (!divider)
  1022. return NULL;
  1023. divider->div.reg = cprman->regs + data->a2w_reg;
  1024. divider->div.shift = A2W_PLL_DIV_SHIFT;
  1025. divider->div.width = A2W_PLL_DIV_BITS;
  1026. divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
  1027. divider->div.lock = &cprman->regs_lock;
  1028. divider->div.hw.init = &init;
  1029. divider->div.table = NULL;
  1030. divider->cprman = cprman;
  1031. divider->data = data;
  1032. ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
  1033. if (ret)
  1034. return ERR_PTR(ret);
  1035. /*
  1036. * PLLH's channels have a fixed divide by 10 afterwards, which
  1037. * is what our consumers are actually using.
  1038. */
  1039. if (data->fixed_divider != 1) {
  1040. return clk_hw_register_fixed_factor(cprman->dev, data->name,
  1041. divider_name,
  1042. CLK_SET_RATE_PARENT,
  1043. 1,
  1044. data->fixed_divider);
  1045. }
  1046. return &divider->div.hw;
  1047. }
  1048. static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
  1049. const struct bcm2835_clock_data *data)
  1050. {
  1051. struct bcm2835_clock *clock;
  1052. struct clk_init_data init;
  1053. const char *parents[1 << CM_SRC_BITS];
  1054. size_t i;
  1055. int ret;
  1056. /*
  1057. * Replace our "xosc" references with the oscillator's
  1058. * actual name.
  1059. */
  1060. for (i = 0; i < data->num_mux_parents; i++) {
  1061. if (strcmp(data->parents[i], "xosc") == 0)
  1062. parents[i] = cprman->osc_name;
  1063. else
  1064. parents[i] = data->parents[i];
  1065. }
  1066. memset(&init, 0, sizeof(init));
  1067. init.parent_names = parents;
  1068. init.num_parents = data->num_mux_parents;
  1069. init.name = data->name;
  1070. init.flags = data->flags | CLK_IGNORE_UNUSED;
  1071. if (data->is_vpu_clock) {
  1072. init.ops = &bcm2835_vpu_clock_clk_ops;
  1073. } else {
  1074. init.ops = &bcm2835_clock_clk_ops;
  1075. init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
  1076. /* If the clock wasn't actually enabled at boot, it's not
  1077. * critical.
  1078. */
  1079. if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
  1080. init.flags &= ~CLK_IS_CRITICAL;
  1081. }
  1082. clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
  1083. if (!clock)
  1084. return NULL;
  1085. clock->cprman = cprman;
  1086. clock->data = data;
  1087. clock->hw.init = &init;
  1088. ret = devm_clk_hw_register(cprman->dev, &clock->hw);
  1089. if (ret)
  1090. return ERR_PTR(ret);
  1091. return &clock->hw;
  1092. }
  1093. static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
  1094. const struct bcm2835_gate_data *data)
  1095. {
  1096. return clk_register_gate(cprman->dev, data->name, data->parent,
  1097. CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
  1098. cprman->regs + data->ctl_reg,
  1099. CM_GATE_BIT, 0, &cprman->regs_lock);
  1100. }
  1101. typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
  1102. const void *data);
  1103. struct bcm2835_clk_desc {
  1104. bcm2835_clk_register clk_register;
  1105. const void *data;
  1106. };
  1107. /* assignment helper macros for different clock types */
  1108. #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
  1109. .data = __VA_ARGS__ }
  1110. #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
  1111. &(struct bcm2835_pll_data) \
  1112. {__VA_ARGS__})
  1113. #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
  1114. &(struct bcm2835_pll_divider_data) \
  1115. {__VA_ARGS__})
  1116. #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
  1117. &(struct bcm2835_clock_data) \
  1118. {__VA_ARGS__})
  1119. #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
  1120. &(struct bcm2835_gate_data) \
  1121. {__VA_ARGS__})
  1122. /* parent mux arrays plus helper macros */
  1123. /* main oscillator parent mux */
  1124. static const char *const bcm2835_clock_osc_parents[] = {
  1125. "gnd",
  1126. "xosc",
  1127. "testdebug0",
  1128. "testdebug1"
  1129. };
  1130. #define REGISTER_OSC_CLK(...) REGISTER_CLK( \
  1131. .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
  1132. .parents = bcm2835_clock_osc_parents, \
  1133. __VA_ARGS__)
  1134. /* main peripherial parent mux */
  1135. static const char *const bcm2835_clock_per_parents[] = {
  1136. "gnd",
  1137. "xosc",
  1138. "testdebug0",
  1139. "testdebug1",
  1140. "plla_per",
  1141. "pllc_per",
  1142. "plld_per",
  1143. "pllh_aux",
  1144. };
  1145. #define REGISTER_PER_CLK(...) REGISTER_CLK( \
  1146. .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
  1147. .parents = bcm2835_clock_per_parents, \
  1148. __VA_ARGS__)
  1149. /* main vpu parent mux */
  1150. static const char *const bcm2835_clock_vpu_parents[] = {
  1151. "gnd",
  1152. "xosc",
  1153. "testdebug0",
  1154. "testdebug1",
  1155. "plla_core",
  1156. "pllc_core0",
  1157. "plld_core",
  1158. "pllh_aux",
  1159. "pllc_core1",
  1160. "pllc_core2",
  1161. };
  1162. #define REGISTER_VPU_CLK(...) REGISTER_CLK( \
  1163. .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
  1164. .parents = bcm2835_clock_vpu_parents, \
  1165. __VA_ARGS__)
  1166. /*
  1167. * the real definition of all the pll, pll_dividers and clocks
  1168. * these make use of the above REGISTER_* macros
  1169. */
  1170. static const struct bcm2835_clk_desc clk_desc_array[] = {
  1171. /* the PLL + PLL dividers */
  1172. /*
  1173. * PLLA is the auxiliary PLL, used to drive the CCP2
  1174. * (Compact Camera Port 2) transmitter clock.
  1175. *
  1176. * It is in the PX LDO power domain, which is on when the
  1177. * AUDIO domain is on.
  1178. */
  1179. [BCM2835_PLLA] = REGISTER_PLL(
  1180. .name = "plla",
  1181. .cm_ctrl_reg = CM_PLLA,
  1182. .a2w_ctrl_reg = A2W_PLLA_CTRL,
  1183. .frac_reg = A2W_PLLA_FRAC,
  1184. .ana_reg_base = A2W_PLLA_ANA0,
  1185. .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
  1186. .lock_mask = CM_LOCK_FLOCKA,
  1187. .ana = &bcm2835_ana_default,
  1188. .min_rate = 600000000u,
  1189. .max_rate = 2400000000u,
  1190. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1191. [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
  1192. .name = "plla_core",
  1193. .source_pll = "plla",
  1194. .cm_reg = CM_PLLA,
  1195. .a2w_reg = A2W_PLLA_CORE,
  1196. .load_mask = CM_PLLA_LOADCORE,
  1197. .hold_mask = CM_PLLA_HOLDCORE,
  1198. .fixed_divider = 1),
  1199. [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
  1200. .name = "plla_per",
  1201. .source_pll = "plla",
  1202. .cm_reg = CM_PLLA,
  1203. .a2w_reg = A2W_PLLA_PER,
  1204. .load_mask = CM_PLLA_LOADPER,
  1205. .hold_mask = CM_PLLA_HOLDPER,
  1206. .fixed_divider = 1),
  1207. [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
  1208. .name = "plla_dsi0",
  1209. .source_pll = "plla",
  1210. .cm_reg = CM_PLLA,
  1211. .a2w_reg = A2W_PLLA_DSI0,
  1212. .load_mask = CM_PLLA_LOADDSI0,
  1213. .hold_mask = CM_PLLA_HOLDDSI0,
  1214. .fixed_divider = 1),
  1215. [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
  1216. .name = "plla_ccp2",
  1217. .source_pll = "plla",
  1218. .cm_reg = CM_PLLA,
  1219. .a2w_reg = A2W_PLLA_CCP2,
  1220. .load_mask = CM_PLLA_LOADCCP2,
  1221. .hold_mask = CM_PLLA_HOLDCCP2,
  1222. .fixed_divider = 1),
  1223. /* PLLB is used for the ARM's clock. */
  1224. [BCM2835_PLLB] = REGISTER_PLL(
  1225. .name = "pllb",
  1226. .cm_ctrl_reg = CM_PLLB,
  1227. .a2w_ctrl_reg = A2W_PLLB_CTRL,
  1228. .frac_reg = A2W_PLLB_FRAC,
  1229. .ana_reg_base = A2W_PLLB_ANA0,
  1230. .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
  1231. .lock_mask = CM_LOCK_FLOCKB,
  1232. .ana = &bcm2835_ana_default,
  1233. .min_rate = 600000000u,
  1234. .max_rate = 3000000000u,
  1235. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1236. [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
  1237. .name = "pllb_arm",
  1238. .source_pll = "pllb",
  1239. .cm_reg = CM_PLLB,
  1240. .a2w_reg = A2W_PLLB_ARM,
  1241. .load_mask = CM_PLLB_LOADARM,
  1242. .hold_mask = CM_PLLB_HOLDARM,
  1243. .fixed_divider = 1),
  1244. /*
  1245. * PLLC is the core PLL, used to drive the core VPU clock.
  1246. *
  1247. * It is in the PX LDO power domain, which is on when the
  1248. * AUDIO domain is on.
  1249. */
  1250. [BCM2835_PLLC] = REGISTER_PLL(
  1251. .name = "pllc",
  1252. .cm_ctrl_reg = CM_PLLC,
  1253. .a2w_ctrl_reg = A2W_PLLC_CTRL,
  1254. .frac_reg = A2W_PLLC_FRAC,
  1255. .ana_reg_base = A2W_PLLC_ANA0,
  1256. .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
  1257. .lock_mask = CM_LOCK_FLOCKC,
  1258. .ana = &bcm2835_ana_default,
  1259. .min_rate = 600000000u,
  1260. .max_rate = 3000000000u,
  1261. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1262. [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
  1263. .name = "pllc_core0",
  1264. .source_pll = "pllc",
  1265. .cm_reg = CM_PLLC,
  1266. .a2w_reg = A2W_PLLC_CORE0,
  1267. .load_mask = CM_PLLC_LOADCORE0,
  1268. .hold_mask = CM_PLLC_HOLDCORE0,
  1269. .fixed_divider = 1),
  1270. [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
  1271. .name = "pllc_core1",
  1272. .source_pll = "pllc",
  1273. .cm_reg = CM_PLLC,
  1274. .a2w_reg = A2W_PLLC_CORE1,
  1275. .load_mask = CM_PLLC_LOADCORE1,
  1276. .hold_mask = CM_PLLC_HOLDCORE1,
  1277. .fixed_divider = 1),
  1278. [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
  1279. .name = "pllc_core2",
  1280. .source_pll = "pllc",
  1281. .cm_reg = CM_PLLC,
  1282. .a2w_reg = A2W_PLLC_CORE2,
  1283. .load_mask = CM_PLLC_LOADCORE2,
  1284. .hold_mask = CM_PLLC_HOLDCORE2,
  1285. .fixed_divider = 1),
  1286. [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
  1287. .name = "pllc_per",
  1288. .source_pll = "pllc",
  1289. .cm_reg = CM_PLLC,
  1290. .a2w_reg = A2W_PLLC_PER,
  1291. .load_mask = CM_PLLC_LOADPER,
  1292. .hold_mask = CM_PLLC_HOLDPER,
  1293. .fixed_divider = 1),
  1294. /*
  1295. * PLLD is the display PLL, used to drive DSI display panels.
  1296. *
  1297. * It is in the PX LDO power domain, which is on when the
  1298. * AUDIO domain is on.
  1299. */
  1300. [BCM2835_PLLD] = REGISTER_PLL(
  1301. .name = "plld",
  1302. .cm_ctrl_reg = CM_PLLD,
  1303. .a2w_ctrl_reg = A2W_PLLD_CTRL,
  1304. .frac_reg = A2W_PLLD_FRAC,
  1305. .ana_reg_base = A2W_PLLD_ANA0,
  1306. .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
  1307. .lock_mask = CM_LOCK_FLOCKD,
  1308. .ana = &bcm2835_ana_default,
  1309. .min_rate = 600000000u,
  1310. .max_rate = 2400000000u,
  1311. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1312. [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
  1313. .name = "plld_core",
  1314. .source_pll = "plld",
  1315. .cm_reg = CM_PLLD,
  1316. .a2w_reg = A2W_PLLD_CORE,
  1317. .load_mask = CM_PLLD_LOADCORE,
  1318. .hold_mask = CM_PLLD_HOLDCORE,
  1319. .fixed_divider = 1),
  1320. [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
  1321. .name = "plld_per",
  1322. .source_pll = "plld",
  1323. .cm_reg = CM_PLLD,
  1324. .a2w_reg = A2W_PLLD_PER,
  1325. .load_mask = CM_PLLD_LOADPER,
  1326. .hold_mask = CM_PLLD_HOLDPER,
  1327. .fixed_divider = 1),
  1328. [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
  1329. .name = "plld_dsi0",
  1330. .source_pll = "plld",
  1331. .cm_reg = CM_PLLD,
  1332. .a2w_reg = A2W_PLLD_DSI0,
  1333. .load_mask = CM_PLLD_LOADDSI0,
  1334. .hold_mask = CM_PLLD_HOLDDSI0,
  1335. .fixed_divider = 1),
  1336. [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
  1337. .name = "plld_dsi1",
  1338. .source_pll = "plld",
  1339. .cm_reg = CM_PLLD,
  1340. .a2w_reg = A2W_PLLD_DSI1,
  1341. .load_mask = CM_PLLD_LOADDSI1,
  1342. .hold_mask = CM_PLLD_HOLDDSI1,
  1343. .fixed_divider = 1),
  1344. /*
  1345. * PLLH is used to supply the pixel clock or the AUX clock for the
  1346. * TV encoder.
  1347. *
  1348. * It is in the HDMI power domain.
  1349. */
  1350. [BCM2835_PLLH] = REGISTER_PLL(
  1351. "pllh",
  1352. .cm_ctrl_reg = CM_PLLH,
  1353. .a2w_ctrl_reg = A2W_PLLH_CTRL,
  1354. .frac_reg = A2W_PLLH_FRAC,
  1355. .ana_reg_base = A2W_PLLH_ANA0,
  1356. .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
  1357. .lock_mask = CM_LOCK_FLOCKH,
  1358. .ana = &bcm2835_ana_pllh,
  1359. .min_rate = 600000000u,
  1360. .max_rate = 3000000000u,
  1361. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1362. [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
  1363. .name = "pllh_rcal",
  1364. .source_pll = "pllh",
  1365. .cm_reg = CM_PLLH,
  1366. .a2w_reg = A2W_PLLH_RCAL,
  1367. .load_mask = CM_PLLH_LOADRCAL,
  1368. .hold_mask = 0,
  1369. .fixed_divider = 10),
  1370. [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
  1371. .name = "pllh_aux",
  1372. .source_pll = "pllh",
  1373. .cm_reg = CM_PLLH,
  1374. .a2w_reg = A2W_PLLH_AUX,
  1375. .load_mask = CM_PLLH_LOADAUX,
  1376. .hold_mask = 0,
  1377. .fixed_divider = 1),
  1378. [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
  1379. .name = "pllh_pix",
  1380. .source_pll = "pllh",
  1381. .cm_reg = CM_PLLH,
  1382. .a2w_reg = A2W_PLLH_PIX,
  1383. .load_mask = CM_PLLH_LOADPIX,
  1384. .hold_mask = 0,
  1385. .fixed_divider = 10),
  1386. /* the clocks */
  1387. /* clocks with oscillator parent mux */
  1388. /* One Time Programmable Memory clock. Maximum 10Mhz. */
  1389. [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
  1390. .name = "otp",
  1391. .ctl_reg = CM_OTPCTL,
  1392. .div_reg = CM_OTPDIV,
  1393. .int_bits = 4,
  1394. .frac_bits = 0),
  1395. /*
  1396. * Used for a 1Mhz clock for the system clocksource, and also used
  1397. * bythe watchdog timer and the camera pulse generator.
  1398. */
  1399. [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
  1400. .name = "timer",
  1401. .ctl_reg = CM_TIMERCTL,
  1402. .div_reg = CM_TIMERDIV,
  1403. .int_bits = 6,
  1404. .frac_bits = 12),
  1405. /*
  1406. * Clock for the temperature sensor.
  1407. * Generally run at 2Mhz, max 5Mhz.
  1408. */
  1409. [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
  1410. .name = "tsens",
  1411. .ctl_reg = CM_TSENSCTL,
  1412. .div_reg = CM_TSENSDIV,
  1413. .int_bits = 5,
  1414. .frac_bits = 0),
  1415. [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
  1416. .name = "tec",
  1417. .ctl_reg = CM_TECCTL,
  1418. .div_reg = CM_TECDIV,
  1419. .int_bits = 6,
  1420. .frac_bits = 0),
  1421. /* clocks with vpu parent mux */
  1422. [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
  1423. .name = "h264",
  1424. .ctl_reg = CM_H264CTL,
  1425. .div_reg = CM_H264DIV,
  1426. .int_bits = 4,
  1427. .frac_bits = 8),
  1428. [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
  1429. .name = "isp",
  1430. .ctl_reg = CM_ISPCTL,
  1431. .div_reg = CM_ISPDIV,
  1432. .int_bits = 4,
  1433. .frac_bits = 8),
  1434. /*
  1435. * Secondary SDRAM clock. Used for low-voltage modes when the PLL
  1436. * in the SDRAM controller can't be used.
  1437. */
  1438. [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
  1439. .name = "sdram",
  1440. .ctl_reg = CM_SDCCTL,
  1441. .div_reg = CM_SDCDIV,
  1442. .int_bits = 6,
  1443. .frac_bits = 0),
  1444. [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
  1445. .name = "v3d",
  1446. .ctl_reg = CM_V3DCTL,
  1447. .div_reg = CM_V3DDIV,
  1448. .int_bits = 4,
  1449. .frac_bits = 8),
  1450. /*
  1451. * VPU clock. This doesn't have an enable bit, since it drives
  1452. * the bus for everything else, and is special so it doesn't need
  1453. * to be gated for rate changes. It is also known as "clk_audio"
  1454. * in various hardware documentation.
  1455. */
  1456. [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
  1457. .name = "vpu",
  1458. .ctl_reg = CM_VPUCTL,
  1459. .div_reg = CM_VPUDIV,
  1460. .int_bits = 12,
  1461. .frac_bits = 8,
  1462. .flags = CLK_IS_CRITICAL,
  1463. .is_vpu_clock = true),
  1464. /* clocks with per parent mux */
  1465. [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
  1466. .name = "aveo",
  1467. .ctl_reg = CM_AVEOCTL,
  1468. .div_reg = CM_AVEODIV,
  1469. .int_bits = 4,
  1470. .frac_bits = 0),
  1471. [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
  1472. .name = "cam0",
  1473. .ctl_reg = CM_CAM0CTL,
  1474. .div_reg = CM_CAM0DIV,
  1475. .int_bits = 4,
  1476. .frac_bits = 8),
  1477. [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
  1478. .name = "cam1",
  1479. .ctl_reg = CM_CAM1CTL,
  1480. .div_reg = CM_CAM1DIV,
  1481. .int_bits = 4,
  1482. .frac_bits = 8),
  1483. [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
  1484. .name = "dft",
  1485. .ctl_reg = CM_DFTCTL,
  1486. .div_reg = CM_DFTDIV,
  1487. .int_bits = 5,
  1488. .frac_bits = 0),
  1489. [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
  1490. .name = "dpi",
  1491. .ctl_reg = CM_DPICTL,
  1492. .div_reg = CM_DPIDIV,
  1493. .int_bits = 4,
  1494. .frac_bits = 8),
  1495. /* Arasan EMMC clock */
  1496. [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
  1497. .name = "emmc",
  1498. .ctl_reg = CM_EMMCCTL,
  1499. .div_reg = CM_EMMCDIV,
  1500. .int_bits = 4,
  1501. .frac_bits = 8),
  1502. /* General purpose (GPIO) clocks */
  1503. [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
  1504. .name = "gp0",
  1505. .ctl_reg = CM_GP0CTL,
  1506. .div_reg = CM_GP0DIV,
  1507. .int_bits = 12,
  1508. .frac_bits = 12,
  1509. .is_mash_clock = true),
  1510. [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
  1511. .name = "gp1",
  1512. .ctl_reg = CM_GP1CTL,
  1513. .div_reg = CM_GP1DIV,
  1514. .int_bits = 12,
  1515. .frac_bits = 12,
  1516. .flags = CLK_IS_CRITICAL,
  1517. .is_mash_clock = true),
  1518. [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
  1519. .name = "gp2",
  1520. .ctl_reg = CM_GP2CTL,
  1521. .div_reg = CM_GP2DIV,
  1522. .int_bits = 12,
  1523. .frac_bits = 12,
  1524. .flags = CLK_IS_CRITICAL),
  1525. /* HDMI state machine */
  1526. [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
  1527. .name = "hsm",
  1528. .ctl_reg = CM_HSMCTL,
  1529. .div_reg = CM_HSMDIV,
  1530. .int_bits = 4,
  1531. .frac_bits = 8),
  1532. [BCM2835_CLOCK_PCM] = REGISTER_PER_CLK(
  1533. .name = "pcm",
  1534. .ctl_reg = CM_PCMCTL,
  1535. .div_reg = CM_PCMDIV,
  1536. .int_bits = 12,
  1537. .frac_bits = 12,
  1538. .is_mash_clock = true),
  1539. [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
  1540. .name = "pwm",
  1541. .ctl_reg = CM_PWMCTL,
  1542. .div_reg = CM_PWMDIV,
  1543. .int_bits = 12,
  1544. .frac_bits = 12,
  1545. .is_mash_clock = true),
  1546. [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
  1547. .name = "slim",
  1548. .ctl_reg = CM_SLIMCTL,
  1549. .div_reg = CM_SLIMDIV,
  1550. .int_bits = 12,
  1551. .frac_bits = 12,
  1552. .is_mash_clock = true),
  1553. [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
  1554. .name = "smi",
  1555. .ctl_reg = CM_SMICTL,
  1556. .div_reg = CM_SMIDIV,
  1557. .int_bits = 4,
  1558. .frac_bits = 8),
  1559. [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
  1560. .name = "uart",
  1561. .ctl_reg = CM_UARTCTL,
  1562. .div_reg = CM_UARTDIV,
  1563. .int_bits = 10,
  1564. .frac_bits = 12),
  1565. /* TV encoder clock. Only operating frequency is 108Mhz. */
  1566. [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
  1567. .name = "vec",
  1568. .ctl_reg = CM_VECCTL,
  1569. .div_reg = CM_VECDIV,
  1570. .int_bits = 4,
  1571. .frac_bits = 0),
  1572. /* dsi clocks */
  1573. [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
  1574. .name = "dsi0e",
  1575. .ctl_reg = CM_DSI0ECTL,
  1576. .div_reg = CM_DSI0EDIV,
  1577. .int_bits = 4,
  1578. .frac_bits = 8),
  1579. [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
  1580. .name = "dsi1e",
  1581. .ctl_reg = CM_DSI1ECTL,
  1582. .div_reg = CM_DSI1EDIV,
  1583. .int_bits = 4,
  1584. .frac_bits = 8),
  1585. /* the gates */
  1586. /*
  1587. * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
  1588. * you have the debug bit set in the power manager, which we
  1589. * don't bother exposing) are individual gates off of the
  1590. * non-stop vpu clock.
  1591. */
  1592. [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
  1593. .name = "peri_image",
  1594. .parent = "vpu",
  1595. .ctl_reg = CM_PERIICTL),
  1596. };
  1597. /*
  1598. * Permanently take a reference on the parent of the SDRAM clock.
  1599. *
  1600. * While the SDRAM is being driven by its dedicated PLL most of the
  1601. * time, there is a little loop running in the firmware that
  1602. * periodically switches the SDRAM to using our CM clock to do PVT
  1603. * recalibration, with the assumption that the previously configured
  1604. * SDRAM parent is still enabled and running.
  1605. */
  1606. static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
  1607. {
  1608. struct clk *parent = clk_get_parent(sdc);
  1609. if (IS_ERR(parent))
  1610. return PTR_ERR(parent);
  1611. return clk_prepare_enable(parent);
  1612. }
  1613. static int bcm2835_clk_probe(struct platform_device *pdev)
  1614. {
  1615. struct device *dev = &pdev->dev;
  1616. struct clk_hw **hws;
  1617. struct bcm2835_cprman *cprman;
  1618. struct resource *res;
  1619. const struct bcm2835_clk_desc *desc;
  1620. const size_t asize = ARRAY_SIZE(clk_desc_array);
  1621. size_t i;
  1622. int ret;
  1623. cprman = devm_kzalloc(dev, sizeof(*cprman) +
  1624. sizeof(*cprman->onecell.hws) * asize,
  1625. GFP_KERNEL);
  1626. if (!cprman)
  1627. return -ENOMEM;
  1628. spin_lock_init(&cprman->regs_lock);
  1629. cprman->dev = dev;
  1630. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1631. cprman->regs = devm_ioremap_resource(dev, res);
  1632. if (IS_ERR(cprman->regs))
  1633. return PTR_ERR(cprman->regs);
  1634. cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
  1635. if (!cprman->osc_name)
  1636. return -ENODEV;
  1637. platform_set_drvdata(pdev, cprman);
  1638. cprman->onecell.num = asize;
  1639. hws = cprman->onecell.hws;
  1640. for (i = 0; i < asize; i++) {
  1641. desc = &clk_desc_array[i];
  1642. if (desc->clk_register && desc->data)
  1643. hws[i] = desc->clk_register(cprman, desc->data);
  1644. }
  1645. ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
  1646. if (ret)
  1647. return ret;
  1648. return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
  1649. &cprman->onecell);
  1650. }
  1651. static const struct of_device_id bcm2835_clk_of_match[] = {
  1652. { .compatible = "brcm,bcm2835-cprman", },
  1653. {}
  1654. };
  1655. MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
  1656. static struct platform_driver bcm2835_clk_driver = {
  1657. .driver = {
  1658. .name = "bcm2835-clk",
  1659. .of_match_table = bcm2835_clk_of_match,
  1660. },
  1661. .probe = bcm2835_clk_probe,
  1662. };
  1663. builtin_platform_driver(bcm2835_clk_driver);
  1664. MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
  1665. MODULE_DESCRIPTION("BCM2835 clock driver");
  1666. MODULE_LICENSE("GPL v2");