random.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_device_randomness(const void *buf, unsigned int size);
  128. * void add_input_randomness(unsigned int type, unsigned int code,
  129. * unsigned int value);
  130. * void add_interrupt_randomness(int irq, int irq_flags);
  131. * void add_disk_randomness(struct gendisk *disk);
  132. *
  133. * add_device_randomness() is for adding data to the random pool that
  134. * is likely to differ between two devices (or possibly even per boot).
  135. * This would be things like MAC addresses or serial numbers, or the
  136. * read-out of the RTC. This does *not* add any actual entropy to the
  137. * pool, but it initializes the pool to different values for devices
  138. * that might otherwise be identical and have very little entropy
  139. * available to them (particularly common in the embedded world).
  140. *
  141. * add_input_randomness() uses the input layer interrupt timing, as well as
  142. * the event type information from the hardware.
  143. *
  144. * add_interrupt_randomness() uses the interrupt timing as random
  145. * inputs to the entropy pool. Using the cycle counters and the irq source
  146. * as inputs, it feeds the randomness roughly once a second.
  147. *
  148. * add_disk_randomness() uses what amounts to the seek time of block
  149. * layer request events, on a per-disk_devt basis, as input to the
  150. * entropy pool. Note that high-speed solid state drives with very low
  151. * seek times do not make for good sources of entropy, as their seek
  152. * times are usually fairly consistent.
  153. *
  154. * All of these routines try to estimate how many bits of randomness a
  155. * particular randomness source. They do this by keeping track of the
  156. * first and second order deltas of the event timings.
  157. *
  158. * Ensuring unpredictability at system startup
  159. * ============================================
  160. *
  161. * When any operating system starts up, it will go through a sequence
  162. * of actions that are fairly predictable by an adversary, especially
  163. * if the start-up does not involve interaction with a human operator.
  164. * This reduces the actual number of bits of unpredictability in the
  165. * entropy pool below the value in entropy_count. In order to
  166. * counteract this effect, it helps to carry information in the
  167. * entropy pool across shut-downs and start-ups. To do this, put the
  168. * following lines an appropriate script which is run during the boot
  169. * sequence:
  170. *
  171. * echo "Initializing random number generator..."
  172. * random_seed=/var/run/random-seed
  173. * # Carry a random seed from start-up to start-up
  174. * # Load and then save the whole entropy pool
  175. * if [ -f $random_seed ]; then
  176. * cat $random_seed >/dev/urandom
  177. * else
  178. * touch $random_seed
  179. * fi
  180. * chmod 600 $random_seed
  181. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  182. *
  183. * and the following lines in an appropriate script which is run as
  184. * the system is shutdown:
  185. *
  186. * # Carry a random seed from shut-down to start-up
  187. * # Save the whole entropy pool
  188. * echo "Saving random seed..."
  189. * random_seed=/var/run/random-seed
  190. * touch $random_seed
  191. * chmod 600 $random_seed
  192. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  193. *
  194. * For example, on most modern systems using the System V init
  195. * scripts, such code fragments would be found in
  196. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  197. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  198. *
  199. * Effectively, these commands cause the contents of the entropy pool
  200. * to be saved at shut-down time and reloaded into the entropy pool at
  201. * start-up. (The 'dd' in the addition to the bootup script is to
  202. * make sure that /etc/random-seed is different for every start-up,
  203. * even if the system crashes without executing rc.0.) Even with
  204. * complete knowledge of the start-up activities, predicting the state
  205. * of the entropy pool requires knowledge of the previous history of
  206. * the system.
  207. *
  208. * Configuring the /dev/random driver under Linux
  209. * ==============================================
  210. *
  211. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  212. * the /dev/mem major number (#1). So if your system does not have
  213. * /dev/random and /dev/urandom created already, they can be created
  214. * by using the commands:
  215. *
  216. * mknod /dev/random c 1 8
  217. * mknod /dev/urandom c 1 9
  218. *
  219. * Acknowledgements:
  220. * =================
  221. *
  222. * Ideas for constructing this random number generator were derived
  223. * from Pretty Good Privacy's random number generator, and from private
  224. * discussions with Phil Karn. Colin Plumb provided a faster random
  225. * number generator, which speed up the mixing function of the entropy
  226. * pool, taken from PGPfone. Dale Worley has also contributed many
  227. * useful ideas and suggestions to improve this driver.
  228. *
  229. * Any flaws in the design are solely my responsibility, and should
  230. * not be attributed to the Phil, Colin, or any of authors of PGP.
  231. *
  232. * Further background information on this topic may be obtained from
  233. * RFC 1750, "Randomness Recommendations for Security", by Donald
  234. * Eastlake, Steve Crocker, and Jeff Schiller.
  235. */
  236. #include <linux/utsname.h>
  237. #include <linux/module.h>
  238. #include <linux/kernel.h>
  239. #include <linux/major.h>
  240. #include <linux/string.h>
  241. #include <linux/fcntl.h>
  242. #include <linux/slab.h>
  243. #include <linux/random.h>
  244. #include <linux/poll.h>
  245. #include <linux/init.h>
  246. #include <linux/fs.h>
  247. #include <linux/genhd.h>
  248. #include <linux/interrupt.h>
  249. #include <linux/mm.h>
  250. #include <linux/nodemask.h>
  251. #include <linux/spinlock.h>
  252. #include <linux/kthread.h>
  253. #include <linux/percpu.h>
  254. #include <linux/cryptohash.h>
  255. #include <linux/fips.h>
  256. #include <linux/ptrace.h>
  257. #include <linux/kmemcheck.h>
  258. #include <linux/workqueue.h>
  259. #include <linux/irq.h>
  260. #include <linux/ratelimit.h>
  261. #include <linux/syscalls.h>
  262. #include <linux/completion.h>
  263. #include <linux/uuid.h>
  264. #include <crypto/chacha20.h>
  265. #include <asm/processor.h>
  266. #include <asm/uaccess.h>
  267. #include <asm/irq.h>
  268. #include <asm/irq_regs.h>
  269. #include <asm/io.h>
  270. #define CREATE_TRACE_POINTS
  271. #include <trace/events/random.h>
  272. /* #define ADD_INTERRUPT_BENCH */
  273. /*
  274. * Configuration information
  275. */
  276. #define INPUT_POOL_SHIFT 12
  277. #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
  278. #define OUTPUT_POOL_SHIFT 10
  279. #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
  280. #define SEC_XFER_SIZE 512
  281. #define EXTRACT_SIZE 10
  282. #define DEBUG_RANDOM_BOOT 0
  283. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  284. /*
  285. * To allow fractional bits to be tracked, the entropy_count field is
  286. * denominated in units of 1/8th bits.
  287. *
  288. * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
  289. * credit_entropy_bits() needs to be 64 bits wide.
  290. */
  291. #define ENTROPY_SHIFT 3
  292. #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
  293. /*
  294. * The minimum number of bits of entropy before we wake up a read on
  295. * /dev/random. Should be enough to do a significant reseed.
  296. */
  297. static int random_read_wakeup_bits = 64;
  298. /*
  299. * If the entropy count falls under this number of bits, then we
  300. * should wake up processes which are selecting or polling on write
  301. * access to /dev/random.
  302. */
  303. static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
  304. /*
  305. * The minimum number of seconds between urandom pool reseeding. We
  306. * do this to limit the amount of entropy that can be drained from the
  307. * input pool even if there are heavy demands on /dev/urandom.
  308. */
  309. static int random_min_urandom_seed = 60;
  310. /*
  311. * Originally, we used a primitive polynomial of degree .poolwords
  312. * over GF(2). The taps for various sizes are defined below. They
  313. * were chosen to be evenly spaced except for the last tap, which is 1
  314. * to get the twisting happening as fast as possible.
  315. *
  316. * For the purposes of better mixing, we use the CRC-32 polynomial as
  317. * well to make a (modified) twisted Generalized Feedback Shift
  318. * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
  319. * generators. ACM Transactions on Modeling and Computer Simulation
  320. * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
  321. * GFSR generators II. ACM Transactions on Modeling and Computer
  322. * Simulation 4:254-266)
  323. *
  324. * Thanks to Colin Plumb for suggesting this.
  325. *
  326. * The mixing operation is much less sensitive than the output hash,
  327. * where we use SHA-1. All that we want of mixing operation is that
  328. * it be a good non-cryptographic hash; i.e. it not produce collisions
  329. * when fed "random" data of the sort we expect to see. As long as
  330. * the pool state differs for different inputs, we have preserved the
  331. * input entropy and done a good job. The fact that an intelligent
  332. * attacker can construct inputs that will produce controlled
  333. * alterations to the pool's state is not important because we don't
  334. * consider such inputs to contribute any randomness. The only
  335. * property we need with respect to them is that the attacker can't
  336. * increase his/her knowledge of the pool's state. Since all
  337. * additions are reversible (knowing the final state and the input,
  338. * you can reconstruct the initial state), if an attacker has any
  339. * uncertainty about the initial state, he/she can only shuffle that
  340. * uncertainty about, but never cause any collisions (which would
  341. * decrease the uncertainty).
  342. *
  343. * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
  344. * Videau in their paper, "The Linux Pseudorandom Number Generator
  345. * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
  346. * paper, they point out that we are not using a true Twisted GFSR,
  347. * since Matsumoto & Kurita used a trinomial feedback polynomial (that
  348. * is, with only three taps, instead of the six that we are using).
  349. * As a result, the resulting polynomial is neither primitive nor
  350. * irreducible, and hence does not have a maximal period over
  351. * GF(2**32). They suggest a slight change to the generator
  352. * polynomial which improves the resulting TGFSR polynomial to be
  353. * irreducible, which we have made here.
  354. */
  355. static struct poolinfo {
  356. int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
  357. #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
  358. int tap1, tap2, tap3, tap4, tap5;
  359. } poolinfo_table[] = {
  360. /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
  361. /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
  362. { S(128), 104, 76, 51, 25, 1 },
  363. /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
  364. /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
  365. { S(32), 26, 19, 14, 7, 1 },
  366. #if 0
  367. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  368. { S(2048), 1638, 1231, 819, 411, 1 },
  369. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  370. { S(1024), 817, 615, 412, 204, 1 },
  371. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  372. { S(1024), 819, 616, 410, 207, 2 },
  373. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  374. { S(512), 411, 308, 208, 104, 1 },
  375. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  376. { S(512), 409, 307, 206, 102, 2 },
  377. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  378. { S(512), 409, 309, 205, 103, 2 },
  379. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  380. { S(256), 205, 155, 101, 52, 1 },
  381. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  382. { S(128), 103, 78, 51, 27, 2 },
  383. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  384. { S(64), 52, 39, 26, 14, 1 },
  385. #endif
  386. };
  387. /*
  388. * Static global variables
  389. */
  390. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  391. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  392. static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
  393. static struct fasync_struct *fasync;
  394. static DEFINE_SPINLOCK(random_ready_list_lock);
  395. static LIST_HEAD(random_ready_list);
  396. struct crng_state {
  397. __u32 state[16];
  398. unsigned long init_time;
  399. spinlock_t lock;
  400. };
  401. struct crng_state primary_crng = {
  402. .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
  403. };
  404. /*
  405. * crng_init = 0 --> Uninitialized
  406. * 1 --> Initialized
  407. * 2 --> Initialized from input_pool
  408. *
  409. * crng_init is protected by primary_crng->lock, and only increases
  410. * its value (from 0->1->2).
  411. */
  412. static int crng_init = 0;
  413. #define crng_ready() (likely(crng_init > 1))
  414. static int crng_init_cnt = 0;
  415. static unsigned long crng_global_init_time = 0;
  416. #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
  417. static void _extract_crng(struct crng_state *crng,
  418. __u8 out[CHACHA20_BLOCK_SIZE]);
  419. static void _crng_backtrack_protect(struct crng_state *crng,
  420. __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
  421. static void process_random_ready_list(void);
  422. static struct ratelimit_state unseeded_warning =
  423. RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
  424. static struct ratelimit_state urandom_warning =
  425. RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
  426. static int ratelimit_disable __read_mostly;
  427. module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
  428. MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
  429. /**********************************************************************
  430. *
  431. * OS independent entropy store. Here are the functions which handle
  432. * storing entropy in an entropy pool.
  433. *
  434. **********************************************************************/
  435. struct entropy_store;
  436. struct entropy_store {
  437. /* read-only data: */
  438. const struct poolinfo *poolinfo;
  439. __u32 *pool;
  440. const char *name;
  441. struct entropy_store *pull;
  442. struct work_struct push_work;
  443. /* read-write data: */
  444. unsigned long last_pulled;
  445. spinlock_t lock;
  446. unsigned short add_ptr;
  447. unsigned short input_rotate;
  448. int entropy_count;
  449. int entropy_total;
  450. unsigned int initialized:1;
  451. unsigned int limit:1;
  452. unsigned int last_data_init:1;
  453. __u8 last_data[EXTRACT_SIZE];
  454. };
  455. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  456. size_t nbytes, int min, int rsvd);
  457. static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
  458. size_t nbytes, int fips);
  459. static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
  460. static void push_to_pool(struct work_struct *work);
  461. static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
  462. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
  463. static struct entropy_store input_pool = {
  464. .poolinfo = &poolinfo_table[0],
  465. .name = "input",
  466. .limit = 1,
  467. .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
  468. .pool = input_pool_data
  469. };
  470. static struct entropy_store blocking_pool = {
  471. .poolinfo = &poolinfo_table[1],
  472. .name = "blocking",
  473. .limit = 1,
  474. .pull = &input_pool,
  475. .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
  476. .pool = blocking_pool_data,
  477. .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
  478. push_to_pool),
  479. };
  480. static __u32 const twist_table[8] = {
  481. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  482. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  483. /*
  484. * This function adds bytes into the entropy "pool". It does not
  485. * update the entropy estimate. The caller should call
  486. * credit_entropy_bits if this is appropriate.
  487. *
  488. * The pool is stirred with a primitive polynomial of the appropriate
  489. * degree, and then twisted. We twist by three bits at a time because
  490. * it's cheap to do so and helps slightly in the expected case where
  491. * the entropy is concentrated in the low-order bits.
  492. */
  493. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  494. int nbytes)
  495. {
  496. unsigned long i, tap1, tap2, tap3, tap4, tap5;
  497. int input_rotate;
  498. int wordmask = r->poolinfo->poolwords - 1;
  499. const char *bytes = in;
  500. __u32 w;
  501. tap1 = r->poolinfo->tap1;
  502. tap2 = r->poolinfo->tap2;
  503. tap3 = r->poolinfo->tap3;
  504. tap4 = r->poolinfo->tap4;
  505. tap5 = r->poolinfo->tap5;
  506. input_rotate = r->input_rotate;
  507. i = r->add_ptr;
  508. /* mix one byte at a time to simplify size handling and churn faster */
  509. while (nbytes--) {
  510. w = rol32(*bytes++, input_rotate);
  511. i = (i - 1) & wordmask;
  512. /* XOR in the various taps */
  513. w ^= r->pool[i];
  514. w ^= r->pool[(i + tap1) & wordmask];
  515. w ^= r->pool[(i + tap2) & wordmask];
  516. w ^= r->pool[(i + tap3) & wordmask];
  517. w ^= r->pool[(i + tap4) & wordmask];
  518. w ^= r->pool[(i + tap5) & wordmask];
  519. /* Mix the result back in with a twist */
  520. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  521. /*
  522. * Normally, we add 7 bits of rotation to the pool.
  523. * At the beginning of the pool, add an extra 7 bits
  524. * rotation, so that successive passes spread the
  525. * input bits across the pool evenly.
  526. */
  527. input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
  528. }
  529. r->input_rotate = input_rotate;
  530. r->add_ptr = i;
  531. }
  532. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  533. int nbytes)
  534. {
  535. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  536. _mix_pool_bytes(r, in, nbytes);
  537. }
  538. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  539. int nbytes)
  540. {
  541. unsigned long flags;
  542. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  543. spin_lock_irqsave(&r->lock, flags);
  544. _mix_pool_bytes(r, in, nbytes);
  545. spin_unlock_irqrestore(&r->lock, flags);
  546. }
  547. struct fast_pool {
  548. __u32 pool[4];
  549. unsigned long last;
  550. unsigned short reg_idx;
  551. unsigned char count;
  552. };
  553. /*
  554. * This is a fast mixing routine used by the interrupt randomness
  555. * collector. It's hardcoded for an 128 bit pool and assumes that any
  556. * locks that might be needed are taken by the caller.
  557. */
  558. static void fast_mix(struct fast_pool *f)
  559. {
  560. __u32 a = f->pool[0], b = f->pool[1];
  561. __u32 c = f->pool[2], d = f->pool[3];
  562. a += b; c += d;
  563. b = rol32(b, 6); d = rol32(d, 27);
  564. d ^= a; b ^= c;
  565. a += b; c += d;
  566. b = rol32(b, 16); d = rol32(d, 14);
  567. d ^= a; b ^= c;
  568. a += b; c += d;
  569. b = rol32(b, 6); d = rol32(d, 27);
  570. d ^= a; b ^= c;
  571. a += b; c += d;
  572. b = rol32(b, 16); d = rol32(d, 14);
  573. d ^= a; b ^= c;
  574. f->pool[0] = a; f->pool[1] = b;
  575. f->pool[2] = c; f->pool[3] = d;
  576. f->count++;
  577. }
  578. static void process_random_ready_list(void)
  579. {
  580. unsigned long flags;
  581. struct random_ready_callback *rdy, *tmp;
  582. spin_lock_irqsave(&random_ready_list_lock, flags);
  583. list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
  584. struct module *owner = rdy->owner;
  585. list_del_init(&rdy->list);
  586. rdy->func(rdy);
  587. module_put(owner);
  588. }
  589. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  590. }
  591. /*
  592. * Credit (or debit) the entropy store with n bits of entropy.
  593. * Use credit_entropy_bits_safe() if the value comes from userspace
  594. * or otherwise should be checked for extreme values.
  595. */
  596. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  597. {
  598. int entropy_count, orig;
  599. const int pool_size = r->poolinfo->poolfracbits;
  600. int nfrac = nbits << ENTROPY_SHIFT;
  601. if (!nbits)
  602. return;
  603. retry:
  604. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  605. if (nfrac < 0) {
  606. /* Debit */
  607. entropy_count += nfrac;
  608. } else {
  609. /*
  610. * Credit: we have to account for the possibility of
  611. * overwriting already present entropy. Even in the
  612. * ideal case of pure Shannon entropy, new contributions
  613. * approach the full value asymptotically:
  614. *
  615. * entropy <- entropy + (pool_size - entropy) *
  616. * (1 - exp(-add_entropy/pool_size))
  617. *
  618. * For add_entropy <= pool_size/2 then
  619. * (1 - exp(-add_entropy/pool_size)) >=
  620. * (add_entropy/pool_size)*0.7869...
  621. * so we can approximate the exponential with
  622. * 3/4*add_entropy/pool_size and still be on the
  623. * safe side by adding at most pool_size/2 at a time.
  624. *
  625. * The use of pool_size-2 in the while statement is to
  626. * prevent rounding artifacts from making the loop
  627. * arbitrarily long; this limits the loop to log2(pool_size)*2
  628. * turns no matter how large nbits is.
  629. */
  630. int pnfrac = nfrac;
  631. const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
  632. /* The +2 corresponds to the /4 in the denominator */
  633. do {
  634. unsigned int anfrac = min(pnfrac, pool_size/2);
  635. unsigned int add =
  636. ((pool_size - entropy_count)*anfrac*3) >> s;
  637. entropy_count += add;
  638. pnfrac -= anfrac;
  639. } while (unlikely(entropy_count < pool_size-2 && pnfrac));
  640. }
  641. if (unlikely(entropy_count < 0)) {
  642. pr_warn("random: negative entropy/overflow: pool %s count %d\n",
  643. r->name, entropy_count);
  644. WARN_ON(1);
  645. entropy_count = 0;
  646. } else if (entropy_count > pool_size)
  647. entropy_count = pool_size;
  648. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  649. goto retry;
  650. r->entropy_total += nbits;
  651. if (!r->initialized && r->entropy_total > 128) {
  652. r->initialized = 1;
  653. r->entropy_total = 0;
  654. }
  655. trace_credit_entropy_bits(r->name, nbits,
  656. entropy_count >> ENTROPY_SHIFT,
  657. r->entropy_total, _RET_IP_);
  658. if (r == &input_pool) {
  659. int entropy_bits = entropy_count >> ENTROPY_SHIFT;
  660. if (crng_init < 2 && entropy_bits >= 128) {
  661. crng_reseed(&primary_crng, r);
  662. entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
  663. }
  664. /* should we wake readers? */
  665. if (entropy_bits >= random_read_wakeup_bits) {
  666. wake_up_interruptible(&random_read_wait);
  667. kill_fasync(&fasync, SIGIO, POLL_IN);
  668. }
  669. /* If the input pool is getting full, send some
  670. * entropy to the blocking pool until it is 75% full.
  671. */
  672. if (entropy_bits > random_write_wakeup_bits &&
  673. r->initialized &&
  674. r->entropy_total >= 2*random_read_wakeup_bits) {
  675. struct entropy_store *other = &blocking_pool;
  676. if (other->entropy_count <=
  677. 3 * other->poolinfo->poolfracbits / 4) {
  678. schedule_work(&other->push_work);
  679. r->entropy_total = 0;
  680. }
  681. }
  682. }
  683. }
  684. static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
  685. {
  686. const int nbits_max = r->poolinfo->poolwords * 32;
  687. if (nbits < 0)
  688. return -EINVAL;
  689. /* Cap the value to avoid overflows */
  690. nbits = min(nbits, nbits_max);
  691. credit_entropy_bits(r, nbits);
  692. return 0;
  693. }
  694. /*********************************************************************
  695. *
  696. * CRNG using CHACHA20
  697. *
  698. *********************************************************************/
  699. #define CRNG_RESEED_INTERVAL (300*HZ)
  700. static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
  701. #ifdef CONFIG_NUMA
  702. /*
  703. * Hack to deal with crazy userspace progams when they are all trying
  704. * to access /dev/urandom in parallel. The programs are almost
  705. * certainly doing something terribly wrong, but we'll work around
  706. * their brain damage.
  707. */
  708. static struct crng_state **crng_node_pool __read_mostly;
  709. #endif
  710. static void crng_initialize(struct crng_state *crng)
  711. {
  712. int i;
  713. unsigned long rv;
  714. memcpy(&crng->state[0], "expand 32-byte k", 16);
  715. if (crng == &primary_crng)
  716. _extract_entropy(&input_pool, &crng->state[4],
  717. sizeof(__u32) * 12, 0);
  718. else
  719. get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
  720. for (i = 4; i < 16; i++) {
  721. if (!arch_get_random_seed_long(&rv) &&
  722. !arch_get_random_long(&rv))
  723. rv = random_get_entropy();
  724. crng->state[i] ^= rv;
  725. }
  726. crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
  727. }
  728. static int crng_fast_load(const char *cp, size_t len)
  729. {
  730. unsigned long flags;
  731. char *p;
  732. if (!spin_trylock_irqsave(&primary_crng.lock, flags))
  733. return 0;
  734. if (crng_init != 0) {
  735. spin_unlock_irqrestore(&primary_crng.lock, flags);
  736. return 0;
  737. }
  738. p = (unsigned char *) &primary_crng.state[4];
  739. while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
  740. p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
  741. cp++; crng_init_cnt++; len--;
  742. }
  743. if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
  744. crng_init = 1;
  745. wake_up_interruptible(&crng_init_wait);
  746. pr_notice("random: fast init done\n");
  747. }
  748. spin_unlock_irqrestore(&primary_crng.lock, flags);
  749. return 1;
  750. }
  751. #ifdef CONFIG_NUMA
  752. static void do_numa_crng_init(struct work_struct *work)
  753. {
  754. int i;
  755. struct crng_state *crng;
  756. struct crng_state **pool;
  757. pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
  758. for_each_online_node(i) {
  759. crng = kmalloc_node(sizeof(struct crng_state),
  760. GFP_KERNEL | __GFP_NOFAIL, i);
  761. spin_lock_init(&crng->lock);
  762. crng_initialize(crng);
  763. pool[i] = crng;
  764. }
  765. mb();
  766. if (cmpxchg(&crng_node_pool, NULL, pool)) {
  767. for_each_node(i)
  768. kfree(pool[i]);
  769. kfree(pool);
  770. }
  771. }
  772. static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
  773. static void numa_crng_init(void)
  774. {
  775. schedule_work(&numa_crng_init_work);
  776. }
  777. #else
  778. static void numa_crng_init(void) {}
  779. #endif
  780. static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
  781. {
  782. unsigned long flags;
  783. int i, num;
  784. union {
  785. __u8 block[CHACHA20_BLOCK_SIZE];
  786. __u32 key[8];
  787. } buf;
  788. if (r) {
  789. num = extract_entropy(r, &buf, 32, 16, 0);
  790. if (num == 0)
  791. return;
  792. } else {
  793. _extract_crng(&primary_crng, buf.block);
  794. _crng_backtrack_protect(&primary_crng, buf.block,
  795. CHACHA20_KEY_SIZE);
  796. }
  797. spin_lock_irqsave(&crng->lock, flags);
  798. for (i = 0; i < 8; i++) {
  799. unsigned long rv;
  800. if (!arch_get_random_seed_long(&rv) &&
  801. !arch_get_random_long(&rv))
  802. rv = random_get_entropy();
  803. crng->state[i+4] ^= buf.key[i] ^ rv;
  804. }
  805. memzero_explicit(&buf, sizeof(buf));
  806. crng->init_time = jiffies;
  807. if (crng == &primary_crng && crng_init < 2) {
  808. numa_crng_init();
  809. crng_init = 2;
  810. process_random_ready_list();
  811. wake_up_interruptible(&crng_init_wait);
  812. pr_notice("random: crng init done\n");
  813. if (unseeded_warning.missed) {
  814. pr_notice("random: %d get_random_xx warning(s) missed "
  815. "due to ratelimiting\n",
  816. unseeded_warning.missed);
  817. unseeded_warning.missed = 0;
  818. }
  819. if (urandom_warning.missed) {
  820. pr_notice("random: %d urandom warning(s) missed "
  821. "due to ratelimiting\n",
  822. urandom_warning.missed);
  823. urandom_warning.missed = 0;
  824. }
  825. }
  826. spin_unlock_irqrestore(&crng->lock, flags);
  827. }
  828. static inline void maybe_reseed_primary_crng(void)
  829. {
  830. if (crng_init > 2 &&
  831. time_after(jiffies, primary_crng.init_time + CRNG_RESEED_INTERVAL))
  832. crng_reseed(&primary_crng, &input_pool);
  833. }
  834. static inline void crng_wait_ready(void)
  835. {
  836. wait_event_interruptible(crng_init_wait, crng_ready());
  837. }
  838. static void _extract_crng(struct crng_state *crng,
  839. __u8 out[CHACHA20_BLOCK_SIZE])
  840. {
  841. unsigned long v, flags;
  842. if (crng_ready() &&
  843. (time_after(crng_global_init_time, crng->init_time) ||
  844. time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
  845. crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
  846. spin_lock_irqsave(&crng->lock, flags);
  847. if (arch_get_random_long(&v))
  848. crng->state[14] ^= v;
  849. chacha20_block(&crng->state[0], out);
  850. if (crng->state[12] == 0)
  851. crng->state[13]++;
  852. spin_unlock_irqrestore(&crng->lock, flags);
  853. }
  854. static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
  855. {
  856. struct crng_state *crng = NULL;
  857. #ifdef CONFIG_NUMA
  858. if (crng_node_pool)
  859. crng = crng_node_pool[numa_node_id()];
  860. if (crng == NULL)
  861. #endif
  862. crng = &primary_crng;
  863. _extract_crng(crng, out);
  864. }
  865. /*
  866. * Use the leftover bytes from the CRNG block output (if there is
  867. * enough) to mutate the CRNG key to provide backtracking protection.
  868. */
  869. static void _crng_backtrack_protect(struct crng_state *crng,
  870. __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
  871. {
  872. unsigned long flags;
  873. __u32 *s, *d;
  874. int i;
  875. used = round_up(used, sizeof(__u32));
  876. if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
  877. extract_crng(tmp);
  878. used = 0;
  879. }
  880. spin_lock_irqsave(&crng->lock, flags);
  881. s = (__u32 *) &tmp[used];
  882. d = &crng->state[4];
  883. for (i=0; i < 8; i++)
  884. *d++ ^= *s++;
  885. spin_unlock_irqrestore(&crng->lock, flags);
  886. }
  887. static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
  888. {
  889. struct crng_state *crng = NULL;
  890. #ifdef CONFIG_NUMA
  891. if (crng_node_pool)
  892. crng = crng_node_pool[numa_node_id()];
  893. if (crng == NULL)
  894. #endif
  895. crng = &primary_crng;
  896. _crng_backtrack_protect(crng, tmp, used);
  897. }
  898. static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
  899. {
  900. ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
  901. __u8 tmp[CHACHA20_BLOCK_SIZE];
  902. int large_request = (nbytes > 256);
  903. while (nbytes) {
  904. if (large_request && need_resched()) {
  905. if (signal_pending(current)) {
  906. if (ret == 0)
  907. ret = -ERESTARTSYS;
  908. break;
  909. }
  910. schedule();
  911. }
  912. extract_crng(tmp);
  913. i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
  914. if (copy_to_user(buf, tmp, i)) {
  915. ret = -EFAULT;
  916. break;
  917. }
  918. nbytes -= i;
  919. buf += i;
  920. ret += i;
  921. }
  922. crng_backtrack_protect(tmp, i);
  923. /* Wipe data just written to memory */
  924. memzero_explicit(tmp, sizeof(tmp));
  925. return ret;
  926. }
  927. /*********************************************************************
  928. *
  929. * Entropy input management
  930. *
  931. *********************************************************************/
  932. /* There is one of these per entropy source */
  933. struct timer_rand_state {
  934. cycles_t last_time;
  935. long last_delta, last_delta2;
  936. unsigned dont_count_entropy:1;
  937. };
  938. #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
  939. /*
  940. * Add device- or boot-specific data to the input pool to help
  941. * initialize it.
  942. *
  943. * None of this adds any entropy; it is meant to avoid the problem of
  944. * the entropy pool having similar initial state across largely
  945. * identical devices.
  946. */
  947. void add_device_randomness(const void *buf, unsigned int size)
  948. {
  949. unsigned long time = random_get_entropy() ^ jiffies;
  950. unsigned long flags;
  951. trace_add_device_randomness(size, _RET_IP_);
  952. spin_lock_irqsave(&input_pool.lock, flags);
  953. _mix_pool_bytes(&input_pool, buf, size);
  954. _mix_pool_bytes(&input_pool, &time, sizeof(time));
  955. spin_unlock_irqrestore(&input_pool.lock, flags);
  956. }
  957. EXPORT_SYMBOL(add_device_randomness);
  958. static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
  959. /*
  960. * This function adds entropy to the entropy "pool" by using timing
  961. * delays. It uses the timer_rand_state structure to make an estimate
  962. * of how many bits of entropy this call has added to the pool.
  963. *
  964. * The number "num" is also added to the pool - it should somehow describe
  965. * the type of event which just happened. This is currently 0-255 for
  966. * keyboard scan codes, and 256 upwards for interrupts.
  967. *
  968. */
  969. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  970. {
  971. struct entropy_store *r;
  972. struct {
  973. long jiffies;
  974. unsigned cycles;
  975. unsigned num;
  976. } sample;
  977. long delta, delta2, delta3;
  978. preempt_disable();
  979. sample.jiffies = jiffies;
  980. sample.cycles = random_get_entropy();
  981. sample.num = num;
  982. r = &input_pool;
  983. mix_pool_bytes(r, &sample, sizeof(sample));
  984. /*
  985. * Calculate number of bits of randomness we probably added.
  986. * We take into account the first, second and third-order deltas
  987. * in order to make our estimate.
  988. */
  989. if (!state->dont_count_entropy) {
  990. delta = sample.jiffies - state->last_time;
  991. state->last_time = sample.jiffies;
  992. delta2 = delta - state->last_delta;
  993. state->last_delta = delta;
  994. delta3 = delta2 - state->last_delta2;
  995. state->last_delta2 = delta2;
  996. if (delta < 0)
  997. delta = -delta;
  998. if (delta2 < 0)
  999. delta2 = -delta2;
  1000. if (delta3 < 0)
  1001. delta3 = -delta3;
  1002. if (delta > delta2)
  1003. delta = delta2;
  1004. if (delta > delta3)
  1005. delta = delta3;
  1006. /*
  1007. * delta is now minimum absolute delta.
  1008. * Round down by 1 bit on general principles,
  1009. * and limit entropy entimate to 12 bits.
  1010. */
  1011. credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
  1012. }
  1013. preempt_enable();
  1014. }
  1015. void add_input_randomness(unsigned int type, unsigned int code,
  1016. unsigned int value)
  1017. {
  1018. static unsigned char last_value;
  1019. /* ignore autorepeat and the like */
  1020. if (value == last_value)
  1021. return;
  1022. last_value = value;
  1023. add_timer_randomness(&input_timer_state,
  1024. (type << 4) ^ code ^ (code >> 4) ^ value);
  1025. trace_add_input_randomness(ENTROPY_BITS(&input_pool));
  1026. }
  1027. EXPORT_SYMBOL_GPL(add_input_randomness);
  1028. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  1029. #ifdef ADD_INTERRUPT_BENCH
  1030. static unsigned long avg_cycles, avg_deviation;
  1031. #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
  1032. #define FIXED_1_2 (1 << (AVG_SHIFT-1))
  1033. static void add_interrupt_bench(cycles_t start)
  1034. {
  1035. long delta = random_get_entropy() - start;
  1036. /* Use a weighted moving average */
  1037. delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
  1038. avg_cycles += delta;
  1039. /* And average deviation */
  1040. delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
  1041. avg_deviation += delta;
  1042. }
  1043. #else
  1044. #define add_interrupt_bench(x)
  1045. #endif
  1046. static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
  1047. {
  1048. __u32 *ptr = (__u32 *) regs;
  1049. unsigned int idx;
  1050. if (regs == NULL)
  1051. return 0;
  1052. idx = READ_ONCE(f->reg_idx);
  1053. if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
  1054. idx = 0;
  1055. ptr += idx++;
  1056. WRITE_ONCE(f->reg_idx, idx);
  1057. return *ptr;
  1058. }
  1059. void add_interrupt_randomness(int irq, int irq_flags)
  1060. {
  1061. struct entropy_store *r;
  1062. struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
  1063. struct pt_regs *regs = get_irq_regs();
  1064. unsigned long now = jiffies;
  1065. cycles_t cycles = random_get_entropy();
  1066. __u32 c_high, j_high;
  1067. __u64 ip;
  1068. unsigned long seed;
  1069. int credit = 0;
  1070. if (cycles == 0)
  1071. cycles = get_reg(fast_pool, regs);
  1072. c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
  1073. j_high = (sizeof(now) > 4) ? now >> 32 : 0;
  1074. fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
  1075. fast_pool->pool[1] ^= now ^ c_high;
  1076. ip = regs ? instruction_pointer(regs) : _RET_IP_;
  1077. fast_pool->pool[2] ^= ip;
  1078. fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
  1079. get_reg(fast_pool, regs);
  1080. fast_mix(fast_pool);
  1081. add_interrupt_bench(cycles);
  1082. if (unlikely(crng_init == 0)) {
  1083. if ((fast_pool->count >= 64) &&
  1084. crng_fast_load((char *) fast_pool->pool,
  1085. sizeof(fast_pool->pool))) {
  1086. fast_pool->count = 0;
  1087. fast_pool->last = now;
  1088. }
  1089. return;
  1090. }
  1091. if ((fast_pool->count < 64) &&
  1092. !time_after(now, fast_pool->last + HZ))
  1093. return;
  1094. r = &input_pool;
  1095. if (!spin_trylock(&r->lock))
  1096. return;
  1097. fast_pool->last = now;
  1098. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
  1099. /*
  1100. * If we have architectural seed generator, produce a seed and
  1101. * add it to the pool. For the sake of paranoia don't let the
  1102. * architectural seed generator dominate the input from the
  1103. * interrupt noise.
  1104. */
  1105. if (arch_get_random_seed_long(&seed)) {
  1106. __mix_pool_bytes(r, &seed, sizeof(seed));
  1107. credit = 1;
  1108. }
  1109. spin_unlock(&r->lock);
  1110. fast_pool->count = 0;
  1111. /* award one bit for the contents of the fast pool */
  1112. credit_entropy_bits(r, credit + 1);
  1113. }
  1114. EXPORT_SYMBOL_GPL(add_interrupt_randomness);
  1115. #ifdef CONFIG_BLOCK
  1116. void add_disk_randomness(struct gendisk *disk)
  1117. {
  1118. if (!disk || !disk->random)
  1119. return;
  1120. /* first major is 1, so we get >= 0x200 here */
  1121. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  1122. trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
  1123. }
  1124. EXPORT_SYMBOL_GPL(add_disk_randomness);
  1125. #endif
  1126. /*********************************************************************
  1127. *
  1128. * Entropy extraction routines
  1129. *
  1130. *********************************************************************/
  1131. /*
  1132. * This utility inline function is responsible for transferring entropy
  1133. * from the primary pool to the secondary extraction pool. We make
  1134. * sure we pull enough for a 'catastrophic reseed'.
  1135. */
  1136. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
  1137. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  1138. {
  1139. if (!r->pull ||
  1140. r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
  1141. r->entropy_count > r->poolinfo->poolfracbits)
  1142. return;
  1143. if (r->limit == 0 && random_min_urandom_seed) {
  1144. unsigned long now = jiffies;
  1145. if (time_before(now,
  1146. r->last_pulled + random_min_urandom_seed * HZ))
  1147. return;
  1148. r->last_pulled = now;
  1149. }
  1150. _xfer_secondary_pool(r, nbytes);
  1151. }
  1152. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  1153. {
  1154. __u32 tmp[OUTPUT_POOL_WORDS];
  1155. /* For /dev/random's pool, always leave two wakeups' worth */
  1156. int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
  1157. int bytes = nbytes;
  1158. /* pull at least as much as a wakeup */
  1159. bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
  1160. /* but never more than the buffer size */
  1161. bytes = min_t(int, bytes, sizeof(tmp));
  1162. trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
  1163. ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
  1164. bytes = extract_entropy(r->pull, tmp, bytes,
  1165. random_read_wakeup_bits / 8, rsvd_bytes);
  1166. mix_pool_bytes(r, tmp, bytes);
  1167. credit_entropy_bits(r, bytes*8);
  1168. }
  1169. /*
  1170. * Used as a workqueue function so that when the input pool is getting
  1171. * full, we can "spill over" some entropy to the output pools. That
  1172. * way the output pools can store some of the excess entropy instead
  1173. * of letting it go to waste.
  1174. */
  1175. static void push_to_pool(struct work_struct *work)
  1176. {
  1177. struct entropy_store *r = container_of(work, struct entropy_store,
  1178. push_work);
  1179. BUG_ON(!r);
  1180. _xfer_secondary_pool(r, random_read_wakeup_bits/8);
  1181. trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
  1182. r->pull->entropy_count >> ENTROPY_SHIFT);
  1183. }
  1184. /*
  1185. * This function decides how many bytes to actually take from the
  1186. * given pool, and also debits the entropy count accordingly.
  1187. */
  1188. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  1189. int reserved)
  1190. {
  1191. int entropy_count, orig;
  1192. size_t ibytes, nfrac;
  1193. BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
  1194. /* Can we pull enough? */
  1195. retry:
  1196. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  1197. ibytes = nbytes;
  1198. /* If limited, never pull more than available */
  1199. if (r->limit) {
  1200. int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
  1201. if ((have_bytes -= reserved) < 0)
  1202. have_bytes = 0;
  1203. ibytes = min_t(size_t, ibytes, have_bytes);
  1204. }
  1205. if (ibytes < min)
  1206. ibytes = 0;
  1207. if (unlikely(entropy_count < 0)) {
  1208. pr_warn("random: negative entropy count: pool %s count %d\n",
  1209. r->name, entropy_count);
  1210. WARN_ON(1);
  1211. entropy_count = 0;
  1212. }
  1213. nfrac = ibytes << (ENTROPY_SHIFT + 3);
  1214. if ((size_t) entropy_count > nfrac)
  1215. entropy_count -= nfrac;
  1216. else
  1217. entropy_count = 0;
  1218. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  1219. goto retry;
  1220. trace_debit_entropy(r->name, 8 * ibytes);
  1221. if (ibytes &&
  1222. (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
  1223. wake_up_interruptible(&random_write_wait);
  1224. kill_fasync(&fasync, SIGIO, POLL_OUT);
  1225. }
  1226. return ibytes;
  1227. }
  1228. /*
  1229. * This function does the actual extraction for extract_entropy and
  1230. * extract_entropy_user.
  1231. *
  1232. * Note: we assume that .poolwords is a multiple of 16 words.
  1233. */
  1234. static void extract_buf(struct entropy_store *r, __u8 *out)
  1235. {
  1236. int i;
  1237. union {
  1238. __u32 w[5];
  1239. unsigned long l[LONGS(20)];
  1240. } hash;
  1241. __u32 workspace[SHA_WORKSPACE_WORDS];
  1242. unsigned long flags;
  1243. /*
  1244. * If we have an architectural hardware random number
  1245. * generator, use it for SHA's initial vector
  1246. */
  1247. sha_init(hash.w);
  1248. for (i = 0; i < LONGS(20); i++) {
  1249. unsigned long v;
  1250. if (!arch_get_random_long(&v))
  1251. break;
  1252. hash.l[i] = v;
  1253. }
  1254. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  1255. spin_lock_irqsave(&r->lock, flags);
  1256. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  1257. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  1258. /*
  1259. * We mix the hash back into the pool to prevent backtracking
  1260. * attacks (where the attacker knows the state of the pool
  1261. * plus the current outputs, and attempts to find previous
  1262. * ouputs), unless the hash function can be inverted. By
  1263. * mixing at least a SHA1 worth of hash data back, we make
  1264. * brute-forcing the feedback as hard as brute-forcing the
  1265. * hash.
  1266. */
  1267. __mix_pool_bytes(r, hash.w, sizeof(hash.w));
  1268. spin_unlock_irqrestore(&r->lock, flags);
  1269. memzero_explicit(workspace, sizeof(workspace));
  1270. /*
  1271. * In case the hash function has some recognizable output
  1272. * pattern, we fold it in half. Thus, we always feed back
  1273. * twice as much data as we output.
  1274. */
  1275. hash.w[0] ^= hash.w[3];
  1276. hash.w[1] ^= hash.w[4];
  1277. hash.w[2] ^= rol32(hash.w[2], 16);
  1278. memcpy(out, &hash, EXTRACT_SIZE);
  1279. memzero_explicit(&hash, sizeof(hash));
  1280. }
  1281. static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
  1282. size_t nbytes, int fips)
  1283. {
  1284. ssize_t ret = 0, i;
  1285. __u8 tmp[EXTRACT_SIZE];
  1286. unsigned long flags;
  1287. while (nbytes) {
  1288. extract_buf(r, tmp);
  1289. if (fips) {
  1290. spin_lock_irqsave(&r->lock, flags);
  1291. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  1292. panic("Hardware RNG duplicated output!\n");
  1293. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1294. spin_unlock_irqrestore(&r->lock, flags);
  1295. }
  1296. i = min_t(int, nbytes, EXTRACT_SIZE);
  1297. memcpy(buf, tmp, i);
  1298. nbytes -= i;
  1299. buf += i;
  1300. ret += i;
  1301. }
  1302. /* Wipe data just returned from memory */
  1303. memzero_explicit(tmp, sizeof(tmp));
  1304. return ret;
  1305. }
  1306. /*
  1307. * This function extracts randomness from the "entropy pool", and
  1308. * returns it in a buffer.
  1309. *
  1310. * The min parameter specifies the minimum amount we can pull before
  1311. * failing to avoid races that defeat catastrophic reseeding while the
  1312. * reserved parameter indicates how much entropy we must leave in the
  1313. * pool after each pull to avoid starving other readers.
  1314. */
  1315. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  1316. size_t nbytes, int min, int reserved)
  1317. {
  1318. __u8 tmp[EXTRACT_SIZE];
  1319. unsigned long flags;
  1320. /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
  1321. if (fips_enabled) {
  1322. spin_lock_irqsave(&r->lock, flags);
  1323. if (!r->last_data_init) {
  1324. r->last_data_init = 1;
  1325. spin_unlock_irqrestore(&r->lock, flags);
  1326. trace_extract_entropy(r->name, EXTRACT_SIZE,
  1327. ENTROPY_BITS(r), _RET_IP_);
  1328. xfer_secondary_pool(r, EXTRACT_SIZE);
  1329. extract_buf(r, tmp);
  1330. spin_lock_irqsave(&r->lock, flags);
  1331. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1332. }
  1333. spin_unlock_irqrestore(&r->lock, flags);
  1334. }
  1335. trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1336. xfer_secondary_pool(r, nbytes);
  1337. nbytes = account(r, nbytes, min, reserved);
  1338. return _extract_entropy(r, buf, nbytes, fips_enabled);
  1339. }
  1340. /*
  1341. * This function extracts randomness from the "entropy pool", and
  1342. * returns it in a userspace buffer.
  1343. */
  1344. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  1345. size_t nbytes)
  1346. {
  1347. ssize_t ret = 0, i;
  1348. __u8 tmp[EXTRACT_SIZE];
  1349. int large_request = (nbytes > 256);
  1350. trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1351. xfer_secondary_pool(r, nbytes);
  1352. nbytes = account(r, nbytes, 0, 0);
  1353. while (nbytes) {
  1354. if (large_request && need_resched()) {
  1355. if (signal_pending(current)) {
  1356. if (ret == 0)
  1357. ret = -ERESTARTSYS;
  1358. break;
  1359. }
  1360. schedule();
  1361. }
  1362. extract_buf(r, tmp);
  1363. i = min_t(int, nbytes, EXTRACT_SIZE);
  1364. if (copy_to_user(buf, tmp, i)) {
  1365. ret = -EFAULT;
  1366. break;
  1367. }
  1368. nbytes -= i;
  1369. buf += i;
  1370. ret += i;
  1371. }
  1372. /* Wipe data just returned from memory */
  1373. memzero_explicit(tmp, sizeof(tmp));
  1374. return ret;
  1375. }
  1376. /*
  1377. * This function is the exported kernel interface. It returns some
  1378. * number of good random numbers, suitable for key generation, seeding
  1379. * TCP sequence numbers, etc. It does not rely on the hardware random
  1380. * number generator. For random bytes direct from the hardware RNG
  1381. * (when available), use get_random_bytes_arch().
  1382. */
  1383. void get_random_bytes(void *buf, int nbytes)
  1384. {
  1385. __u8 tmp[CHACHA20_BLOCK_SIZE];
  1386. #if DEBUG_RANDOM_BOOT > 0
  1387. if (!crng_ready())
  1388. printk(KERN_NOTICE "random: %pF get_random_bytes called "
  1389. "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
  1390. #endif
  1391. trace_get_random_bytes(nbytes, _RET_IP_);
  1392. while (nbytes >= CHACHA20_BLOCK_SIZE) {
  1393. extract_crng(buf);
  1394. buf += CHACHA20_BLOCK_SIZE;
  1395. nbytes -= CHACHA20_BLOCK_SIZE;
  1396. }
  1397. if (nbytes > 0) {
  1398. extract_crng(tmp);
  1399. memcpy(buf, tmp, nbytes);
  1400. crng_backtrack_protect(tmp, nbytes);
  1401. } else
  1402. crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
  1403. memzero_explicit(tmp, sizeof(tmp));
  1404. }
  1405. EXPORT_SYMBOL(get_random_bytes);
  1406. /*
  1407. * Add a callback function that will be invoked when the nonblocking
  1408. * pool is initialised.
  1409. *
  1410. * returns: 0 if callback is successfully added
  1411. * -EALREADY if pool is already initialised (callback not called)
  1412. * -ENOENT if module for callback is not alive
  1413. */
  1414. int add_random_ready_callback(struct random_ready_callback *rdy)
  1415. {
  1416. struct module *owner;
  1417. unsigned long flags;
  1418. int err = -EALREADY;
  1419. if (crng_ready())
  1420. return err;
  1421. owner = rdy->owner;
  1422. if (!try_module_get(owner))
  1423. return -ENOENT;
  1424. spin_lock_irqsave(&random_ready_list_lock, flags);
  1425. if (crng_ready())
  1426. goto out;
  1427. owner = NULL;
  1428. list_add(&rdy->list, &random_ready_list);
  1429. err = 0;
  1430. out:
  1431. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  1432. module_put(owner);
  1433. return err;
  1434. }
  1435. EXPORT_SYMBOL(add_random_ready_callback);
  1436. /*
  1437. * Delete a previously registered readiness callback function.
  1438. */
  1439. void del_random_ready_callback(struct random_ready_callback *rdy)
  1440. {
  1441. unsigned long flags;
  1442. struct module *owner = NULL;
  1443. spin_lock_irqsave(&random_ready_list_lock, flags);
  1444. if (!list_empty(&rdy->list)) {
  1445. list_del_init(&rdy->list);
  1446. owner = rdy->owner;
  1447. }
  1448. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  1449. module_put(owner);
  1450. }
  1451. EXPORT_SYMBOL(del_random_ready_callback);
  1452. /*
  1453. * This function will use the architecture-specific hardware random
  1454. * number generator if it is available. The arch-specific hw RNG will
  1455. * almost certainly be faster than what we can do in software, but it
  1456. * is impossible to verify that it is implemented securely (as
  1457. * opposed, to, say, the AES encryption of a sequence number using a
  1458. * key known by the NSA). So it's useful if we need the speed, but
  1459. * only if we're willing to trust the hardware manufacturer not to
  1460. * have put in a back door.
  1461. */
  1462. void get_random_bytes_arch(void *buf, int nbytes)
  1463. {
  1464. char *p = buf;
  1465. trace_get_random_bytes_arch(nbytes, _RET_IP_);
  1466. while (nbytes) {
  1467. unsigned long v;
  1468. int chunk = min(nbytes, (int)sizeof(unsigned long));
  1469. if (!arch_get_random_long(&v))
  1470. break;
  1471. memcpy(p, &v, chunk);
  1472. p += chunk;
  1473. nbytes -= chunk;
  1474. }
  1475. if (nbytes)
  1476. get_random_bytes(p, nbytes);
  1477. }
  1478. EXPORT_SYMBOL(get_random_bytes_arch);
  1479. /*
  1480. * init_std_data - initialize pool with system data
  1481. *
  1482. * @r: pool to initialize
  1483. *
  1484. * This function clears the pool's entropy count and mixes some system
  1485. * data into the pool to prepare it for use. The pool is not cleared
  1486. * as that can only decrease the entropy in the pool.
  1487. */
  1488. static void init_std_data(struct entropy_store *r)
  1489. {
  1490. int i;
  1491. ktime_t now = ktime_get_real();
  1492. unsigned long rv;
  1493. r->last_pulled = jiffies;
  1494. mix_pool_bytes(r, &now, sizeof(now));
  1495. for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
  1496. if (!arch_get_random_seed_long(&rv) &&
  1497. !arch_get_random_long(&rv))
  1498. rv = random_get_entropy();
  1499. mix_pool_bytes(r, &rv, sizeof(rv));
  1500. }
  1501. mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
  1502. }
  1503. /*
  1504. * Note that setup_arch() may call add_device_randomness()
  1505. * long before we get here. This allows seeding of the pools
  1506. * with some platform dependent data very early in the boot
  1507. * process. But it limits our options here. We must use
  1508. * statically allocated structures that already have all
  1509. * initializations complete at compile time. We should also
  1510. * take care not to overwrite the precious per platform data
  1511. * we were given.
  1512. */
  1513. static int rand_initialize(void)
  1514. {
  1515. init_std_data(&input_pool);
  1516. init_std_data(&blocking_pool);
  1517. crng_initialize(&primary_crng);
  1518. crng_global_init_time = jiffies;
  1519. if (ratelimit_disable) {
  1520. urandom_warning.interval = 0;
  1521. unseeded_warning.interval = 0;
  1522. }
  1523. return 0;
  1524. }
  1525. early_initcall(rand_initialize);
  1526. #ifdef CONFIG_BLOCK
  1527. void rand_initialize_disk(struct gendisk *disk)
  1528. {
  1529. struct timer_rand_state *state;
  1530. /*
  1531. * If kzalloc returns null, we just won't use that entropy
  1532. * source.
  1533. */
  1534. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1535. if (state) {
  1536. state->last_time = INITIAL_JIFFIES;
  1537. disk->random = state;
  1538. }
  1539. }
  1540. #endif
  1541. static ssize_t
  1542. _random_read(int nonblock, char __user *buf, size_t nbytes)
  1543. {
  1544. ssize_t n;
  1545. if (nbytes == 0)
  1546. return 0;
  1547. nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
  1548. while (1) {
  1549. n = extract_entropy_user(&blocking_pool, buf, nbytes);
  1550. if (n < 0)
  1551. return n;
  1552. trace_random_read(n*8, (nbytes-n)*8,
  1553. ENTROPY_BITS(&blocking_pool),
  1554. ENTROPY_BITS(&input_pool));
  1555. if (n > 0)
  1556. return n;
  1557. /* Pool is (near) empty. Maybe wait and retry. */
  1558. if (nonblock)
  1559. return -EAGAIN;
  1560. wait_event_interruptible(random_read_wait,
  1561. ENTROPY_BITS(&input_pool) >=
  1562. random_read_wakeup_bits);
  1563. if (signal_pending(current))
  1564. return -ERESTARTSYS;
  1565. }
  1566. }
  1567. static ssize_t
  1568. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1569. {
  1570. return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
  1571. }
  1572. static ssize_t
  1573. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1574. {
  1575. unsigned long flags;
  1576. static int maxwarn = 10;
  1577. int ret;
  1578. if (!crng_ready() && maxwarn > 0) {
  1579. maxwarn--;
  1580. if (__ratelimit(&urandom_warning))
  1581. printk(KERN_NOTICE "random: %s: uninitialized "
  1582. "urandom read (%zd bytes read)\n",
  1583. current->comm, nbytes);
  1584. spin_lock_irqsave(&primary_crng.lock, flags);
  1585. crng_init_cnt = 0;
  1586. spin_unlock_irqrestore(&primary_crng.lock, flags);
  1587. }
  1588. nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
  1589. ret = extract_crng_user(buf, nbytes);
  1590. trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
  1591. return ret;
  1592. }
  1593. static unsigned int
  1594. random_poll(struct file *file, poll_table * wait)
  1595. {
  1596. unsigned int mask;
  1597. poll_wait(file, &random_read_wait, wait);
  1598. poll_wait(file, &random_write_wait, wait);
  1599. mask = 0;
  1600. if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
  1601. mask |= POLLIN | POLLRDNORM;
  1602. if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
  1603. mask |= POLLOUT | POLLWRNORM;
  1604. return mask;
  1605. }
  1606. static int
  1607. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1608. {
  1609. size_t bytes;
  1610. __u32 t, buf[16];
  1611. const char __user *p = buffer;
  1612. while (count > 0) {
  1613. int b, i = 0;
  1614. bytes = min(count, sizeof(buf));
  1615. if (copy_from_user(&buf, p, bytes))
  1616. return -EFAULT;
  1617. for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
  1618. if (!arch_get_random_int(&t))
  1619. break;
  1620. buf[i] ^= t;
  1621. }
  1622. count -= bytes;
  1623. p += bytes;
  1624. mix_pool_bytes(r, buf, bytes);
  1625. cond_resched();
  1626. }
  1627. return 0;
  1628. }
  1629. static ssize_t random_write(struct file *file, const char __user *buffer,
  1630. size_t count, loff_t *ppos)
  1631. {
  1632. size_t ret;
  1633. ret = write_pool(&input_pool, buffer, count);
  1634. if (ret)
  1635. return ret;
  1636. return (ssize_t)count;
  1637. }
  1638. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1639. {
  1640. int size, ent_count;
  1641. int __user *p = (int __user *)arg;
  1642. int retval;
  1643. switch (cmd) {
  1644. case RNDGETENTCNT:
  1645. /* inherently racy, no point locking */
  1646. ent_count = ENTROPY_BITS(&input_pool);
  1647. if (put_user(ent_count, p))
  1648. return -EFAULT;
  1649. return 0;
  1650. case RNDADDTOENTCNT:
  1651. if (!capable(CAP_SYS_ADMIN))
  1652. return -EPERM;
  1653. if (get_user(ent_count, p))
  1654. return -EFAULT;
  1655. return credit_entropy_bits_safe(&input_pool, ent_count);
  1656. case RNDADDENTROPY:
  1657. if (!capable(CAP_SYS_ADMIN))
  1658. return -EPERM;
  1659. if (get_user(ent_count, p++))
  1660. return -EFAULT;
  1661. if (ent_count < 0)
  1662. return -EINVAL;
  1663. if (get_user(size, p++))
  1664. return -EFAULT;
  1665. retval = write_pool(&input_pool, (const char __user *)p,
  1666. size);
  1667. if (retval < 0)
  1668. return retval;
  1669. return credit_entropy_bits_safe(&input_pool, ent_count);
  1670. case RNDZAPENTCNT:
  1671. case RNDCLEARPOOL:
  1672. /*
  1673. * Clear the entropy pool counters. We no longer clear
  1674. * the entropy pool, as that's silly.
  1675. */
  1676. if (!capable(CAP_SYS_ADMIN))
  1677. return -EPERM;
  1678. input_pool.entropy_count = 0;
  1679. blocking_pool.entropy_count = 0;
  1680. return 0;
  1681. case RNDRESEEDCRNG:
  1682. if (!capable(CAP_SYS_ADMIN))
  1683. return -EPERM;
  1684. if (crng_init < 2)
  1685. return -ENODATA;
  1686. crng_reseed(&primary_crng, NULL);
  1687. crng_global_init_time = jiffies - 1;
  1688. return 0;
  1689. default:
  1690. return -EINVAL;
  1691. }
  1692. }
  1693. static int random_fasync(int fd, struct file *filp, int on)
  1694. {
  1695. return fasync_helper(fd, filp, on, &fasync);
  1696. }
  1697. const struct file_operations random_fops = {
  1698. .read = random_read,
  1699. .write = random_write,
  1700. .poll = random_poll,
  1701. .unlocked_ioctl = random_ioctl,
  1702. .fasync = random_fasync,
  1703. .llseek = noop_llseek,
  1704. };
  1705. const struct file_operations urandom_fops = {
  1706. .read = urandom_read,
  1707. .write = random_write,
  1708. .unlocked_ioctl = random_ioctl,
  1709. .fasync = random_fasync,
  1710. .llseek = noop_llseek,
  1711. };
  1712. SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
  1713. unsigned int, flags)
  1714. {
  1715. if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
  1716. return -EINVAL;
  1717. if (count > INT_MAX)
  1718. count = INT_MAX;
  1719. if (flags & GRND_RANDOM)
  1720. return _random_read(flags & GRND_NONBLOCK, buf, count);
  1721. if (!crng_ready()) {
  1722. if (flags & GRND_NONBLOCK)
  1723. return -EAGAIN;
  1724. crng_wait_ready();
  1725. if (signal_pending(current))
  1726. return -ERESTARTSYS;
  1727. }
  1728. return urandom_read(NULL, buf, count, NULL);
  1729. }
  1730. /********************************************************************
  1731. *
  1732. * Sysctl interface
  1733. *
  1734. ********************************************************************/
  1735. #ifdef CONFIG_SYSCTL
  1736. #include <linux/sysctl.h>
  1737. static int min_read_thresh = 8, min_write_thresh;
  1738. static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
  1739. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1740. static char sysctl_bootid[16];
  1741. /*
  1742. * This function is used to return both the bootid UUID, and random
  1743. * UUID. The difference is in whether table->data is NULL; if it is,
  1744. * then a new UUID is generated and returned to the user.
  1745. *
  1746. * If the user accesses this via the proc interface, the UUID will be
  1747. * returned as an ASCII string in the standard UUID format; if via the
  1748. * sysctl system call, as 16 bytes of binary data.
  1749. */
  1750. static int proc_do_uuid(struct ctl_table *table, int write,
  1751. void __user *buffer, size_t *lenp, loff_t *ppos)
  1752. {
  1753. struct ctl_table fake_table;
  1754. unsigned char buf[64], tmp_uuid[16], *uuid;
  1755. uuid = table->data;
  1756. if (!uuid) {
  1757. uuid = tmp_uuid;
  1758. generate_random_uuid(uuid);
  1759. } else {
  1760. static DEFINE_SPINLOCK(bootid_spinlock);
  1761. spin_lock(&bootid_spinlock);
  1762. if (!uuid[8])
  1763. generate_random_uuid(uuid);
  1764. spin_unlock(&bootid_spinlock);
  1765. }
  1766. sprintf(buf, "%pU", uuid);
  1767. fake_table.data = buf;
  1768. fake_table.maxlen = sizeof(buf);
  1769. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1770. }
  1771. /*
  1772. * Return entropy available scaled to integral bits
  1773. */
  1774. static int proc_do_entropy(struct ctl_table *table, int write,
  1775. void __user *buffer, size_t *lenp, loff_t *ppos)
  1776. {
  1777. struct ctl_table fake_table;
  1778. int entropy_count;
  1779. entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
  1780. fake_table.data = &entropy_count;
  1781. fake_table.maxlen = sizeof(entropy_count);
  1782. return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
  1783. }
  1784. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1785. extern struct ctl_table random_table[];
  1786. struct ctl_table random_table[] = {
  1787. {
  1788. .procname = "poolsize",
  1789. .data = &sysctl_poolsize,
  1790. .maxlen = sizeof(int),
  1791. .mode = 0444,
  1792. .proc_handler = proc_dointvec,
  1793. },
  1794. {
  1795. .procname = "entropy_avail",
  1796. .maxlen = sizeof(int),
  1797. .mode = 0444,
  1798. .proc_handler = proc_do_entropy,
  1799. .data = &input_pool.entropy_count,
  1800. },
  1801. {
  1802. .procname = "read_wakeup_threshold",
  1803. .data = &random_read_wakeup_bits,
  1804. .maxlen = sizeof(int),
  1805. .mode = 0644,
  1806. .proc_handler = proc_dointvec_minmax,
  1807. .extra1 = &min_read_thresh,
  1808. .extra2 = &max_read_thresh,
  1809. },
  1810. {
  1811. .procname = "write_wakeup_threshold",
  1812. .data = &random_write_wakeup_bits,
  1813. .maxlen = sizeof(int),
  1814. .mode = 0644,
  1815. .proc_handler = proc_dointvec_minmax,
  1816. .extra1 = &min_write_thresh,
  1817. .extra2 = &max_write_thresh,
  1818. },
  1819. {
  1820. .procname = "urandom_min_reseed_secs",
  1821. .data = &random_min_urandom_seed,
  1822. .maxlen = sizeof(int),
  1823. .mode = 0644,
  1824. .proc_handler = proc_dointvec,
  1825. },
  1826. {
  1827. .procname = "boot_id",
  1828. .data = &sysctl_bootid,
  1829. .maxlen = 16,
  1830. .mode = 0444,
  1831. .proc_handler = proc_do_uuid,
  1832. },
  1833. {
  1834. .procname = "uuid",
  1835. .maxlen = 16,
  1836. .mode = 0444,
  1837. .proc_handler = proc_do_uuid,
  1838. },
  1839. #ifdef ADD_INTERRUPT_BENCH
  1840. {
  1841. .procname = "add_interrupt_avg_cycles",
  1842. .data = &avg_cycles,
  1843. .maxlen = sizeof(avg_cycles),
  1844. .mode = 0444,
  1845. .proc_handler = proc_doulongvec_minmax,
  1846. },
  1847. {
  1848. .procname = "add_interrupt_avg_deviation",
  1849. .data = &avg_deviation,
  1850. .maxlen = sizeof(avg_deviation),
  1851. .mode = 0444,
  1852. .proc_handler = proc_doulongvec_minmax,
  1853. },
  1854. #endif
  1855. { }
  1856. };
  1857. #endif /* CONFIG_SYSCTL */
  1858. struct batched_entropy {
  1859. union {
  1860. unsigned long entropy_long[CHACHA20_BLOCK_SIZE / sizeof(unsigned long)];
  1861. unsigned int entropy_int[CHACHA20_BLOCK_SIZE / sizeof(unsigned int)];
  1862. };
  1863. unsigned int position;
  1864. };
  1865. /*
  1866. * Get a random word for internal kernel use only. The quality of the random
  1867. * number is either as good as RDRAND or as good as /dev/urandom, with the
  1868. * goal of being quite fast and not depleting entropy.
  1869. */
  1870. static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_long);
  1871. unsigned long get_random_long(void)
  1872. {
  1873. unsigned long ret;
  1874. struct batched_entropy *batch;
  1875. if (arch_get_random_long(&ret))
  1876. return ret;
  1877. batch = &get_cpu_var(batched_entropy_long);
  1878. if (batch->position % ARRAY_SIZE(batch->entropy_long) == 0) {
  1879. extract_crng((u8 *)batch->entropy_long);
  1880. batch->position = 0;
  1881. }
  1882. ret = batch->entropy_long[batch->position++];
  1883. put_cpu_var(batched_entropy_long);
  1884. return ret;
  1885. }
  1886. EXPORT_SYMBOL(get_random_long);
  1887. #if BITS_PER_LONG == 32
  1888. unsigned int get_random_int(void)
  1889. {
  1890. return get_random_long();
  1891. }
  1892. #else
  1893. static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_int);
  1894. unsigned int get_random_int(void)
  1895. {
  1896. unsigned int ret;
  1897. struct batched_entropy *batch;
  1898. if (arch_get_random_int(&ret))
  1899. return ret;
  1900. batch = &get_cpu_var(batched_entropy_int);
  1901. if (batch->position % ARRAY_SIZE(batch->entropy_int) == 0) {
  1902. extract_crng((u8 *)batch->entropy_int);
  1903. batch->position = 0;
  1904. }
  1905. ret = batch->entropy_int[batch->position++];
  1906. put_cpu_var(batched_entropy_int);
  1907. return ret;
  1908. }
  1909. #endif
  1910. EXPORT_SYMBOL(get_random_int);
  1911. /**
  1912. * randomize_page - Generate a random, page aligned address
  1913. * @start: The smallest acceptable address the caller will take.
  1914. * @range: The size of the area, starting at @start, within which the
  1915. * random address must fall.
  1916. *
  1917. * If @start + @range would overflow, @range is capped.
  1918. *
  1919. * NOTE: Historical use of randomize_range, which this replaces, presumed that
  1920. * @start was already page aligned. We now align it regardless.
  1921. *
  1922. * Return: A page aligned address within [start, start + range). On error,
  1923. * @start is returned.
  1924. */
  1925. unsigned long
  1926. randomize_page(unsigned long start, unsigned long range)
  1927. {
  1928. if (!PAGE_ALIGNED(start)) {
  1929. range -= PAGE_ALIGN(start) - start;
  1930. start = PAGE_ALIGN(start);
  1931. }
  1932. if (start > ULONG_MAX - range)
  1933. range = ULONG_MAX - start;
  1934. range >>= PAGE_SHIFT;
  1935. if (range == 0)
  1936. return start;
  1937. return start + (get_random_long() % range << PAGE_SHIFT);
  1938. }
  1939. /* Interface for in-kernel drivers of true hardware RNGs.
  1940. * Those devices may produce endless random bits and will be throttled
  1941. * when our pool is full.
  1942. */
  1943. void add_hwgenerator_randomness(const char *buffer, size_t count,
  1944. size_t entropy)
  1945. {
  1946. struct entropy_store *poolp = &input_pool;
  1947. if (unlikely(crng_init == 0)) {
  1948. crng_fast_load(buffer, count);
  1949. return;
  1950. }
  1951. /* Suspend writing if we're above the trickle threshold.
  1952. * We'll be woken up again once below random_write_wakeup_thresh,
  1953. * or when the calling thread is about to terminate.
  1954. */
  1955. wait_event_interruptible(random_write_wait, kthread_should_stop() ||
  1956. ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
  1957. mix_pool_bytes(poolp, buffer, count);
  1958. credit_entropy_bits(poolp, entropy);
  1959. }
  1960. EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);