numa_32.c 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106
  1. /*
  2. * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
  3. * August 2002: added remote node KVA remap - Martin J. Bligh
  4. *
  5. * Copyright (C) 2002, IBM Corp.
  6. *
  7. * All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17. * NON INFRINGEMENT. See the GNU General Public License for more
  18. * details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/bootmem.h>
  25. #include <linux/memblock.h>
  26. #include <linux/init.h>
  27. #include "numa_internal.h"
  28. #ifdef CONFIG_DISCONTIGMEM
  29. /*
  30. * 4) physnode_map - the mapping between a pfn and owning node
  31. * physnode_map keeps track of the physical memory layout of a generic
  32. * numa node on a 64Mb break (each element of the array will
  33. * represent 64Mb of memory and will be marked by the node id. so,
  34. * if the first gig is on node 0, and the second gig is on node 1
  35. * physnode_map will contain:
  36. *
  37. * physnode_map[0-15] = 0;
  38. * physnode_map[16-31] = 1;
  39. * physnode_map[32- ] = -1;
  40. */
  41. s8 physnode_map[MAX_SECTIONS] __read_mostly = { [0 ... (MAX_SECTIONS - 1)] = -1};
  42. EXPORT_SYMBOL(physnode_map);
  43. void memory_present(int nid, unsigned long start, unsigned long end)
  44. {
  45. unsigned long pfn;
  46. printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
  47. nid, start, end);
  48. printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
  49. printk(KERN_DEBUG " ");
  50. start = round_down(start, PAGES_PER_SECTION);
  51. end = round_up(end, PAGES_PER_SECTION);
  52. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
  53. physnode_map[pfn / PAGES_PER_SECTION] = nid;
  54. printk(KERN_CONT "%lx ", pfn);
  55. }
  56. printk(KERN_CONT "\n");
  57. }
  58. unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
  59. unsigned long end_pfn)
  60. {
  61. unsigned long nr_pages = end_pfn - start_pfn;
  62. if (!nr_pages)
  63. return 0;
  64. return (nr_pages + 1) * sizeof(struct page);
  65. }
  66. #endif
  67. extern unsigned long highend_pfn, highstart_pfn;
  68. void __init initmem_init(void)
  69. {
  70. x86_numa_init();
  71. #ifdef CONFIG_HIGHMEM
  72. highstart_pfn = highend_pfn = max_pfn;
  73. if (max_pfn > max_low_pfn)
  74. highstart_pfn = max_low_pfn;
  75. printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
  76. pages_to_mb(highend_pfn - highstart_pfn));
  77. high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
  78. #else
  79. high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
  80. #endif
  81. printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
  82. pages_to_mb(max_low_pfn));
  83. printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
  84. max_low_pfn, highstart_pfn);
  85. printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
  86. (ulong) pfn_to_kaddr(max_low_pfn));
  87. printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
  88. (ulong) pfn_to_kaddr(highstart_pfn));
  89. __vmalloc_start_set = true;
  90. setup_bootmem_allocator();
  91. }