tsc.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/init.h>
  5. #include <linux/export.h>
  6. #include <linux/timer.h>
  7. #include <linux/acpi_pmtmr.h>
  8. #include <linux/cpufreq.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <linux/timex.h>
  13. #include <linux/static_key.h>
  14. #include <asm/hpet.h>
  15. #include <asm/timer.h>
  16. #include <asm/vgtod.h>
  17. #include <asm/time.h>
  18. #include <asm/delay.h>
  19. #include <asm/hypervisor.h>
  20. #include <asm/nmi.h>
  21. #include <asm/x86_init.h>
  22. #include <asm/geode.h>
  23. #include <asm/apic.h>
  24. #include <asm/intel-family.h>
  25. #include <asm/i8259.h>
  26. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  27. EXPORT_SYMBOL(cpu_khz);
  28. unsigned int __read_mostly tsc_khz;
  29. EXPORT_SYMBOL(tsc_khz);
  30. /*
  31. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  32. */
  33. static int __read_mostly tsc_unstable;
  34. /* native_sched_clock() is called before tsc_init(), so
  35. we must start with the TSC soft disabled to prevent
  36. erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
  37. static int __read_mostly tsc_disabled = -1;
  38. static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  39. int tsc_clocksource_reliable;
  40. static u32 art_to_tsc_numerator;
  41. static u32 art_to_tsc_denominator;
  42. static u64 art_to_tsc_offset;
  43. struct clocksource *art_related_clocksource;
  44. /*
  45. * Use a ring-buffer like data structure, where a writer advances the head by
  46. * writing a new data entry and a reader advances the tail when it observes a
  47. * new entry.
  48. *
  49. * Writers are made to wait on readers until there's space to write a new
  50. * entry.
  51. *
  52. * This means that we can always use an {offset, mul} pair to compute a ns
  53. * value that is 'roughly' in the right direction, even if we're writing a new
  54. * {offset, mul} pair during the clock read.
  55. *
  56. * The down-side is that we can no longer guarantee strict monotonicity anymore
  57. * (assuming the TSC was that to begin with), because while we compute the
  58. * intersection point of the two clock slopes and make sure the time is
  59. * continuous at the point of switching; we can no longer guarantee a reader is
  60. * strictly before or after the switch point.
  61. *
  62. * It does mean a reader no longer needs to disable IRQs in order to avoid
  63. * CPU-Freq updates messing with his times, and similarly an NMI reader will
  64. * no longer run the risk of hitting half-written state.
  65. */
  66. struct cyc2ns {
  67. struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
  68. struct cyc2ns_data *head; /* 48 + 8 = 56 */
  69. struct cyc2ns_data *tail; /* 56 + 8 = 64 */
  70. }; /* exactly fits one cacheline */
  71. static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  72. struct cyc2ns_data *cyc2ns_read_begin(void)
  73. {
  74. struct cyc2ns_data *head;
  75. preempt_disable();
  76. head = this_cpu_read(cyc2ns.head);
  77. /*
  78. * Ensure we observe the entry when we observe the pointer to it.
  79. * matches the wmb from cyc2ns_write_end().
  80. */
  81. smp_read_barrier_depends();
  82. head->__count++;
  83. barrier();
  84. return head;
  85. }
  86. void cyc2ns_read_end(struct cyc2ns_data *head)
  87. {
  88. barrier();
  89. /*
  90. * If we're the outer most nested read; update the tail pointer
  91. * when we're done. This notifies possible pending writers
  92. * that we've observed the head pointer and that the other
  93. * entry is now free.
  94. */
  95. if (!--head->__count) {
  96. /*
  97. * x86-TSO does not reorder writes with older reads;
  98. * therefore once this write becomes visible to another
  99. * cpu, we must be finished reading the cyc2ns_data.
  100. *
  101. * matches with cyc2ns_write_begin().
  102. */
  103. this_cpu_write(cyc2ns.tail, head);
  104. }
  105. preempt_enable();
  106. }
  107. /*
  108. * Begin writing a new @data entry for @cpu.
  109. *
  110. * Assumes some sort of write side lock; currently 'provided' by the assumption
  111. * that cpufreq will call its notifiers sequentially.
  112. */
  113. static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
  114. {
  115. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  116. struct cyc2ns_data *data = c2n->data;
  117. if (data == c2n->head)
  118. data++;
  119. /* XXX send an IPI to @cpu in order to guarantee a read? */
  120. /*
  121. * When we observe the tail write from cyc2ns_read_end(),
  122. * the cpu must be done with that entry and its safe
  123. * to start writing to it.
  124. */
  125. while (c2n->tail == data)
  126. cpu_relax();
  127. return data;
  128. }
  129. static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
  130. {
  131. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  132. /*
  133. * Ensure the @data writes are visible before we publish the
  134. * entry. Matches the data-depencency in cyc2ns_read_begin().
  135. */
  136. smp_wmb();
  137. ACCESS_ONCE(c2n->head) = data;
  138. }
  139. /*
  140. * Accelerators for sched_clock()
  141. * convert from cycles(64bits) => nanoseconds (64bits)
  142. * basic equation:
  143. * ns = cycles / (freq / ns_per_sec)
  144. * ns = cycles * (ns_per_sec / freq)
  145. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  146. * ns = cycles * (10^6 / cpu_khz)
  147. *
  148. * Then we use scaling math (suggested by george@mvista.com) to get:
  149. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  150. * ns = cycles * cyc2ns_scale / SC
  151. *
  152. * And since SC is a constant power of two, we can convert the div
  153. * into a shift. The larger SC is, the more accurate the conversion, but
  154. * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
  155. * (64-bit result) can be used.
  156. *
  157. * We can use khz divisor instead of mhz to keep a better precision.
  158. * (mathieu.desnoyers@polymtl.ca)
  159. *
  160. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  161. */
  162. static void cyc2ns_data_init(struct cyc2ns_data *data)
  163. {
  164. data->cyc2ns_mul = 0;
  165. data->cyc2ns_shift = 0;
  166. data->cyc2ns_offset = 0;
  167. data->__count = 0;
  168. }
  169. static void cyc2ns_init(int cpu)
  170. {
  171. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  172. cyc2ns_data_init(&c2n->data[0]);
  173. cyc2ns_data_init(&c2n->data[1]);
  174. c2n->head = c2n->data;
  175. c2n->tail = c2n->data;
  176. }
  177. static inline unsigned long long cycles_2_ns(unsigned long long cyc)
  178. {
  179. struct cyc2ns_data *data, *tail;
  180. unsigned long long ns;
  181. /*
  182. * See cyc2ns_read_*() for details; replicated in order to avoid
  183. * an extra few instructions that came with the abstraction.
  184. * Notable, it allows us to only do the __count and tail update
  185. * dance when its actually needed.
  186. */
  187. preempt_disable_notrace();
  188. data = this_cpu_read(cyc2ns.head);
  189. tail = this_cpu_read(cyc2ns.tail);
  190. if (likely(data == tail)) {
  191. ns = data->cyc2ns_offset;
  192. ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
  193. } else {
  194. data->__count++;
  195. barrier();
  196. ns = data->cyc2ns_offset;
  197. ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
  198. barrier();
  199. if (!--data->__count)
  200. this_cpu_write(cyc2ns.tail, data);
  201. }
  202. preempt_enable_notrace();
  203. return ns;
  204. }
  205. static void set_cyc2ns_scale(unsigned long khz, int cpu)
  206. {
  207. unsigned long long tsc_now, ns_now;
  208. struct cyc2ns_data *data;
  209. unsigned long flags;
  210. local_irq_save(flags);
  211. sched_clock_idle_sleep_event();
  212. if (!khz)
  213. goto done;
  214. data = cyc2ns_write_begin(cpu);
  215. tsc_now = rdtsc();
  216. ns_now = cycles_2_ns(tsc_now);
  217. /*
  218. * Compute a new multiplier as per the above comment and ensure our
  219. * time function is continuous; see the comment near struct
  220. * cyc2ns_data.
  221. */
  222. clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
  223. NSEC_PER_MSEC, 0);
  224. /*
  225. * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
  226. * not expected to be greater than 31 due to the original published
  227. * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
  228. * value) - refer perf_event_mmap_page documentation in perf_event.h.
  229. */
  230. if (data->cyc2ns_shift == 32) {
  231. data->cyc2ns_shift = 31;
  232. data->cyc2ns_mul >>= 1;
  233. }
  234. data->cyc2ns_offset = ns_now -
  235. mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
  236. cyc2ns_write_end(cpu, data);
  237. done:
  238. sched_clock_idle_wakeup_event(0);
  239. local_irq_restore(flags);
  240. }
  241. /*
  242. * Scheduler clock - returns current time in nanosec units.
  243. */
  244. u64 native_sched_clock(void)
  245. {
  246. if (static_branch_likely(&__use_tsc)) {
  247. u64 tsc_now = rdtsc();
  248. /* return the value in ns */
  249. return cycles_2_ns(tsc_now);
  250. }
  251. /*
  252. * Fall back to jiffies if there's no TSC available:
  253. * ( But note that we still use it if the TSC is marked
  254. * unstable. We do this because unlike Time Of Day,
  255. * the scheduler clock tolerates small errors and it's
  256. * very important for it to be as fast as the platform
  257. * can achieve it. )
  258. */
  259. /* No locking but a rare wrong value is not a big deal: */
  260. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  261. }
  262. /*
  263. * Generate a sched_clock if you already have a TSC value.
  264. */
  265. u64 native_sched_clock_from_tsc(u64 tsc)
  266. {
  267. return cycles_2_ns(tsc);
  268. }
  269. /* We need to define a real function for sched_clock, to override the
  270. weak default version */
  271. #ifdef CONFIG_PARAVIRT
  272. unsigned long long sched_clock(void)
  273. {
  274. return paravirt_sched_clock();
  275. }
  276. #else
  277. unsigned long long
  278. sched_clock(void) __attribute__((alias("native_sched_clock")));
  279. #endif
  280. int check_tsc_unstable(void)
  281. {
  282. return tsc_unstable;
  283. }
  284. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  285. #ifdef CONFIG_X86_TSC
  286. int __init notsc_setup(char *str)
  287. {
  288. pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
  289. tsc_disabled = 1;
  290. return 1;
  291. }
  292. #else
  293. /*
  294. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  295. * in cpu/common.c
  296. */
  297. int __init notsc_setup(char *str)
  298. {
  299. setup_clear_cpu_cap(X86_FEATURE_TSC);
  300. return 1;
  301. }
  302. #endif
  303. __setup("notsc", notsc_setup);
  304. static int no_sched_irq_time;
  305. static int __init tsc_setup(char *str)
  306. {
  307. if (!strcmp(str, "reliable"))
  308. tsc_clocksource_reliable = 1;
  309. if (!strncmp(str, "noirqtime", 9))
  310. no_sched_irq_time = 1;
  311. if (!strcmp(str, "unstable"))
  312. mark_tsc_unstable("boot parameter");
  313. return 1;
  314. }
  315. __setup("tsc=", tsc_setup);
  316. #define MAX_RETRIES 5
  317. #define SMI_TRESHOLD 50000
  318. /*
  319. * Read TSC and the reference counters. Take care of SMI disturbance
  320. */
  321. static u64 tsc_read_refs(u64 *p, int hpet)
  322. {
  323. u64 t1, t2;
  324. int i;
  325. for (i = 0; i < MAX_RETRIES; i++) {
  326. t1 = get_cycles();
  327. if (hpet)
  328. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  329. else
  330. *p = acpi_pm_read_early();
  331. t2 = get_cycles();
  332. if ((t2 - t1) < SMI_TRESHOLD)
  333. return t2;
  334. }
  335. return ULLONG_MAX;
  336. }
  337. /*
  338. * Calculate the TSC frequency from HPET reference
  339. */
  340. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  341. {
  342. u64 tmp;
  343. if (hpet2 < hpet1)
  344. hpet2 += 0x100000000ULL;
  345. hpet2 -= hpet1;
  346. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  347. do_div(tmp, 1000000);
  348. deltatsc = div64_u64(deltatsc, tmp);
  349. return (unsigned long) deltatsc;
  350. }
  351. /*
  352. * Calculate the TSC frequency from PMTimer reference
  353. */
  354. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  355. {
  356. u64 tmp;
  357. if (!pm1 && !pm2)
  358. return ULONG_MAX;
  359. if (pm2 < pm1)
  360. pm2 += (u64)ACPI_PM_OVRRUN;
  361. pm2 -= pm1;
  362. tmp = pm2 * 1000000000LL;
  363. do_div(tmp, PMTMR_TICKS_PER_SEC);
  364. do_div(deltatsc, tmp);
  365. return (unsigned long) deltatsc;
  366. }
  367. #define CAL_MS 10
  368. #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
  369. #define CAL_PIT_LOOPS 1000
  370. #define CAL2_MS 50
  371. #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
  372. #define CAL2_PIT_LOOPS 5000
  373. /*
  374. * Try to calibrate the TSC against the Programmable
  375. * Interrupt Timer and return the frequency of the TSC
  376. * in kHz.
  377. *
  378. * Return ULONG_MAX on failure to calibrate.
  379. */
  380. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  381. {
  382. u64 tsc, t1, t2, delta;
  383. unsigned long tscmin, tscmax;
  384. int pitcnt;
  385. if (!has_legacy_pic()) {
  386. /*
  387. * Relies on tsc_early_delay_calibrate() to have given us semi
  388. * usable udelay(), wait for the same 50ms we would have with
  389. * the PIT loop below.
  390. */
  391. udelay(10 * USEC_PER_MSEC);
  392. udelay(10 * USEC_PER_MSEC);
  393. udelay(10 * USEC_PER_MSEC);
  394. udelay(10 * USEC_PER_MSEC);
  395. udelay(10 * USEC_PER_MSEC);
  396. return ULONG_MAX;
  397. }
  398. /* Set the Gate high, disable speaker */
  399. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  400. /*
  401. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  402. * count mode), binary count. Set the latch register to 50ms
  403. * (LSB then MSB) to begin countdown.
  404. */
  405. outb(0xb0, 0x43);
  406. outb(latch & 0xff, 0x42);
  407. outb(latch >> 8, 0x42);
  408. tsc = t1 = t2 = get_cycles();
  409. pitcnt = 0;
  410. tscmax = 0;
  411. tscmin = ULONG_MAX;
  412. while ((inb(0x61) & 0x20) == 0) {
  413. t2 = get_cycles();
  414. delta = t2 - tsc;
  415. tsc = t2;
  416. if ((unsigned long) delta < tscmin)
  417. tscmin = (unsigned int) delta;
  418. if ((unsigned long) delta > tscmax)
  419. tscmax = (unsigned int) delta;
  420. pitcnt++;
  421. }
  422. /*
  423. * Sanity checks:
  424. *
  425. * If we were not able to read the PIT more than loopmin
  426. * times, then we have been hit by a massive SMI
  427. *
  428. * If the maximum is 10 times larger than the minimum,
  429. * then we got hit by an SMI as well.
  430. */
  431. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  432. return ULONG_MAX;
  433. /* Calculate the PIT value */
  434. delta = t2 - t1;
  435. do_div(delta, ms);
  436. return delta;
  437. }
  438. /*
  439. * This reads the current MSB of the PIT counter, and
  440. * checks if we are running on sufficiently fast and
  441. * non-virtualized hardware.
  442. *
  443. * Our expectations are:
  444. *
  445. * - the PIT is running at roughly 1.19MHz
  446. *
  447. * - each IO is going to take about 1us on real hardware,
  448. * but we allow it to be much faster (by a factor of 10) or
  449. * _slightly_ slower (ie we allow up to a 2us read+counter
  450. * update - anything else implies a unacceptably slow CPU
  451. * or PIT for the fast calibration to work.
  452. *
  453. * - with 256 PIT ticks to read the value, we have 214us to
  454. * see the same MSB (and overhead like doing a single TSC
  455. * read per MSB value etc).
  456. *
  457. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  458. * them each to take about a microsecond on real hardware.
  459. * So we expect a count value of around 100. But we'll be
  460. * generous, and accept anything over 50.
  461. *
  462. * - if the PIT is stuck, and we see *many* more reads, we
  463. * return early (and the next caller of pit_expect_msb()
  464. * then consider it a failure when they don't see the
  465. * next expected value).
  466. *
  467. * These expectations mean that we know that we have seen the
  468. * transition from one expected value to another with a fairly
  469. * high accuracy, and we didn't miss any events. We can thus
  470. * use the TSC value at the transitions to calculate a pretty
  471. * good value for the TSC frequencty.
  472. */
  473. static inline int pit_verify_msb(unsigned char val)
  474. {
  475. /* Ignore LSB */
  476. inb(0x42);
  477. return inb(0x42) == val;
  478. }
  479. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  480. {
  481. int count;
  482. u64 tsc = 0, prev_tsc = 0;
  483. for (count = 0; count < 50000; count++) {
  484. if (!pit_verify_msb(val))
  485. break;
  486. prev_tsc = tsc;
  487. tsc = get_cycles();
  488. }
  489. *deltap = get_cycles() - prev_tsc;
  490. *tscp = tsc;
  491. /*
  492. * We require _some_ success, but the quality control
  493. * will be based on the error terms on the TSC values.
  494. */
  495. return count > 5;
  496. }
  497. /*
  498. * How many MSB values do we want to see? We aim for
  499. * a maximum error rate of 500ppm (in practice the
  500. * real error is much smaller), but refuse to spend
  501. * more than 50ms on it.
  502. */
  503. #define MAX_QUICK_PIT_MS 50
  504. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  505. static unsigned long quick_pit_calibrate(void)
  506. {
  507. int i;
  508. u64 tsc, delta;
  509. unsigned long d1, d2;
  510. if (!has_legacy_pic())
  511. return 0;
  512. /* Set the Gate high, disable speaker */
  513. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  514. /*
  515. * Counter 2, mode 0 (one-shot), binary count
  516. *
  517. * NOTE! Mode 2 decrements by two (and then the
  518. * output is flipped each time, giving the same
  519. * final output frequency as a decrement-by-one),
  520. * so mode 0 is much better when looking at the
  521. * individual counts.
  522. */
  523. outb(0xb0, 0x43);
  524. /* Start at 0xffff */
  525. outb(0xff, 0x42);
  526. outb(0xff, 0x42);
  527. /*
  528. * The PIT starts counting at the next edge, so we
  529. * need to delay for a microsecond. The easiest way
  530. * to do that is to just read back the 16-bit counter
  531. * once from the PIT.
  532. */
  533. pit_verify_msb(0);
  534. if (pit_expect_msb(0xff, &tsc, &d1)) {
  535. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  536. if (!pit_expect_msb(0xff-i, &delta, &d2))
  537. break;
  538. delta -= tsc;
  539. /*
  540. * Extrapolate the error and fail fast if the error will
  541. * never be below 500 ppm.
  542. */
  543. if (i == 1 &&
  544. d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
  545. return 0;
  546. /*
  547. * Iterate until the error is less than 500 ppm
  548. */
  549. if (d1+d2 >= delta >> 11)
  550. continue;
  551. /*
  552. * Check the PIT one more time to verify that
  553. * all TSC reads were stable wrt the PIT.
  554. *
  555. * This also guarantees serialization of the
  556. * last cycle read ('d2') in pit_expect_msb.
  557. */
  558. if (!pit_verify_msb(0xfe - i))
  559. break;
  560. goto success;
  561. }
  562. }
  563. pr_info("Fast TSC calibration failed\n");
  564. return 0;
  565. success:
  566. /*
  567. * Ok, if we get here, then we've seen the
  568. * MSB of the PIT decrement 'i' times, and the
  569. * error has shrunk to less than 500 ppm.
  570. *
  571. * As a result, we can depend on there not being
  572. * any odd delays anywhere, and the TSC reads are
  573. * reliable (within the error).
  574. *
  575. * kHz = ticks / time-in-seconds / 1000;
  576. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  577. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  578. */
  579. delta *= PIT_TICK_RATE;
  580. do_div(delta, i*256*1000);
  581. pr_info("Fast TSC calibration using PIT\n");
  582. return delta;
  583. }
  584. /**
  585. * native_calibrate_tsc
  586. * Determine TSC frequency via CPUID, else return 0.
  587. */
  588. unsigned long native_calibrate_tsc(void)
  589. {
  590. unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
  591. unsigned int crystal_khz;
  592. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  593. return 0;
  594. if (boot_cpu_data.cpuid_level < 0x15)
  595. return 0;
  596. eax_denominator = ebx_numerator = ecx_hz = edx = 0;
  597. /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
  598. cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
  599. if (ebx_numerator == 0 || eax_denominator == 0)
  600. return 0;
  601. crystal_khz = ecx_hz / 1000;
  602. if (crystal_khz == 0) {
  603. switch (boot_cpu_data.x86_model) {
  604. case INTEL_FAM6_SKYLAKE_MOBILE:
  605. case INTEL_FAM6_SKYLAKE_DESKTOP:
  606. case INTEL_FAM6_KABYLAKE_MOBILE:
  607. case INTEL_FAM6_KABYLAKE_DESKTOP:
  608. crystal_khz = 24000; /* 24.0 MHz */
  609. break;
  610. case INTEL_FAM6_ATOM_DENVERTON:
  611. crystal_khz = 25000; /* 25.0 MHz */
  612. break;
  613. case INTEL_FAM6_ATOM_GOLDMONT:
  614. crystal_khz = 19200; /* 19.2 MHz */
  615. break;
  616. }
  617. }
  618. return crystal_khz * ebx_numerator / eax_denominator;
  619. }
  620. static unsigned long cpu_khz_from_cpuid(void)
  621. {
  622. unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
  623. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  624. return 0;
  625. if (boot_cpu_data.cpuid_level < 0x16)
  626. return 0;
  627. eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
  628. cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
  629. return eax_base_mhz * 1000;
  630. }
  631. /**
  632. * native_calibrate_cpu - calibrate the cpu on boot
  633. */
  634. unsigned long native_calibrate_cpu(void)
  635. {
  636. u64 tsc1, tsc2, delta, ref1, ref2;
  637. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  638. unsigned long flags, latch, ms, fast_calibrate;
  639. int hpet = is_hpet_enabled(), i, loopmin;
  640. fast_calibrate = cpu_khz_from_cpuid();
  641. if (fast_calibrate)
  642. return fast_calibrate;
  643. fast_calibrate = cpu_khz_from_msr();
  644. if (fast_calibrate)
  645. return fast_calibrate;
  646. local_irq_save(flags);
  647. fast_calibrate = quick_pit_calibrate();
  648. local_irq_restore(flags);
  649. if (fast_calibrate)
  650. return fast_calibrate;
  651. /*
  652. * Run 5 calibration loops to get the lowest frequency value
  653. * (the best estimate). We use two different calibration modes
  654. * here:
  655. *
  656. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  657. * load a timeout of 50ms. We read the time right after we
  658. * started the timer and wait until the PIT count down reaches
  659. * zero. In each wait loop iteration we read the TSC and check
  660. * the delta to the previous read. We keep track of the min
  661. * and max values of that delta. The delta is mostly defined
  662. * by the IO time of the PIT access, so we can detect when a
  663. * SMI/SMM disturbance happened between the two reads. If the
  664. * maximum time is significantly larger than the minimum time,
  665. * then we discard the result and have another try.
  666. *
  667. * 2) Reference counter. If available we use the HPET or the
  668. * PMTIMER as a reference to check the sanity of that value.
  669. * We use separate TSC readouts and check inside of the
  670. * reference read for a SMI/SMM disturbance. We dicard
  671. * disturbed values here as well. We do that around the PIT
  672. * calibration delay loop as we have to wait for a certain
  673. * amount of time anyway.
  674. */
  675. /* Preset PIT loop values */
  676. latch = CAL_LATCH;
  677. ms = CAL_MS;
  678. loopmin = CAL_PIT_LOOPS;
  679. for (i = 0; i < 3; i++) {
  680. unsigned long tsc_pit_khz;
  681. /*
  682. * Read the start value and the reference count of
  683. * hpet/pmtimer when available. Then do the PIT
  684. * calibration, which will take at least 50ms, and
  685. * read the end value.
  686. */
  687. local_irq_save(flags);
  688. tsc1 = tsc_read_refs(&ref1, hpet);
  689. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  690. tsc2 = tsc_read_refs(&ref2, hpet);
  691. local_irq_restore(flags);
  692. /* Pick the lowest PIT TSC calibration so far */
  693. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  694. /* hpet or pmtimer available ? */
  695. if (ref1 == ref2)
  696. continue;
  697. /* Check, whether the sampling was disturbed by an SMI */
  698. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  699. continue;
  700. tsc2 = (tsc2 - tsc1) * 1000000LL;
  701. if (hpet)
  702. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  703. else
  704. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  705. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  706. /* Check the reference deviation */
  707. delta = ((u64) tsc_pit_min) * 100;
  708. do_div(delta, tsc_ref_min);
  709. /*
  710. * If both calibration results are inside a 10% window
  711. * then we can be sure, that the calibration
  712. * succeeded. We break out of the loop right away. We
  713. * use the reference value, as it is more precise.
  714. */
  715. if (delta >= 90 && delta <= 110) {
  716. pr_info("PIT calibration matches %s. %d loops\n",
  717. hpet ? "HPET" : "PMTIMER", i + 1);
  718. return tsc_ref_min;
  719. }
  720. /*
  721. * Check whether PIT failed more than once. This
  722. * happens in virtualized environments. We need to
  723. * give the virtual PC a slightly longer timeframe for
  724. * the HPET/PMTIMER to make the result precise.
  725. */
  726. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  727. latch = CAL2_LATCH;
  728. ms = CAL2_MS;
  729. loopmin = CAL2_PIT_LOOPS;
  730. }
  731. }
  732. /*
  733. * Now check the results.
  734. */
  735. if (tsc_pit_min == ULONG_MAX) {
  736. /* PIT gave no useful value */
  737. pr_warn("Unable to calibrate against PIT\n");
  738. /* We don't have an alternative source, disable TSC */
  739. if (!hpet && !ref1 && !ref2) {
  740. pr_notice("No reference (HPET/PMTIMER) available\n");
  741. return 0;
  742. }
  743. /* The alternative source failed as well, disable TSC */
  744. if (tsc_ref_min == ULONG_MAX) {
  745. pr_warn("HPET/PMTIMER calibration failed\n");
  746. return 0;
  747. }
  748. /* Use the alternative source */
  749. pr_info("using %s reference calibration\n",
  750. hpet ? "HPET" : "PMTIMER");
  751. return tsc_ref_min;
  752. }
  753. /* We don't have an alternative source, use the PIT calibration value */
  754. if (!hpet && !ref1 && !ref2) {
  755. pr_info("Using PIT calibration value\n");
  756. return tsc_pit_min;
  757. }
  758. /* The alternative source failed, use the PIT calibration value */
  759. if (tsc_ref_min == ULONG_MAX) {
  760. pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
  761. return tsc_pit_min;
  762. }
  763. /*
  764. * The calibration values differ too much. In doubt, we use
  765. * the PIT value as we know that there are PMTIMERs around
  766. * running at double speed. At least we let the user know:
  767. */
  768. pr_warn("PIT calibration deviates from %s: %lu %lu\n",
  769. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  770. pr_info("Using PIT calibration value\n");
  771. return tsc_pit_min;
  772. }
  773. int recalibrate_cpu_khz(void)
  774. {
  775. #ifndef CONFIG_SMP
  776. unsigned long cpu_khz_old = cpu_khz;
  777. if (!boot_cpu_has(X86_FEATURE_TSC))
  778. return -ENODEV;
  779. cpu_khz = x86_platform.calibrate_cpu();
  780. tsc_khz = x86_platform.calibrate_tsc();
  781. if (tsc_khz == 0)
  782. tsc_khz = cpu_khz;
  783. else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
  784. cpu_khz = tsc_khz;
  785. cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
  786. cpu_khz_old, cpu_khz);
  787. return 0;
  788. #else
  789. return -ENODEV;
  790. #endif
  791. }
  792. EXPORT_SYMBOL(recalibrate_cpu_khz);
  793. static unsigned long long cyc2ns_suspend;
  794. void tsc_save_sched_clock_state(void)
  795. {
  796. if (!sched_clock_stable())
  797. return;
  798. cyc2ns_suspend = sched_clock();
  799. }
  800. /*
  801. * Even on processors with invariant TSC, TSC gets reset in some the
  802. * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
  803. * arbitrary value (still sync'd across cpu's) during resume from such sleep
  804. * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
  805. * that sched_clock() continues from the point where it was left off during
  806. * suspend.
  807. */
  808. void tsc_restore_sched_clock_state(void)
  809. {
  810. unsigned long long offset;
  811. unsigned long flags;
  812. int cpu;
  813. if (!sched_clock_stable())
  814. return;
  815. local_irq_save(flags);
  816. /*
  817. * We're coming out of suspend, there's no concurrency yet; don't
  818. * bother being nice about the RCU stuff, just write to both
  819. * data fields.
  820. */
  821. this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
  822. this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
  823. offset = cyc2ns_suspend - sched_clock();
  824. for_each_possible_cpu(cpu) {
  825. per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
  826. per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
  827. }
  828. local_irq_restore(flags);
  829. }
  830. #ifdef CONFIG_CPU_FREQ
  831. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  832. * changes.
  833. *
  834. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  835. * not that important because current Opteron setups do not support
  836. * scaling on SMP anyroads.
  837. *
  838. * Should fix up last_tsc too. Currently gettimeofday in the
  839. * first tick after the change will be slightly wrong.
  840. */
  841. static unsigned int ref_freq;
  842. static unsigned long loops_per_jiffy_ref;
  843. static unsigned long tsc_khz_ref;
  844. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  845. void *data)
  846. {
  847. struct cpufreq_freqs *freq = data;
  848. unsigned long *lpj;
  849. lpj = &boot_cpu_data.loops_per_jiffy;
  850. #ifdef CONFIG_SMP
  851. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  852. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  853. #endif
  854. if (!ref_freq) {
  855. ref_freq = freq->old;
  856. loops_per_jiffy_ref = *lpj;
  857. tsc_khz_ref = tsc_khz;
  858. }
  859. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  860. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
  861. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  862. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  863. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  864. mark_tsc_unstable("cpufreq changes");
  865. set_cyc2ns_scale(tsc_khz, freq->cpu);
  866. }
  867. return 0;
  868. }
  869. static struct notifier_block time_cpufreq_notifier_block = {
  870. .notifier_call = time_cpufreq_notifier
  871. };
  872. static int __init cpufreq_register_tsc_scaling(void)
  873. {
  874. if (!boot_cpu_has(X86_FEATURE_TSC))
  875. return 0;
  876. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  877. return 0;
  878. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  879. CPUFREQ_TRANSITION_NOTIFIER);
  880. return 0;
  881. }
  882. core_initcall(cpufreq_register_tsc_scaling);
  883. #endif /* CONFIG_CPU_FREQ */
  884. #define ART_CPUID_LEAF (0x15)
  885. #define ART_MIN_DENOMINATOR (1)
  886. /*
  887. * If ART is present detect the numerator:denominator to convert to TSC
  888. */
  889. static void detect_art(void)
  890. {
  891. unsigned int unused[2];
  892. if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
  893. return;
  894. cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
  895. &art_to_tsc_numerator, unused, unused+1);
  896. /* Don't enable ART in a VM, non-stop TSC required */
  897. if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
  898. !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
  899. art_to_tsc_denominator < ART_MIN_DENOMINATOR)
  900. return;
  901. if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
  902. return;
  903. /* Make this sticky over multiple CPU init calls */
  904. setup_force_cpu_cap(X86_FEATURE_ART);
  905. }
  906. /* clocksource code */
  907. static struct clocksource clocksource_tsc;
  908. /*
  909. * We used to compare the TSC to the cycle_last value in the clocksource
  910. * structure to avoid a nasty time-warp. This can be observed in a
  911. * very small window right after one CPU updated cycle_last under
  912. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  913. * is smaller than the cycle_last reference value due to a TSC which
  914. * is slighty behind. This delta is nowhere else observable, but in
  915. * that case it results in a forward time jump in the range of hours
  916. * due to the unsigned delta calculation of the time keeping core
  917. * code, which is necessary to support wrapping clocksources like pm
  918. * timer.
  919. *
  920. * This sanity check is now done in the core timekeeping code.
  921. * checking the result of read_tsc() - cycle_last for being negative.
  922. * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
  923. */
  924. static cycle_t read_tsc(struct clocksource *cs)
  925. {
  926. return (cycle_t)rdtsc_ordered();
  927. }
  928. /*
  929. * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
  930. */
  931. static struct clocksource clocksource_tsc = {
  932. .name = "tsc",
  933. .rating = 300,
  934. .read = read_tsc,
  935. .mask = CLOCKSOURCE_MASK(64),
  936. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  937. CLOCK_SOURCE_MUST_VERIFY,
  938. .archdata = { .vclock_mode = VCLOCK_TSC },
  939. };
  940. void mark_tsc_unstable(char *reason)
  941. {
  942. if (!tsc_unstable) {
  943. tsc_unstable = 1;
  944. clear_sched_clock_stable();
  945. disable_sched_clock_irqtime();
  946. pr_info("Marking TSC unstable due to %s\n", reason);
  947. /* Change only the rating, when not registered */
  948. if (clocksource_tsc.mult)
  949. clocksource_mark_unstable(&clocksource_tsc);
  950. else {
  951. clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
  952. clocksource_tsc.rating = 0;
  953. }
  954. }
  955. }
  956. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  957. static void __init check_system_tsc_reliable(void)
  958. {
  959. #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
  960. if (is_geode_lx()) {
  961. /* RTSC counts during suspend */
  962. #define RTSC_SUSP 0x100
  963. unsigned long res_low, res_high;
  964. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  965. /* Geode_LX - the OLPC CPU has a very reliable TSC */
  966. if (res_low & RTSC_SUSP)
  967. tsc_clocksource_reliable = 1;
  968. }
  969. #endif
  970. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  971. tsc_clocksource_reliable = 1;
  972. }
  973. /*
  974. * Make an educated guess if the TSC is trustworthy and synchronized
  975. * over all CPUs.
  976. */
  977. int unsynchronized_tsc(void)
  978. {
  979. if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
  980. return 1;
  981. #ifdef CONFIG_SMP
  982. if (apic_is_clustered_box())
  983. return 1;
  984. #endif
  985. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  986. return 0;
  987. if (tsc_clocksource_reliable)
  988. return 0;
  989. /*
  990. * Intel systems are normally all synchronized.
  991. * Exceptions must mark TSC as unstable:
  992. */
  993. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  994. /* assume multi socket systems are not synchronized: */
  995. if (num_possible_cpus() > 1)
  996. return 1;
  997. }
  998. return 0;
  999. }
  1000. /*
  1001. * Convert ART to TSC given numerator/denominator found in detect_art()
  1002. */
  1003. struct system_counterval_t convert_art_to_tsc(cycle_t art)
  1004. {
  1005. u64 tmp, res, rem;
  1006. rem = do_div(art, art_to_tsc_denominator);
  1007. res = art * art_to_tsc_numerator;
  1008. tmp = rem * art_to_tsc_numerator;
  1009. do_div(tmp, art_to_tsc_denominator);
  1010. res += tmp + art_to_tsc_offset;
  1011. return (struct system_counterval_t) {.cs = art_related_clocksource,
  1012. .cycles = res};
  1013. }
  1014. EXPORT_SYMBOL(convert_art_to_tsc);
  1015. static void tsc_refine_calibration_work(struct work_struct *work);
  1016. static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
  1017. /**
  1018. * tsc_refine_calibration_work - Further refine tsc freq calibration
  1019. * @work - ignored.
  1020. *
  1021. * This functions uses delayed work over a period of a
  1022. * second to further refine the TSC freq value. Since this is
  1023. * timer based, instead of loop based, we don't block the boot
  1024. * process while this longer calibration is done.
  1025. *
  1026. * If there are any calibration anomalies (too many SMIs, etc),
  1027. * or the refined calibration is off by 1% of the fast early
  1028. * calibration, we throw out the new calibration and use the
  1029. * early calibration.
  1030. */
  1031. static void tsc_refine_calibration_work(struct work_struct *work)
  1032. {
  1033. static u64 tsc_start = -1, ref_start;
  1034. static int hpet;
  1035. u64 tsc_stop, ref_stop, delta;
  1036. unsigned long freq;
  1037. /* Don't bother refining TSC on unstable systems */
  1038. if (check_tsc_unstable())
  1039. goto out;
  1040. /*
  1041. * Since the work is started early in boot, we may be
  1042. * delayed the first time we expire. So set the workqueue
  1043. * again once we know timers are working.
  1044. */
  1045. if (tsc_start == -1) {
  1046. /*
  1047. * Only set hpet once, to avoid mixing hardware
  1048. * if the hpet becomes enabled later.
  1049. */
  1050. hpet = is_hpet_enabled();
  1051. schedule_delayed_work(&tsc_irqwork, HZ);
  1052. tsc_start = tsc_read_refs(&ref_start, hpet);
  1053. return;
  1054. }
  1055. tsc_stop = tsc_read_refs(&ref_stop, hpet);
  1056. /* hpet or pmtimer available ? */
  1057. if (ref_start == ref_stop)
  1058. goto out;
  1059. /* Check, whether the sampling was disturbed by an SMI */
  1060. if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
  1061. goto out;
  1062. delta = tsc_stop - tsc_start;
  1063. delta *= 1000000LL;
  1064. if (hpet)
  1065. freq = calc_hpet_ref(delta, ref_start, ref_stop);
  1066. else
  1067. freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
  1068. /* Make sure we're within 1% */
  1069. if (abs(tsc_khz - freq) > tsc_khz/100)
  1070. goto out;
  1071. tsc_khz = freq;
  1072. pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
  1073. (unsigned long)tsc_khz / 1000,
  1074. (unsigned long)tsc_khz % 1000);
  1075. /* Inform the TSC deadline clockevent devices about the recalibration */
  1076. lapic_update_tsc_freq();
  1077. out:
  1078. if (boot_cpu_has(X86_FEATURE_ART))
  1079. art_related_clocksource = &clocksource_tsc;
  1080. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  1081. }
  1082. static int __init init_tsc_clocksource(void)
  1083. {
  1084. if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
  1085. return 0;
  1086. if (tsc_clocksource_reliable)
  1087. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  1088. /* lower the rating if we already know its unstable: */
  1089. if (check_tsc_unstable()) {
  1090. clocksource_tsc.rating = 0;
  1091. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  1092. }
  1093. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
  1094. clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
  1095. /*
  1096. * Trust the results of the earlier calibration on systems
  1097. * exporting a reliable TSC.
  1098. */
  1099. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
  1100. if (boot_cpu_has(X86_FEATURE_ART))
  1101. art_related_clocksource = &clocksource_tsc;
  1102. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  1103. return 0;
  1104. }
  1105. schedule_delayed_work(&tsc_irqwork, 0);
  1106. return 0;
  1107. }
  1108. /*
  1109. * We use device_initcall here, to ensure we run after the hpet
  1110. * is fully initialized, which may occur at fs_initcall time.
  1111. */
  1112. device_initcall(init_tsc_clocksource);
  1113. void __init tsc_init(void)
  1114. {
  1115. u64 lpj;
  1116. int cpu;
  1117. if (!boot_cpu_has(X86_FEATURE_TSC)) {
  1118. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1119. return;
  1120. }
  1121. cpu_khz = x86_platform.calibrate_cpu();
  1122. tsc_khz = x86_platform.calibrate_tsc();
  1123. /*
  1124. * Trust non-zero tsc_khz as authorative,
  1125. * and use it to sanity check cpu_khz,
  1126. * which will be off if system timer is off.
  1127. */
  1128. if (tsc_khz == 0)
  1129. tsc_khz = cpu_khz;
  1130. else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
  1131. cpu_khz = tsc_khz;
  1132. if (!tsc_khz) {
  1133. mark_tsc_unstable("could not calculate TSC khz");
  1134. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1135. return;
  1136. }
  1137. pr_info("Detected %lu.%03lu MHz processor\n",
  1138. (unsigned long)cpu_khz / 1000,
  1139. (unsigned long)cpu_khz % 1000);
  1140. /*
  1141. * Secondary CPUs do not run through tsc_init(), so set up
  1142. * all the scale factors for all CPUs, assuming the same
  1143. * speed as the bootup CPU. (cpufreq notifiers will fix this
  1144. * up if their speed diverges)
  1145. */
  1146. for_each_possible_cpu(cpu) {
  1147. cyc2ns_init(cpu);
  1148. set_cyc2ns_scale(tsc_khz, cpu);
  1149. }
  1150. if (tsc_disabled > 0)
  1151. return;
  1152. /* now allow native_sched_clock() to use rdtsc */
  1153. tsc_disabled = 0;
  1154. static_branch_enable(&__use_tsc);
  1155. if (!no_sched_irq_time)
  1156. enable_sched_clock_irqtime();
  1157. lpj = ((u64)tsc_khz * 1000);
  1158. do_div(lpj, HZ);
  1159. lpj_fine = lpj;
  1160. use_tsc_delay();
  1161. if (unsynchronized_tsc())
  1162. mark_tsc_unstable("TSCs unsynchronized");
  1163. check_system_tsc_reliable();
  1164. detect_art();
  1165. }
  1166. #ifdef CONFIG_SMP
  1167. /*
  1168. * If we have a constant TSC and are using the TSC for the delay loop,
  1169. * we can skip clock calibration if another cpu in the same socket has already
  1170. * been calibrated. This assumes that CONSTANT_TSC applies to all
  1171. * cpus in the socket - this should be a safe assumption.
  1172. */
  1173. unsigned long calibrate_delay_is_known(void)
  1174. {
  1175. int sibling, cpu = smp_processor_id();
  1176. int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
  1177. const struct cpumask *mask = topology_core_cpumask(cpu);
  1178. if (tsc_disabled || !constant_tsc || !mask)
  1179. return 0;
  1180. sibling = cpumask_any_but(mask, cpu);
  1181. if (sibling < nr_cpu_ids)
  1182. return cpu_data(sibling).loops_per_jiffy;
  1183. return 0;
  1184. }
  1185. #endif