espfix_64.c 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220
  1. /* ----------------------------------------------------------------------- *
  2. *
  3. * Copyright 2014 Intel Corporation; author: H. Peter Anvin
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * ----------------------------------------------------------------------- */
  15. /*
  16. * The IRET instruction, when returning to a 16-bit segment, only
  17. * restores the bottom 16 bits of the user space stack pointer. This
  18. * causes some 16-bit software to break, but it also leaks kernel state
  19. * to user space.
  20. *
  21. * This works around this by creating percpu "ministacks", each of which
  22. * is mapped 2^16 times 64K apart. When we detect that the return SS is
  23. * on the LDT, we copy the IRET frame to the ministack and use the
  24. * relevant alias to return to userspace. The ministacks are mapped
  25. * readonly, so if the IRET fault we promote #GP to #DF which is an IST
  26. * vector and thus has its own stack; we then do the fixup in the #DF
  27. * handler.
  28. *
  29. * This file sets up the ministacks and the related page tables. The
  30. * actual ministack invocation is in entry_64.S.
  31. */
  32. #include <linux/init.h>
  33. #include <linux/init_task.h>
  34. #include <linux/kernel.h>
  35. #include <linux/percpu.h>
  36. #include <linux/gfp.h>
  37. #include <linux/random.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/pgalloc.h>
  40. #include <asm/setup.h>
  41. #include <asm/espfix.h>
  42. #include <asm/kaiser.h>
  43. /*
  44. * Note: we only need 6*8 = 48 bytes for the espfix stack, but round
  45. * it up to a cache line to avoid unnecessary sharing.
  46. */
  47. #define ESPFIX_STACK_SIZE (8*8UL)
  48. #define ESPFIX_STACKS_PER_PAGE (PAGE_SIZE/ESPFIX_STACK_SIZE)
  49. /* There is address space for how many espfix pages? */
  50. #define ESPFIX_PAGE_SPACE (1UL << (PGDIR_SHIFT-PAGE_SHIFT-16))
  51. #define ESPFIX_MAX_CPUS (ESPFIX_STACKS_PER_PAGE * ESPFIX_PAGE_SPACE)
  52. #if CONFIG_NR_CPUS > ESPFIX_MAX_CPUS
  53. # error "Need more than one PGD for the ESPFIX hack"
  54. #endif
  55. #define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO)
  56. /* This contains the *bottom* address of the espfix stack */
  57. DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_stack);
  58. DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_waddr);
  59. /* Initialization mutex - should this be a spinlock? */
  60. static DEFINE_MUTEX(espfix_init_mutex);
  61. /* Page allocation bitmap - each page serves ESPFIX_STACKS_PER_PAGE CPUs */
  62. #define ESPFIX_MAX_PAGES DIV_ROUND_UP(CONFIG_NR_CPUS, ESPFIX_STACKS_PER_PAGE)
  63. static void *espfix_pages[ESPFIX_MAX_PAGES];
  64. static __page_aligned_bss pud_t espfix_pud_page[PTRS_PER_PUD]
  65. __aligned(PAGE_SIZE);
  66. static unsigned int page_random, slot_random;
  67. /*
  68. * This returns the bottom address of the espfix stack for a specific CPU.
  69. * The math allows for a non-power-of-two ESPFIX_STACK_SIZE, in which case
  70. * we have to account for some amount of padding at the end of each page.
  71. */
  72. static inline unsigned long espfix_base_addr(unsigned int cpu)
  73. {
  74. unsigned long page, slot;
  75. unsigned long addr;
  76. page = (cpu / ESPFIX_STACKS_PER_PAGE) ^ page_random;
  77. slot = (cpu + slot_random) % ESPFIX_STACKS_PER_PAGE;
  78. addr = (page << PAGE_SHIFT) + (slot * ESPFIX_STACK_SIZE);
  79. addr = (addr & 0xffffUL) | ((addr & ~0xffffUL) << 16);
  80. addr += ESPFIX_BASE_ADDR;
  81. return addr;
  82. }
  83. #define PTE_STRIDE (65536/PAGE_SIZE)
  84. #define ESPFIX_PTE_CLONES (PTRS_PER_PTE/PTE_STRIDE)
  85. #define ESPFIX_PMD_CLONES PTRS_PER_PMD
  86. #define ESPFIX_PUD_CLONES (65536/(ESPFIX_PTE_CLONES*ESPFIX_PMD_CLONES))
  87. #define PGTABLE_PROT ((_KERNPG_TABLE & ~_PAGE_RW) | _PAGE_NX)
  88. static void init_espfix_random(void)
  89. {
  90. unsigned long rand;
  91. /*
  92. * This is run before the entropy pools are initialized,
  93. * but this is hopefully better than nothing.
  94. */
  95. if (!arch_get_random_long(&rand)) {
  96. /* The constant is an arbitrary large prime */
  97. rand = rdtsc();
  98. rand *= 0xc345c6b72fd16123UL;
  99. }
  100. slot_random = rand % ESPFIX_STACKS_PER_PAGE;
  101. page_random = (rand / ESPFIX_STACKS_PER_PAGE)
  102. & (ESPFIX_PAGE_SPACE - 1);
  103. }
  104. void __init init_espfix_bsp(void)
  105. {
  106. pgd_t *pgd_p;
  107. /* Install the espfix pud into the kernel page directory */
  108. pgd_p = &init_level4_pgt[pgd_index(ESPFIX_BASE_ADDR)];
  109. pgd_populate(&init_mm, pgd_p, (pud_t *)espfix_pud_page);
  110. /*
  111. * Just copy the top-level PGD that is mapping the espfix
  112. * area to ensure it is mapped into the shadow user page
  113. * tables.
  114. */
  115. if (kaiser_enabled) {
  116. set_pgd(native_get_shadow_pgd(pgd_p),
  117. __pgd(_KERNPG_TABLE | __pa((pud_t *)espfix_pud_page)));
  118. }
  119. /* Randomize the locations */
  120. init_espfix_random();
  121. /* The rest is the same as for any other processor */
  122. init_espfix_ap(0);
  123. }
  124. void init_espfix_ap(int cpu)
  125. {
  126. unsigned int page;
  127. unsigned long addr;
  128. pud_t pud, *pud_p;
  129. pmd_t pmd, *pmd_p;
  130. pte_t pte, *pte_p;
  131. int n, node;
  132. void *stack_page;
  133. pteval_t ptemask;
  134. /* We only have to do this once... */
  135. if (likely(per_cpu(espfix_stack, cpu)))
  136. return; /* Already initialized */
  137. addr = espfix_base_addr(cpu);
  138. page = cpu/ESPFIX_STACKS_PER_PAGE;
  139. /* Did another CPU already set this up? */
  140. stack_page = ACCESS_ONCE(espfix_pages[page]);
  141. if (likely(stack_page))
  142. goto done;
  143. mutex_lock(&espfix_init_mutex);
  144. /* Did we race on the lock? */
  145. stack_page = ACCESS_ONCE(espfix_pages[page]);
  146. if (stack_page)
  147. goto unlock_done;
  148. node = cpu_to_node(cpu);
  149. ptemask = __supported_pte_mask;
  150. pud_p = &espfix_pud_page[pud_index(addr)];
  151. pud = *pud_p;
  152. if (!pud_present(pud)) {
  153. struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0);
  154. pmd_p = (pmd_t *)page_address(page);
  155. pud = __pud(__pa(pmd_p) | (PGTABLE_PROT & ptemask));
  156. paravirt_alloc_pmd(&init_mm, __pa(pmd_p) >> PAGE_SHIFT);
  157. for (n = 0; n < ESPFIX_PUD_CLONES; n++)
  158. set_pud(&pud_p[n], pud);
  159. }
  160. pmd_p = pmd_offset(&pud, addr);
  161. pmd = *pmd_p;
  162. if (!pmd_present(pmd)) {
  163. struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0);
  164. pte_p = (pte_t *)page_address(page);
  165. pmd = __pmd(__pa(pte_p) | (PGTABLE_PROT & ptemask));
  166. paravirt_alloc_pte(&init_mm, __pa(pte_p) >> PAGE_SHIFT);
  167. for (n = 0; n < ESPFIX_PMD_CLONES; n++)
  168. set_pmd(&pmd_p[n], pmd);
  169. }
  170. pte_p = pte_offset_kernel(&pmd, addr);
  171. stack_page = page_address(alloc_pages_node(node, GFP_KERNEL, 0));
  172. pte = __pte(__pa(stack_page) | (__PAGE_KERNEL_RO & ptemask));
  173. for (n = 0; n < ESPFIX_PTE_CLONES; n++)
  174. set_pte(&pte_p[n*PTE_STRIDE], pte);
  175. /* Job is done for this CPU and any CPU which shares this page */
  176. ACCESS_ONCE(espfix_pages[page]) = stack_page;
  177. unlock_done:
  178. mutex_unlock(&espfix_init_mutex);
  179. done:
  180. per_cpu(espfix_stack, cpu) = addr;
  181. per_cpu(espfix_waddr, cpu) = (unsigned long)stack_page
  182. + (addr & ~PAGE_MASK);
  183. }