sha1_mb.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029
  1. /*
  2. * Multi buffer SHA1 algorithm Glue Code
  3. *
  4. * This file is provided under a dual BSD/GPLv2 license. When using or
  5. * redistributing this file, you may do so under either license.
  6. *
  7. * GPL LICENSE SUMMARY
  8. *
  9. * Copyright(c) 2014 Intel Corporation.
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of version 2 of the GNU General Public License as
  13. * published by the Free Software Foundation.
  14. *
  15. * This program is distributed in the hope that it will be useful, but
  16. * WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * Contact Information:
  21. * Tim Chen <tim.c.chen@linux.intel.com>
  22. *
  23. * BSD LICENSE
  24. *
  25. * Copyright(c) 2014 Intel Corporation.
  26. *
  27. * Redistribution and use in source and binary forms, with or without
  28. * modification, are permitted provided that the following conditions
  29. * are met:
  30. *
  31. * * Redistributions of source code must retain the above copyright
  32. * notice, this list of conditions and the following disclaimer.
  33. * * Redistributions in binary form must reproduce the above copyright
  34. * notice, this list of conditions and the following disclaimer in
  35. * the documentation and/or other materials provided with the
  36. * distribution.
  37. * * Neither the name of Intel Corporation nor the names of its
  38. * contributors may be used to endorse or promote products derived
  39. * from this software without specific prior written permission.
  40. *
  41. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  42. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  43. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  44. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  45. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  46. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  47. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  48. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  49. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  50. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  51. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  52. */
  53. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  54. #include <crypto/internal/hash.h>
  55. #include <linux/init.h>
  56. #include <linux/module.h>
  57. #include <linux/mm.h>
  58. #include <linux/cryptohash.h>
  59. #include <linux/types.h>
  60. #include <linux/list.h>
  61. #include <crypto/scatterwalk.h>
  62. #include <crypto/sha.h>
  63. #include <crypto/mcryptd.h>
  64. #include <crypto/crypto_wq.h>
  65. #include <asm/byteorder.h>
  66. #include <linux/hardirq.h>
  67. #include <asm/fpu/api.h>
  68. #include "sha1_mb_ctx.h"
  69. #define FLUSH_INTERVAL 1000 /* in usec */
  70. static struct mcryptd_alg_state sha1_mb_alg_state;
  71. struct sha1_mb_ctx {
  72. struct mcryptd_ahash *mcryptd_tfm;
  73. };
  74. static inline struct mcryptd_hash_request_ctx
  75. *cast_hash_to_mcryptd_ctx(struct sha1_hash_ctx *hash_ctx)
  76. {
  77. struct ahash_request *areq;
  78. areq = container_of((void *) hash_ctx, struct ahash_request, __ctx);
  79. return container_of(areq, struct mcryptd_hash_request_ctx, areq);
  80. }
  81. static inline struct ahash_request
  82. *cast_mcryptd_ctx_to_req(struct mcryptd_hash_request_ctx *ctx)
  83. {
  84. return container_of((void *) ctx, struct ahash_request, __ctx);
  85. }
  86. static void req_ctx_init(struct mcryptd_hash_request_ctx *rctx,
  87. struct ahash_request *areq)
  88. {
  89. rctx->flag = HASH_UPDATE;
  90. }
  91. static asmlinkage void (*sha1_job_mgr_init)(struct sha1_mb_mgr *state);
  92. static asmlinkage struct job_sha1* (*sha1_job_mgr_submit)
  93. (struct sha1_mb_mgr *state, struct job_sha1 *job);
  94. static asmlinkage struct job_sha1* (*sha1_job_mgr_flush)
  95. (struct sha1_mb_mgr *state);
  96. static asmlinkage struct job_sha1* (*sha1_job_mgr_get_comp_job)
  97. (struct sha1_mb_mgr *state);
  98. static inline void sha1_init_digest(uint32_t *digest)
  99. {
  100. static const uint32_t initial_digest[SHA1_DIGEST_LENGTH] = {SHA1_H0,
  101. SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 };
  102. memcpy(digest, initial_digest, sizeof(initial_digest));
  103. }
  104. static inline uint32_t sha1_pad(uint8_t padblock[SHA1_BLOCK_SIZE * 2],
  105. uint32_t total_len)
  106. {
  107. uint32_t i = total_len & (SHA1_BLOCK_SIZE - 1);
  108. memset(&padblock[i], 0, SHA1_BLOCK_SIZE);
  109. padblock[i] = 0x80;
  110. i += ((SHA1_BLOCK_SIZE - 1) &
  111. (0 - (total_len + SHA1_PADLENGTHFIELD_SIZE + 1)))
  112. + 1 + SHA1_PADLENGTHFIELD_SIZE;
  113. #if SHA1_PADLENGTHFIELD_SIZE == 16
  114. *((uint64_t *) &padblock[i - 16]) = 0;
  115. #endif
  116. *((uint64_t *) &padblock[i - 8]) = cpu_to_be64(total_len << 3);
  117. /* Number of extra blocks to hash */
  118. return i >> SHA1_LOG2_BLOCK_SIZE;
  119. }
  120. static struct sha1_hash_ctx *sha1_ctx_mgr_resubmit(struct sha1_ctx_mgr *mgr,
  121. struct sha1_hash_ctx *ctx)
  122. {
  123. while (ctx) {
  124. if (ctx->status & HASH_CTX_STS_COMPLETE) {
  125. /* Clear PROCESSING bit */
  126. ctx->status = HASH_CTX_STS_COMPLETE;
  127. return ctx;
  128. }
  129. /*
  130. * If the extra blocks are empty, begin hashing what remains
  131. * in the user's buffer.
  132. */
  133. if (ctx->partial_block_buffer_length == 0 &&
  134. ctx->incoming_buffer_length) {
  135. const void *buffer = ctx->incoming_buffer;
  136. uint32_t len = ctx->incoming_buffer_length;
  137. uint32_t copy_len;
  138. /*
  139. * Only entire blocks can be hashed.
  140. * Copy remainder to extra blocks buffer.
  141. */
  142. copy_len = len & (SHA1_BLOCK_SIZE-1);
  143. if (copy_len) {
  144. len -= copy_len;
  145. memcpy(ctx->partial_block_buffer,
  146. ((const char *) buffer + len),
  147. copy_len);
  148. ctx->partial_block_buffer_length = copy_len;
  149. }
  150. ctx->incoming_buffer_length = 0;
  151. /* len should be a multiple of the block size now */
  152. assert((len % SHA1_BLOCK_SIZE) == 0);
  153. /* Set len to the number of blocks to be hashed */
  154. len >>= SHA1_LOG2_BLOCK_SIZE;
  155. if (len) {
  156. ctx->job.buffer = (uint8_t *) buffer;
  157. ctx->job.len = len;
  158. ctx = (struct sha1_hash_ctx *)sha1_job_mgr_submit(&mgr->mgr,
  159. &ctx->job);
  160. continue;
  161. }
  162. }
  163. /*
  164. * If the extra blocks are not empty, then we are
  165. * either on the last block(s) or we need more
  166. * user input before continuing.
  167. */
  168. if (ctx->status & HASH_CTX_STS_LAST) {
  169. uint8_t *buf = ctx->partial_block_buffer;
  170. uint32_t n_extra_blocks =
  171. sha1_pad(buf, ctx->total_length);
  172. ctx->status = (HASH_CTX_STS_PROCESSING |
  173. HASH_CTX_STS_COMPLETE);
  174. ctx->job.buffer = buf;
  175. ctx->job.len = (uint32_t) n_extra_blocks;
  176. ctx = (struct sha1_hash_ctx *)
  177. sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
  178. continue;
  179. }
  180. ctx->status = HASH_CTX_STS_IDLE;
  181. return ctx;
  182. }
  183. return NULL;
  184. }
  185. static struct sha1_hash_ctx
  186. *sha1_ctx_mgr_get_comp_ctx(struct sha1_ctx_mgr *mgr)
  187. {
  188. /*
  189. * If get_comp_job returns NULL, there are no jobs complete.
  190. * If get_comp_job returns a job, verify that it is safe to return to
  191. * the user.
  192. * If it is not ready, resubmit the job to finish processing.
  193. * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned.
  194. * Otherwise, all jobs currently being managed by the hash_ctx_mgr
  195. * still need processing.
  196. */
  197. struct sha1_hash_ctx *ctx;
  198. ctx = (struct sha1_hash_ctx *) sha1_job_mgr_get_comp_job(&mgr->mgr);
  199. return sha1_ctx_mgr_resubmit(mgr, ctx);
  200. }
  201. static void sha1_ctx_mgr_init(struct sha1_ctx_mgr *mgr)
  202. {
  203. sha1_job_mgr_init(&mgr->mgr);
  204. }
  205. static struct sha1_hash_ctx *sha1_ctx_mgr_submit(struct sha1_ctx_mgr *mgr,
  206. struct sha1_hash_ctx *ctx,
  207. const void *buffer,
  208. uint32_t len,
  209. int flags)
  210. {
  211. if (flags & (~HASH_ENTIRE)) {
  212. /*
  213. * User should not pass anything other than FIRST, UPDATE, or
  214. * LAST
  215. */
  216. ctx->error = HASH_CTX_ERROR_INVALID_FLAGS;
  217. return ctx;
  218. }
  219. if (ctx->status & HASH_CTX_STS_PROCESSING) {
  220. /* Cannot submit to a currently processing job. */
  221. ctx->error = HASH_CTX_ERROR_ALREADY_PROCESSING;
  222. return ctx;
  223. }
  224. if ((ctx->status & HASH_CTX_STS_COMPLETE) && !(flags & HASH_FIRST)) {
  225. /* Cannot update a finished job. */
  226. ctx->error = HASH_CTX_ERROR_ALREADY_COMPLETED;
  227. return ctx;
  228. }
  229. if (flags & HASH_FIRST) {
  230. /* Init digest */
  231. sha1_init_digest(ctx->job.result_digest);
  232. /* Reset byte counter */
  233. ctx->total_length = 0;
  234. /* Clear extra blocks */
  235. ctx->partial_block_buffer_length = 0;
  236. }
  237. /*
  238. * If we made it here, there were no errors during this call to
  239. * submit
  240. */
  241. ctx->error = HASH_CTX_ERROR_NONE;
  242. /* Store buffer ptr info from user */
  243. ctx->incoming_buffer = buffer;
  244. ctx->incoming_buffer_length = len;
  245. /*
  246. * Store the user's request flags and mark this ctx as currently
  247. * being processed.
  248. */
  249. ctx->status = (flags & HASH_LAST) ?
  250. (HASH_CTX_STS_PROCESSING | HASH_CTX_STS_LAST) :
  251. HASH_CTX_STS_PROCESSING;
  252. /* Advance byte counter */
  253. ctx->total_length += len;
  254. /*
  255. * If there is anything currently buffered in the extra blocks,
  256. * append to it until it contains a whole block.
  257. * Or if the user's buffer contains less than a whole block,
  258. * append as much as possible to the extra block.
  259. */
  260. if (ctx->partial_block_buffer_length || len < SHA1_BLOCK_SIZE) {
  261. /*
  262. * Compute how many bytes to copy from user buffer into
  263. * extra block
  264. */
  265. uint32_t copy_len = SHA1_BLOCK_SIZE -
  266. ctx->partial_block_buffer_length;
  267. if (len < copy_len)
  268. copy_len = len;
  269. if (copy_len) {
  270. /* Copy and update relevant pointers and counters */
  271. memcpy(&ctx->partial_block_buffer[ctx->partial_block_buffer_length],
  272. buffer, copy_len);
  273. ctx->partial_block_buffer_length += copy_len;
  274. ctx->incoming_buffer = (const void *)
  275. ((const char *)buffer + copy_len);
  276. ctx->incoming_buffer_length = len - copy_len;
  277. }
  278. /*
  279. * The extra block should never contain more than 1 block
  280. * here
  281. */
  282. assert(ctx->partial_block_buffer_length <= SHA1_BLOCK_SIZE);
  283. /*
  284. * If the extra block buffer contains exactly 1 block, it can
  285. * be hashed.
  286. */
  287. if (ctx->partial_block_buffer_length >= SHA1_BLOCK_SIZE) {
  288. ctx->partial_block_buffer_length = 0;
  289. ctx->job.buffer = ctx->partial_block_buffer;
  290. ctx->job.len = 1;
  291. ctx = (struct sha1_hash_ctx *)
  292. sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
  293. }
  294. }
  295. return sha1_ctx_mgr_resubmit(mgr, ctx);
  296. }
  297. static struct sha1_hash_ctx *sha1_ctx_mgr_flush(struct sha1_ctx_mgr *mgr)
  298. {
  299. struct sha1_hash_ctx *ctx;
  300. while (1) {
  301. ctx = (struct sha1_hash_ctx *) sha1_job_mgr_flush(&mgr->mgr);
  302. /* If flush returned 0, there are no more jobs in flight. */
  303. if (!ctx)
  304. return NULL;
  305. /*
  306. * If flush returned a job, resubmit the job to finish
  307. * processing.
  308. */
  309. ctx = sha1_ctx_mgr_resubmit(mgr, ctx);
  310. /*
  311. * If sha1_ctx_mgr_resubmit returned a job, it is ready to be
  312. * returned. Otherwise, all jobs currently being managed by the
  313. * sha1_ctx_mgr still need processing. Loop.
  314. */
  315. if (ctx)
  316. return ctx;
  317. }
  318. }
  319. static int sha1_mb_init(struct ahash_request *areq)
  320. {
  321. struct sha1_hash_ctx *sctx = ahash_request_ctx(areq);
  322. hash_ctx_init(sctx);
  323. sctx->job.result_digest[0] = SHA1_H0;
  324. sctx->job.result_digest[1] = SHA1_H1;
  325. sctx->job.result_digest[2] = SHA1_H2;
  326. sctx->job.result_digest[3] = SHA1_H3;
  327. sctx->job.result_digest[4] = SHA1_H4;
  328. sctx->total_length = 0;
  329. sctx->partial_block_buffer_length = 0;
  330. sctx->status = HASH_CTX_STS_IDLE;
  331. return 0;
  332. }
  333. static int sha1_mb_set_results(struct mcryptd_hash_request_ctx *rctx)
  334. {
  335. int i;
  336. struct sha1_hash_ctx *sctx = ahash_request_ctx(&rctx->areq);
  337. __be32 *dst = (__be32 *) rctx->out;
  338. for (i = 0; i < 5; ++i)
  339. dst[i] = cpu_to_be32(sctx->job.result_digest[i]);
  340. return 0;
  341. }
  342. static int sha_finish_walk(struct mcryptd_hash_request_ctx **ret_rctx,
  343. struct mcryptd_alg_cstate *cstate, bool flush)
  344. {
  345. int flag = HASH_UPDATE;
  346. int nbytes, err = 0;
  347. struct mcryptd_hash_request_ctx *rctx = *ret_rctx;
  348. struct sha1_hash_ctx *sha_ctx;
  349. /* more work ? */
  350. while (!(rctx->flag & HASH_DONE)) {
  351. nbytes = crypto_ahash_walk_done(&rctx->walk, 0);
  352. if (nbytes < 0) {
  353. err = nbytes;
  354. goto out;
  355. }
  356. /* check if the walk is done */
  357. if (crypto_ahash_walk_last(&rctx->walk)) {
  358. rctx->flag |= HASH_DONE;
  359. if (rctx->flag & HASH_FINAL)
  360. flag |= HASH_LAST;
  361. }
  362. sha_ctx = (struct sha1_hash_ctx *)
  363. ahash_request_ctx(&rctx->areq);
  364. kernel_fpu_begin();
  365. sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx,
  366. rctx->walk.data, nbytes, flag);
  367. if (!sha_ctx) {
  368. if (flush)
  369. sha_ctx = sha1_ctx_mgr_flush(cstate->mgr);
  370. }
  371. kernel_fpu_end();
  372. if (sha_ctx)
  373. rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
  374. else {
  375. rctx = NULL;
  376. goto out;
  377. }
  378. }
  379. /* copy the results */
  380. if (rctx->flag & HASH_FINAL)
  381. sha1_mb_set_results(rctx);
  382. out:
  383. *ret_rctx = rctx;
  384. return err;
  385. }
  386. static int sha_complete_job(struct mcryptd_hash_request_ctx *rctx,
  387. struct mcryptd_alg_cstate *cstate,
  388. int err)
  389. {
  390. struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
  391. struct sha1_hash_ctx *sha_ctx;
  392. struct mcryptd_hash_request_ctx *req_ctx;
  393. int ret;
  394. /* remove from work list */
  395. spin_lock(&cstate->work_lock);
  396. list_del(&rctx->waiter);
  397. spin_unlock(&cstate->work_lock);
  398. if (irqs_disabled())
  399. rctx->complete(&req->base, err);
  400. else {
  401. local_bh_disable();
  402. rctx->complete(&req->base, err);
  403. local_bh_enable();
  404. }
  405. /* check to see if there are other jobs that are done */
  406. sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
  407. while (sha_ctx) {
  408. req_ctx = cast_hash_to_mcryptd_ctx(sha_ctx);
  409. ret = sha_finish_walk(&req_ctx, cstate, false);
  410. if (req_ctx) {
  411. spin_lock(&cstate->work_lock);
  412. list_del(&req_ctx->waiter);
  413. spin_unlock(&cstate->work_lock);
  414. req = cast_mcryptd_ctx_to_req(req_ctx);
  415. if (irqs_disabled())
  416. req_ctx->complete(&req->base, ret);
  417. else {
  418. local_bh_disable();
  419. req_ctx->complete(&req->base, ret);
  420. local_bh_enable();
  421. }
  422. }
  423. sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
  424. }
  425. return 0;
  426. }
  427. static void sha1_mb_add_list(struct mcryptd_hash_request_ctx *rctx,
  428. struct mcryptd_alg_cstate *cstate)
  429. {
  430. unsigned long next_flush;
  431. unsigned long delay = usecs_to_jiffies(FLUSH_INTERVAL);
  432. /* initialize tag */
  433. rctx->tag.arrival = jiffies; /* tag the arrival time */
  434. rctx->tag.seq_num = cstate->next_seq_num++;
  435. next_flush = rctx->tag.arrival + delay;
  436. rctx->tag.expire = next_flush;
  437. spin_lock(&cstate->work_lock);
  438. list_add_tail(&rctx->waiter, &cstate->work_list);
  439. spin_unlock(&cstate->work_lock);
  440. mcryptd_arm_flusher(cstate, delay);
  441. }
  442. static int sha1_mb_update(struct ahash_request *areq)
  443. {
  444. struct mcryptd_hash_request_ctx *rctx =
  445. container_of(areq, struct mcryptd_hash_request_ctx, areq);
  446. struct mcryptd_alg_cstate *cstate =
  447. this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
  448. struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
  449. struct sha1_hash_ctx *sha_ctx;
  450. int ret = 0, nbytes;
  451. /* sanity check */
  452. if (rctx->tag.cpu != smp_processor_id()) {
  453. pr_err("mcryptd error: cpu clash\n");
  454. goto done;
  455. }
  456. /* need to init context */
  457. req_ctx_init(rctx, areq);
  458. nbytes = crypto_ahash_walk_first(req, &rctx->walk);
  459. if (nbytes < 0) {
  460. ret = nbytes;
  461. goto done;
  462. }
  463. if (crypto_ahash_walk_last(&rctx->walk))
  464. rctx->flag |= HASH_DONE;
  465. /* submit */
  466. sha_ctx = (struct sha1_hash_ctx *) ahash_request_ctx(areq);
  467. sha1_mb_add_list(rctx, cstate);
  468. kernel_fpu_begin();
  469. sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data,
  470. nbytes, HASH_UPDATE);
  471. kernel_fpu_end();
  472. /* check if anything is returned */
  473. if (!sha_ctx)
  474. return -EINPROGRESS;
  475. if (sha_ctx->error) {
  476. ret = sha_ctx->error;
  477. rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
  478. goto done;
  479. }
  480. rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
  481. ret = sha_finish_walk(&rctx, cstate, false);
  482. if (!rctx)
  483. return -EINPROGRESS;
  484. done:
  485. sha_complete_job(rctx, cstate, ret);
  486. return ret;
  487. }
  488. static int sha1_mb_finup(struct ahash_request *areq)
  489. {
  490. struct mcryptd_hash_request_ctx *rctx =
  491. container_of(areq, struct mcryptd_hash_request_ctx, areq);
  492. struct mcryptd_alg_cstate *cstate =
  493. this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
  494. struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
  495. struct sha1_hash_ctx *sha_ctx;
  496. int ret = 0, flag = HASH_UPDATE, nbytes;
  497. /* sanity check */
  498. if (rctx->tag.cpu != smp_processor_id()) {
  499. pr_err("mcryptd error: cpu clash\n");
  500. goto done;
  501. }
  502. /* need to init context */
  503. req_ctx_init(rctx, areq);
  504. nbytes = crypto_ahash_walk_first(req, &rctx->walk);
  505. if (nbytes < 0) {
  506. ret = nbytes;
  507. goto done;
  508. }
  509. if (crypto_ahash_walk_last(&rctx->walk)) {
  510. rctx->flag |= HASH_DONE;
  511. flag = HASH_LAST;
  512. }
  513. /* submit */
  514. rctx->flag |= HASH_FINAL;
  515. sha_ctx = (struct sha1_hash_ctx *) ahash_request_ctx(areq);
  516. sha1_mb_add_list(rctx, cstate);
  517. kernel_fpu_begin();
  518. sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data,
  519. nbytes, flag);
  520. kernel_fpu_end();
  521. /* check if anything is returned */
  522. if (!sha_ctx)
  523. return -EINPROGRESS;
  524. if (sha_ctx->error) {
  525. ret = sha_ctx->error;
  526. goto done;
  527. }
  528. rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
  529. ret = sha_finish_walk(&rctx, cstate, false);
  530. if (!rctx)
  531. return -EINPROGRESS;
  532. done:
  533. sha_complete_job(rctx, cstate, ret);
  534. return ret;
  535. }
  536. static int sha1_mb_final(struct ahash_request *areq)
  537. {
  538. struct mcryptd_hash_request_ctx *rctx =
  539. container_of(areq, struct mcryptd_hash_request_ctx, areq);
  540. struct mcryptd_alg_cstate *cstate =
  541. this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
  542. struct sha1_hash_ctx *sha_ctx;
  543. int ret = 0;
  544. u8 data;
  545. /* sanity check */
  546. if (rctx->tag.cpu != smp_processor_id()) {
  547. pr_err("mcryptd error: cpu clash\n");
  548. goto done;
  549. }
  550. /* need to init context */
  551. req_ctx_init(rctx, areq);
  552. rctx->flag |= HASH_DONE | HASH_FINAL;
  553. sha_ctx = (struct sha1_hash_ctx *) ahash_request_ctx(areq);
  554. /* flag HASH_FINAL and 0 data size */
  555. sha1_mb_add_list(rctx, cstate);
  556. kernel_fpu_begin();
  557. sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, &data, 0,
  558. HASH_LAST);
  559. kernel_fpu_end();
  560. /* check if anything is returned */
  561. if (!sha_ctx)
  562. return -EINPROGRESS;
  563. if (sha_ctx->error) {
  564. ret = sha_ctx->error;
  565. rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
  566. goto done;
  567. }
  568. rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
  569. ret = sha_finish_walk(&rctx, cstate, false);
  570. if (!rctx)
  571. return -EINPROGRESS;
  572. done:
  573. sha_complete_job(rctx, cstate, ret);
  574. return ret;
  575. }
  576. static int sha1_mb_export(struct ahash_request *areq, void *out)
  577. {
  578. struct sha1_hash_ctx *sctx = ahash_request_ctx(areq);
  579. memcpy(out, sctx, sizeof(*sctx));
  580. return 0;
  581. }
  582. static int sha1_mb_import(struct ahash_request *areq, const void *in)
  583. {
  584. struct sha1_hash_ctx *sctx = ahash_request_ctx(areq);
  585. memcpy(sctx, in, sizeof(*sctx));
  586. return 0;
  587. }
  588. static int sha1_mb_async_init_tfm(struct crypto_tfm *tfm)
  589. {
  590. struct mcryptd_ahash *mcryptd_tfm;
  591. struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
  592. struct mcryptd_hash_ctx *mctx;
  593. mcryptd_tfm = mcryptd_alloc_ahash("__intel_sha1-mb",
  594. CRYPTO_ALG_INTERNAL,
  595. CRYPTO_ALG_INTERNAL);
  596. if (IS_ERR(mcryptd_tfm))
  597. return PTR_ERR(mcryptd_tfm);
  598. mctx = crypto_ahash_ctx(&mcryptd_tfm->base);
  599. mctx->alg_state = &sha1_mb_alg_state;
  600. ctx->mcryptd_tfm = mcryptd_tfm;
  601. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  602. sizeof(struct ahash_request) +
  603. crypto_ahash_reqsize(&mcryptd_tfm->base));
  604. return 0;
  605. }
  606. static void sha1_mb_async_exit_tfm(struct crypto_tfm *tfm)
  607. {
  608. struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
  609. mcryptd_free_ahash(ctx->mcryptd_tfm);
  610. }
  611. static int sha1_mb_areq_init_tfm(struct crypto_tfm *tfm)
  612. {
  613. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  614. sizeof(struct ahash_request) +
  615. sizeof(struct sha1_hash_ctx));
  616. return 0;
  617. }
  618. static void sha1_mb_areq_exit_tfm(struct crypto_tfm *tfm)
  619. {
  620. struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
  621. mcryptd_free_ahash(ctx->mcryptd_tfm);
  622. }
  623. static struct ahash_alg sha1_mb_areq_alg = {
  624. .init = sha1_mb_init,
  625. .update = sha1_mb_update,
  626. .final = sha1_mb_final,
  627. .finup = sha1_mb_finup,
  628. .export = sha1_mb_export,
  629. .import = sha1_mb_import,
  630. .halg = {
  631. .digestsize = SHA1_DIGEST_SIZE,
  632. .statesize = sizeof(struct sha1_hash_ctx),
  633. .base = {
  634. .cra_name = "__sha1-mb",
  635. .cra_driver_name = "__intel_sha1-mb",
  636. .cra_priority = 100,
  637. /*
  638. * use ASYNC flag as some buffers in multi-buffer
  639. * algo may not have completed before hashing thread
  640. * sleep
  641. */
  642. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  643. CRYPTO_ALG_ASYNC |
  644. CRYPTO_ALG_INTERNAL,
  645. .cra_blocksize = SHA1_BLOCK_SIZE,
  646. .cra_module = THIS_MODULE,
  647. .cra_list = LIST_HEAD_INIT
  648. (sha1_mb_areq_alg.halg.base.cra_list),
  649. .cra_init = sha1_mb_areq_init_tfm,
  650. .cra_exit = sha1_mb_areq_exit_tfm,
  651. .cra_ctxsize = sizeof(struct sha1_hash_ctx),
  652. }
  653. }
  654. };
  655. static int sha1_mb_async_init(struct ahash_request *req)
  656. {
  657. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  658. struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
  659. struct ahash_request *mcryptd_req = ahash_request_ctx(req);
  660. struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
  661. memcpy(mcryptd_req, req, sizeof(*req));
  662. ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
  663. return crypto_ahash_init(mcryptd_req);
  664. }
  665. static int sha1_mb_async_update(struct ahash_request *req)
  666. {
  667. struct ahash_request *mcryptd_req = ahash_request_ctx(req);
  668. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  669. struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
  670. struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
  671. memcpy(mcryptd_req, req, sizeof(*req));
  672. ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
  673. return crypto_ahash_update(mcryptd_req);
  674. }
  675. static int sha1_mb_async_finup(struct ahash_request *req)
  676. {
  677. struct ahash_request *mcryptd_req = ahash_request_ctx(req);
  678. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  679. struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
  680. struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
  681. memcpy(mcryptd_req, req, sizeof(*req));
  682. ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
  683. return crypto_ahash_finup(mcryptd_req);
  684. }
  685. static int sha1_mb_async_final(struct ahash_request *req)
  686. {
  687. struct ahash_request *mcryptd_req = ahash_request_ctx(req);
  688. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  689. struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
  690. struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
  691. memcpy(mcryptd_req, req, sizeof(*req));
  692. ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
  693. return crypto_ahash_final(mcryptd_req);
  694. }
  695. static int sha1_mb_async_digest(struct ahash_request *req)
  696. {
  697. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  698. struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
  699. struct ahash_request *mcryptd_req = ahash_request_ctx(req);
  700. struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
  701. memcpy(mcryptd_req, req, sizeof(*req));
  702. ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
  703. return crypto_ahash_digest(mcryptd_req);
  704. }
  705. static int sha1_mb_async_export(struct ahash_request *req, void *out)
  706. {
  707. struct ahash_request *mcryptd_req = ahash_request_ctx(req);
  708. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  709. struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
  710. struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
  711. memcpy(mcryptd_req, req, sizeof(*req));
  712. ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
  713. return crypto_ahash_export(mcryptd_req, out);
  714. }
  715. static int sha1_mb_async_import(struct ahash_request *req, const void *in)
  716. {
  717. struct ahash_request *mcryptd_req = ahash_request_ctx(req);
  718. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  719. struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
  720. struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
  721. struct crypto_ahash *child = mcryptd_ahash_child(mcryptd_tfm);
  722. struct mcryptd_hash_request_ctx *rctx;
  723. struct ahash_request *areq;
  724. memcpy(mcryptd_req, req, sizeof(*req));
  725. ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
  726. rctx = ahash_request_ctx(mcryptd_req);
  727. areq = &rctx->areq;
  728. ahash_request_set_tfm(areq, child);
  729. ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_SLEEP,
  730. rctx->complete, req);
  731. return crypto_ahash_import(mcryptd_req, in);
  732. }
  733. static struct ahash_alg sha1_mb_async_alg = {
  734. .init = sha1_mb_async_init,
  735. .update = sha1_mb_async_update,
  736. .final = sha1_mb_async_final,
  737. .finup = sha1_mb_async_finup,
  738. .digest = sha1_mb_async_digest,
  739. .export = sha1_mb_async_export,
  740. .import = sha1_mb_async_import,
  741. .halg = {
  742. .digestsize = SHA1_DIGEST_SIZE,
  743. .statesize = sizeof(struct sha1_hash_ctx),
  744. .base = {
  745. .cra_name = "sha1",
  746. .cra_driver_name = "sha1_mb",
  747. .cra_priority = 200,
  748. .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC,
  749. .cra_blocksize = SHA1_BLOCK_SIZE,
  750. .cra_type = &crypto_ahash_type,
  751. .cra_module = THIS_MODULE,
  752. .cra_list = LIST_HEAD_INIT(sha1_mb_async_alg.halg.base.cra_list),
  753. .cra_init = sha1_mb_async_init_tfm,
  754. .cra_exit = sha1_mb_async_exit_tfm,
  755. .cra_ctxsize = sizeof(struct sha1_mb_ctx),
  756. .cra_alignmask = 0,
  757. },
  758. },
  759. };
  760. static unsigned long sha1_mb_flusher(struct mcryptd_alg_cstate *cstate)
  761. {
  762. struct mcryptd_hash_request_ctx *rctx;
  763. unsigned long cur_time;
  764. unsigned long next_flush = 0;
  765. struct sha1_hash_ctx *sha_ctx;
  766. cur_time = jiffies;
  767. while (!list_empty(&cstate->work_list)) {
  768. rctx = list_entry(cstate->work_list.next,
  769. struct mcryptd_hash_request_ctx, waiter);
  770. if (time_before(cur_time, rctx->tag.expire))
  771. break;
  772. kernel_fpu_begin();
  773. sha_ctx = (struct sha1_hash_ctx *)
  774. sha1_ctx_mgr_flush(cstate->mgr);
  775. kernel_fpu_end();
  776. if (!sha_ctx) {
  777. pr_err("sha1_mb error: nothing got flushed for non-empty list\n");
  778. break;
  779. }
  780. rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
  781. sha_finish_walk(&rctx, cstate, true);
  782. sha_complete_job(rctx, cstate, 0);
  783. }
  784. if (!list_empty(&cstate->work_list)) {
  785. rctx = list_entry(cstate->work_list.next,
  786. struct mcryptd_hash_request_ctx, waiter);
  787. /* get the hash context and then flush time */
  788. next_flush = rctx->tag.expire;
  789. mcryptd_arm_flusher(cstate, get_delay(next_flush));
  790. }
  791. return next_flush;
  792. }
  793. static int __init sha1_mb_mod_init(void)
  794. {
  795. int cpu;
  796. int err;
  797. struct mcryptd_alg_cstate *cpu_state;
  798. /* check for dependent cpu features */
  799. if (!boot_cpu_has(X86_FEATURE_AVX2) ||
  800. !boot_cpu_has(X86_FEATURE_BMI2))
  801. return -ENODEV;
  802. /* initialize multibuffer structures */
  803. sha1_mb_alg_state.alg_cstate = alloc_percpu(struct mcryptd_alg_cstate);
  804. sha1_job_mgr_init = sha1_mb_mgr_init_avx2;
  805. sha1_job_mgr_submit = sha1_mb_mgr_submit_avx2;
  806. sha1_job_mgr_flush = sha1_mb_mgr_flush_avx2;
  807. sha1_job_mgr_get_comp_job = sha1_mb_mgr_get_comp_job_avx2;
  808. if (!sha1_mb_alg_state.alg_cstate)
  809. return -ENOMEM;
  810. for_each_possible_cpu(cpu) {
  811. cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
  812. cpu_state->next_flush = 0;
  813. cpu_state->next_seq_num = 0;
  814. cpu_state->flusher_engaged = false;
  815. INIT_DELAYED_WORK(&cpu_state->flush, mcryptd_flusher);
  816. cpu_state->cpu = cpu;
  817. cpu_state->alg_state = &sha1_mb_alg_state;
  818. cpu_state->mgr = kzalloc(sizeof(struct sha1_ctx_mgr),
  819. GFP_KERNEL);
  820. if (!cpu_state->mgr)
  821. goto err2;
  822. sha1_ctx_mgr_init(cpu_state->mgr);
  823. INIT_LIST_HEAD(&cpu_state->work_list);
  824. spin_lock_init(&cpu_state->work_lock);
  825. }
  826. sha1_mb_alg_state.flusher = &sha1_mb_flusher;
  827. err = crypto_register_ahash(&sha1_mb_areq_alg);
  828. if (err)
  829. goto err2;
  830. err = crypto_register_ahash(&sha1_mb_async_alg);
  831. if (err)
  832. goto err1;
  833. return 0;
  834. err1:
  835. crypto_unregister_ahash(&sha1_mb_areq_alg);
  836. err2:
  837. for_each_possible_cpu(cpu) {
  838. cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
  839. kfree(cpu_state->mgr);
  840. }
  841. free_percpu(sha1_mb_alg_state.alg_cstate);
  842. return -ENODEV;
  843. }
  844. static void __exit sha1_mb_mod_fini(void)
  845. {
  846. int cpu;
  847. struct mcryptd_alg_cstate *cpu_state;
  848. crypto_unregister_ahash(&sha1_mb_async_alg);
  849. crypto_unregister_ahash(&sha1_mb_areq_alg);
  850. for_each_possible_cpu(cpu) {
  851. cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
  852. kfree(cpu_state->mgr);
  853. }
  854. free_percpu(sha1_mb_alg_state.alg_cstate);
  855. }
  856. module_init(sha1_mb_mod_init);
  857. module_exit(sha1_mb_mod_fini);
  858. MODULE_LICENSE("GPL");
  859. MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, multi buffer accelerated");
  860. MODULE_ALIAS_CRYPTO("sha1");