123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644 |
- ########################################################################
- # Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
- #
- # Copyright (c) 2013, Intel Corporation
- #
- # Authors:
- # Erdinc Ozturk <erdinc.ozturk@intel.com>
- # Vinodh Gopal <vinodh.gopal@intel.com>
- # James Guilford <james.guilford@intel.com>
- # Tim Chen <tim.c.chen@linux.intel.com>
- #
- # This software is available to you under a choice of one of two
- # licenses. You may choose to be licensed under the terms of the GNU
- # General Public License (GPL) Version 2, available from the file
- # COPYING in the main directory of this source tree, or the
- # OpenIB.org BSD license below:
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions are
- # met:
- #
- # * Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- #
- # * Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in the
- # documentation and/or other materials provided with the
- # distribution.
- #
- # * Neither the name of the Intel Corporation nor the names of its
- # contributors may be used to endorse or promote products derived from
- # this software without specific prior written permission.
- #
- #
- # THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
- # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
- # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- ########################################################################
- # Function API:
- # UINT16 crc_t10dif_pcl(
- # UINT16 init_crc, //initial CRC value, 16 bits
- # const unsigned char *buf, //buffer pointer to calculate CRC on
- # UINT64 len //buffer length in bytes (64-bit data)
- # );
- #
- # Reference paper titled "Fast CRC Computation for Generic
- # Polynomials Using PCLMULQDQ Instruction"
- # URL: http://www.intel.com/content/dam/www/public/us/en/documents
- # /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
- #
- #
- #include <linux/linkage.h>
- .text
- #define arg1 %rdi
- #define arg2 %rsi
- #define arg3 %rdx
- #define arg1_low32 %edi
- ENTRY(crc_t10dif_pcl)
- .align 16
- # adjust the 16-bit initial_crc value, scale it to 32 bits
- shl $16, arg1_low32
- # Allocate Stack Space
- mov %rsp, %rcx
- sub $16*2, %rsp
- # align stack to 16 byte boundary
- and $~(0x10 - 1), %rsp
- # check if smaller than 256
- cmp $256, arg3
- # for sizes less than 128, we can't fold 64B at a time...
- jl _less_than_128
- # load the initial crc value
- movd arg1_low32, %xmm10 # initial crc
- # crc value does not need to be byte-reflected, but it needs
- # to be moved to the high part of the register.
- # because data will be byte-reflected and will align with
- # initial crc at correct place.
- pslldq $12, %xmm10
- movdqa SHUF_MASK(%rip), %xmm11
- # receive the initial 64B data, xor the initial crc value
- movdqu 16*0(arg2), %xmm0
- movdqu 16*1(arg2), %xmm1
- movdqu 16*2(arg2), %xmm2
- movdqu 16*3(arg2), %xmm3
- movdqu 16*4(arg2), %xmm4
- movdqu 16*5(arg2), %xmm5
- movdqu 16*6(arg2), %xmm6
- movdqu 16*7(arg2), %xmm7
- pshufb %xmm11, %xmm0
- # XOR the initial_crc value
- pxor %xmm10, %xmm0
- pshufb %xmm11, %xmm1
- pshufb %xmm11, %xmm2
- pshufb %xmm11, %xmm3
- pshufb %xmm11, %xmm4
- pshufb %xmm11, %xmm5
- pshufb %xmm11, %xmm6
- pshufb %xmm11, %xmm7
- movdqa rk3(%rip), %xmm10 #xmm10 has rk3 and rk4
- #imm value of pclmulqdq instruction
- #will determine which constant to use
- #################################################################
- # we subtract 256 instead of 128 to save one instruction from the loop
- sub $256, arg3
- # at this section of the code, there is 64*x+y (0<=y<64) bytes of
- # buffer. The _fold_64_B_loop will fold 64B at a time
- # until we have 64+y Bytes of buffer
- # fold 64B at a time. This section of the code folds 4 xmm
- # registers in parallel
- _fold_64_B_loop:
- # update the buffer pointer
- add $128, arg2 # buf += 64#
- movdqu 16*0(arg2), %xmm9
- movdqu 16*1(arg2), %xmm12
- pshufb %xmm11, %xmm9
- pshufb %xmm11, %xmm12
- movdqa %xmm0, %xmm8
- movdqa %xmm1, %xmm13
- pclmulqdq $0x0 , %xmm10, %xmm0
- pclmulqdq $0x11, %xmm10, %xmm8
- pclmulqdq $0x0 , %xmm10, %xmm1
- pclmulqdq $0x11, %xmm10, %xmm13
- pxor %xmm9 , %xmm0
- xorps %xmm8 , %xmm0
- pxor %xmm12, %xmm1
- xorps %xmm13, %xmm1
- movdqu 16*2(arg2), %xmm9
- movdqu 16*3(arg2), %xmm12
- pshufb %xmm11, %xmm9
- pshufb %xmm11, %xmm12
- movdqa %xmm2, %xmm8
- movdqa %xmm3, %xmm13
- pclmulqdq $0x0, %xmm10, %xmm2
- pclmulqdq $0x11, %xmm10, %xmm8
- pclmulqdq $0x0, %xmm10, %xmm3
- pclmulqdq $0x11, %xmm10, %xmm13
- pxor %xmm9 , %xmm2
- xorps %xmm8 , %xmm2
- pxor %xmm12, %xmm3
- xorps %xmm13, %xmm3
- movdqu 16*4(arg2), %xmm9
- movdqu 16*5(arg2), %xmm12
- pshufb %xmm11, %xmm9
- pshufb %xmm11, %xmm12
- movdqa %xmm4, %xmm8
- movdqa %xmm5, %xmm13
- pclmulqdq $0x0, %xmm10, %xmm4
- pclmulqdq $0x11, %xmm10, %xmm8
- pclmulqdq $0x0, %xmm10, %xmm5
- pclmulqdq $0x11, %xmm10, %xmm13
- pxor %xmm9 , %xmm4
- xorps %xmm8 , %xmm4
- pxor %xmm12, %xmm5
- xorps %xmm13, %xmm5
- movdqu 16*6(arg2), %xmm9
- movdqu 16*7(arg2), %xmm12
- pshufb %xmm11, %xmm9
- pshufb %xmm11, %xmm12
- movdqa %xmm6 , %xmm8
- movdqa %xmm7 , %xmm13
- pclmulqdq $0x0 , %xmm10, %xmm6
- pclmulqdq $0x11, %xmm10, %xmm8
- pclmulqdq $0x0 , %xmm10, %xmm7
- pclmulqdq $0x11, %xmm10, %xmm13
- pxor %xmm9 , %xmm6
- xorps %xmm8 , %xmm6
- pxor %xmm12, %xmm7
- xorps %xmm13, %xmm7
- sub $128, arg3
- # check if there is another 64B in the buffer to be able to fold
- jge _fold_64_B_loop
- ##################################################################
- add $128, arg2
- # at this point, the buffer pointer is pointing at the last y Bytes
- # of the buffer the 64B of folded data is in 4 of the xmm
- # registers: xmm0, xmm1, xmm2, xmm3
- # fold the 8 xmm registers to 1 xmm register with different constants
- movdqa rk9(%rip), %xmm10
- movdqa %xmm0, %xmm8
- pclmulqdq $0x11, %xmm10, %xmm0
- pclmulqdq $0x0 , %xmm10, %xmm8
- pxor %xmm8, %xmm7
- xorps %xmm0, %xmm7
- movdqa rk11(%rip), %xmm10
- movdqa %xmm1, %xmm8
- pclmulqdq $0x11, %xmm10, %xmm1
- pclmulqdq $0x0 , %xmm10, %xmm8
- pxor %xmm8, %xmm7
- xorps %xmm1, %xmm7
- movdqa rk13(%rip), %xmm10
- movdqa %xmm2, %xmm8
- pclmulqdq $0x11, %xmm10, %xmm2
- pclmulqdq $0x0 , %xmm10, %xmm8
- pxor %xmm8, %xmm7
- pxor %xmm2, %xmm7
- movdqa rk15(%rip), %xmm10
- movdqa %xmm3, %xmm8
- pclmulqdq $0x11, %xmm10, %xmm3
- pclmulqdq $0x0 , %xmm10, %xmm8
- pxor %xmm8, %xmm7
- xorps %xmm3, %xmm7
- movdqa rk17(%rip), %xmm10
- movdqa %xmm4, %xmm8
- pclmulqdq $0x11, %xmm10, %xmm4
- pclmulqdq $0x0 , %xmm10, %xmm8
- pxor %xmm8, %xmm7
- pxor %xmm4, %xmm7
- movdqa rk19(%rip), %xmm10
- movdqa %xmm5, %xmm8
- pclmulqdq $0x11, %xmm10, %xmm5
- pclmulqdq $0x0 , %xmm10, %xmm8
- pxor %xmm8, %xmm7
- xorps %xmm5, %xmm7
- movdqa rk1(%rip), %xmm10 #xmm10 has rk1 and rk2
- #imm value of pclmulqdq instruction
- #will determine which constant to use
- movdqa %xmm6, %xmm8
- pclmulqdq $0x11, %xmm10, %xmm6
- pclmulqdq $0x0 , %xmm10, %xmm8
- pxor %xmm8, %xmm7
- pxor %xmm6, %xmm7
- # instead of 64, we add 48 to the loop counter to save 1 instruction
- # from the loop instead of a cmp instruction, we use the negative
- # flag with the jl instruction
- add $128-16, arg3
- jl _final_reduction_for_128
- # now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7
- # and the rest is in memory. We can fold 16 bytes at a time if y>=16
- # continue folding 16B at a time
- _16B_reduction_loop:
- movdqa %xmm7, %xmm8
- pclmulqdq $0x11, %xmm10, %xmm7
- pclmulqdq $0x0 , %xmm10, %xmm8
- pxor %xmm8, %xmm7
- movdqu (arg2), %xmm0
- pshufb %xmm11, %xmm0
- pxor %xmm0 , %xmm7
- add $16, arg2
- sub $16, arg3
- # instead of a cmp instruction, we utilize the flags with the
- # jge instruction equivalent of: cmp arg3, 16-16
- # check if there is any more 16B in the buffer to be able to fold
- jge _16B_reduction_loop
- #now we have 16+z bytes left to reduce, where 0<= z < 16.
- #first, we reduce the data in the xmm7 register
- _final_reduction_for_128:
- # check if any more data to fold. If not, compute the CRC of
- # the final 128 bits
- add $16, arg3
- je _128_done
- # here we are getting data that is less than 16 bytes.
- # since we know that there was data before the pointer, we can
- # offset the input pointer before the actual point, to receive
- # exactly 16 bytes. after that the registers need to be adjusted.
- _get_last_two_xmms:
- movdqa %xmm7, %xmm2
- movdqu -16(arg2, arg3), %xmm1
- pshufb %xmm11, %xmm1
- # get rid of the extra data that was loaded before
- # load the shift constant
- lea pshufb_shf_table+16(%rip), %rax
- sub arg3, %rax
- movdqu (%rax), %xmm0
- # shift xmm2 to the left by arg3 bytes
- pshufb %xmm0, %xmm2
- # shift xmm7 to the right by 16-arg3 bytes
- pxor mask1(%rip), %xmm0
- pshufb %xmm0, %xmm7
- pblendvb %xmm2, %xmm1 #xmm0 is implicit
- # fold 16 Bytes
- movdqa %xmm1, %xmm2
- movdqa %xmm7, %xmm8
- pclmulqdq $0x11, %xmm10, %xmm7
- pclmulqdq $0x0 , %xmm10, %xmm8
- pxor %xmm8, %xmm7
- pxor %xmm2, %xmm7
- _128_done:
- # compute crc of a 128-bit value
- movdqa rk5(%rip), %xmm10 # rk5 and rk6 in xmm10
- movdqa %xmm7, %xmm0
- #64b fold
- pclmulqdq $0x1, %xmm10, %xmm7
- pslldq $8 , %xmm0
- pxor %xmm0, %xmm7
- #32b fold
- movdqa %xmm7, %xmm0
- pand mask2(%rip), %xmm0
- psrldq $12, %xmm7
- pclmulqdq $0x10, %xmm10, %xmm7
- pxor %xmm0, %xmm7
- #barrett reduction
- _barrett:
- movdqa rk7(%rip), %xmm10 # rk7 and rk8 in xmm10
- movdqa %xmm7, %xmm0
- pclmulqdq $0x01, %xmm10, %xmm7
- pslldq $4, %xmm7
- pclmulqdq $0x11, %xmm10, %xmm7
- pslldq $4, %xmm7
- pxor %xmm0, %xmm7
- pextrd $1, %xmm7, %eax
- _cleanup:
- # scale the result back to 16 bits
- shr $16, %eax
- mov %rcx, %rsp
- ret
- ########################################################################
- .align 16
- _less_than_128:
- # check if there is enough buffer to be able to fold 16B at a time
- cmp $32, arg3
- jl _less_than_32
- movdqa SHUF_MASK(%rip), %xmm11
- # now if there is, load the constants
- movdqa rk1(%rip), %xmm10 # rk1 and rk2 in xmm10
- movd arg1_low32, %xmm0 # get the initial crc value
- pslldq $12, %xmm0 # align it to its correct place
- movdqu (arg2), %xmm7 # load the plaintext
- pshufb %xmm11, %xmm7 # byte-reflect the plaintext
- pxor %xmm0, %xmm7
- # update the buffer pointer
- add $16, arg2
- # update the counter. subtract 32 instead of 16 to save one
- # instruction from the loop
- sub $32, arg3
- jmp _16B_reduction_loop
- .align 16
- _less_than_32:
- # mov initial crc to the return value. this is necessary for
- # zero-length buffers.
- mov arg1_low32, %eax
- test arg3, arg3
- je _cleanup
- movdqa SHUF_MASK(%rip), %xmm11
- movd arg1_low32, %xmm0 # get the initial crc value
- pslldq $12, %xmm0 # align it to its correct place
- cmp $16, arg3
- je _exact_16_left
- jl _less_than_16_left
- movdqu (arg2), %xmm7 # load the plaintext
- pshufb %xmm11, %xmm7 # byte-reflect the plaintext
- pxor %xmm0 , %xmm7 # xor the initial crc value
- add $16, arg2
- sub $16, arg3
- movdqa rk1(%rip), %xmm10 # rk1 and rk2 in xmm10
- jmp _get_last_two_xmms
- .align 16
- _less_than_16_left:
- # use stack space to load data less than 16 bytes, zero-out
- # the 16B in memory first.
- pxor %xmm1, %xmm1
- mov %rsp, %r11
- movdqa %xmm1, (%r11)
- cmp $4, arg3
- jl _only_less_than_4
- # backup the counter value
- mov arg3, %r9
- cmp $8, arg3
- jl _less_than_8_left
- # load 8 Bytes
- mov (arg2), %rax
- mov %rax, (%r11)
- add $8, %r11
- sub $8, arg3
- add $8, arg2
- _less_than_8_left:
- cmp $4, arg3
- jl _less_than_4_left
- # load 4 Bytes
- mov (arg2), %eax
- mov %eax, (%r11)
- add $4, %r11
- sub $4, arg3
- add $4, arg2
- _less_than_4_left:
- cmp $2, arg3
- jl _less_than_2_left
- # load 2 Bytes
- mov (arg2), %ax
- mov %ax, (%r11)
- add $2, %r11
- sub $2, arg3
- add $2, arg2
- _less_than_2_left:
- cmp $1, arg3
- jl _zero_left
- # load 1 Byte
- mov (arg2), %al
- mov %al, (%r11)
- _zero_left:
- movdqa (%rsp), %xmm7
- pshufb %xmm11, %xmm7
- pxor %xmm0 , %xmm7 # xor the initial crc value
- # shl r9, 4
- lea pshufb_shf_table+16(%rip), %rax
- sub %r9, %rax
- movdqu (%rax), %xmm0
- pxor mask1(%rip), %xmm0
- pshufb %xmm0, %xmm7
- jmp _128_done
- .align 16
- _exact_16_left:
- movdqu (arg2), %xmm7
- pshufb %xmm11, %xmm7
- pxor %xmm0 , %xmm7 # xor the initial crc value
- jmp _128_done
- _only_less_than_4:
- cmp $3, arg3
- jl _only_less_than_3
- # load 3 Bytes
- mov (arg2), %al
- mov %al, (%r11)
- mov 1(arg2), %al
- mov %al, 1(%r11)
- mov 2(arg2), %al
- mov %al, 2(%r11)
- movdqa (%rsp), %xmm7
- pshufb %xmm11, %xmm7
- pxor %xmm0 , %xmm7 # xor the initial crc value
- psrldq $5, %xmm7
- jmp _barrett
- _only_less_than_3:
- cmp $2, arg3
- jl _only_less_than_2
- # load 2 Bytes
- mov (arg2), %al
- mov %al, (%r11)
- mov 1(arg2), %al
- mov %al, 1(%r11)
- movdqa (%rsp), %xmm7
- pshufb %xmm11, %xmm7
- pxor %xmm0 , %xmm7 # xor the initial crc value
- psrldq $6, %xmm7
- jmp _barrett
- _only_less_than_2:
- # load 1 Byte
- mov (arg2), %al
- mov %al, (%r11)
- movdqa (%rsp), %xmm7
- pshufb %xmm11, %xmm7
- pxor %xmm0 , %xmm7 # xor the initial crc value
- psrldq $7, %xmm7
- jmp _barrett
- ENDPROC(crc_t10dif_pcl)
- .data
- # precomputed constants
- # these constants are precomputed from the poly:
- # 0x8bb70000 (0x8bb7 scaled to 32 bits)
- .align 16
- # Q = 0x18BB70000
- # rk1 = 2^(32*3) mod Q << 32
- # rk2 = 2^(32*5) mod Q << 32
- # rk3 = 2^(32*15) mod Q << 32
- # rk4 = 2^(32*17) mod Q << 32
- # rk5 = 2^(32*3) mod Q << 32
- # rk6 = 2^(32*2) mod Q << 32
- # rk7 = floor(2^64/Q)
- # rk8 = Q
- rk1:
- .quad 0x2d56000000000000
- rk2:
- .quad 0x06df000000000000
- rk3:
- .quad 0x9d9d000000000000
- rk4:
- .quad 0x7cf5000000000000
- rk5:
- .quad 0x2d56000000000000
- rk6:
- .quad 0x1368000000000000
- rk7:
- .quad 0x00000001f65a57f8
- rk8:
- .quad 0x000000018bb70000
- rk9:
- .quad 0xceae000000000000
- rk10:
- .quad 0xbfd6000000000000
- rk11:
- .quad 0x1e16000000000000
- rk12:
- .quad 0x713c000000000000
- rk13:
- .quad 0xf7f9000000000000
- rk14:
- .quad 0x80a6000000000000
- rk15:
- .quad 0x044c000000000000
- rk16:
- .quad 0xe658000000000000
- rk17:
- .quad 0xad18000000000000
- rk18:
- .quad 0xa497000000000000
- rk19:
- .quad 0x6ee3000000000000
- rk20:
- .quad 0xe7b5000000000000
- mask1:
- .octa 0x80808080808080808080808080808080
- mask2:
- .octa 0x00000000FFFFFFFFFFFFFFFFFFFFFFFF
- SHUF_MASK:
- .octa 0x000102030405060708090A0B0C0D0E0F
- pshufb_shf_table:
- # use these values for shift constants for the pshufb instruction
- # different alignments result in values as shown:
- # DDQ 0x008f8e8d8c8b8a898887868584838281 # shl 15 (16-1) / shr1
- # DDQ 0x01008f8e8d8c8b8a8988878685848382 # shl 14 (16-3) / shr2
- # DDQ 0x0201008f8e8d8c8b8a89888786858483 # shl 13 (16-4) / shr3
- # DDQ 0x030201008f8e8d8c8b8a898887868584 # shl 12 (16-4) / shr4
- # DDQ 0x04030201008f8e8d8c8b8a8988878685 # shl 11 (16-5) / shr5
- # DDQ 0x0504030201008f8e8d8c8b8a89888786 # shl 10 (16-6) / shr6
- # DDQ 0x060504030201008f8e8d8c8b8a898887 # shl 9 (16-7) / shr7
- # DDQ 0x07060504030201008f8e8d8c8b8a8988 # shl 8 (16-8) / shr8
- # DDQ 0x0807060504030201008f8e8d8c8b8a89 # shl 7 (16-9) / shr9
- # DDQ 0x090807060504030201008f8e8d8c8b8a # shl 6 (16-10) / shr10
- # DDQ 0x0a090807060504030201008f8e8d8c8b # shl 5 (16-11) / shr11
- # DDQ 0x0b0a090807060504030201008f8e8d8c # shl 4 (16-12) / shr12
- # DDQ 0x0c0b0a090807060504030201008f8e8d # shl 3 (16-13) / shr13
- # DDQ 0x0d0c0b0a090807060504030201008f8e # shl 2 (16-14) / shr14
- # DDQ 0x0e0d0c0b0a090807060504030201008f # shl 1 (16-15) / shr15
- .octa 0x8f8e8d8c8b8a89888786858483828100
- .octa 0x000e0d0c0b0a09080706050403020100
|