pgtable.h 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473
  1. /*
  2. * S390 version
  3. * Copyright IBM Corp. 1999, 2000
  4. * Author(s): Hartmut Penner (hp@de.ibm.com)
  5. * Ulrich Weigand (weigand@de.ibm.com)
  6. * Martin Schwidefsky (schwidefsky@de.ibm.com)
  7. *
  8. * Derived from "include/asm-i386/pgtable.h"
  9. */
  10. #ifndef _ASM_S390_PGTABLE_H
  11. #define _ASM_S390_PGTABLE_H
  12. /*
  13. * The Linux memory management assumes a three-level page table setup.
  14. * For s390 64 bit we use up to four of the five levels the hardware
  15. * provides (region first tables are not used).
  16. *
  17. * The "pgd_xxx()" functions are trivial for a folded two-level
  18. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  19. * into the pgd entry)
  20. *
  21. * This file contains the functions and defines necessary to modify and use
  22. * the S390 page table tree.
  23. */
  24. #ifndef __ASSEMBLY__
  25. #include <linux/sched.h>
  26. #include <linux/mm_types.h>
  27. #include <linux/page-flags.h>
  28. #include <linux/radix-tree.h>
  29. #include <linux/atomic.h>
  30. #include <asm/bug.h>
  31. #include <asm/page.h>
  32. extern pgd_t swapper_pg_dir[];
  33. extern void paging_init(void);
  34. extern void vmem_map_init(void);
  35. pmd_t *vmem_pmd_alloc(void);
  36. pte_t *vmem_pte_alloc(void);
  37. enum {
  38. PG_DIRECT_MAP_4K = 0,
  39. PG_DIRECT_MAP_1M,
  40. PG_DIRECT_MAP_2G,
  41. PG_DIRECT_MAP_MAX
  42. };
  43. extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
  44. static inline void update_page_count(int level, long count)
  45. {
  46. if (IS_ENABLED(CONFIG_PROC_FS))
  47. atomic_long_add(count, &direct_pages_count[level]);
  48. }
  49. struct seq_file;
  50. void arch_report_meminfo(struct seq_file *m);
  51. /*
  52. * The S390 doesn't have any external MMU info: the kernel page
  53. * tables contain all the necessary information.
  54. */
  55. #define update_mmu_cache(vma, address, ptep) do { } while (0)
  56. #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  57. /*
  58. * ZERO_PAGE is a global shared page that is always zero; used
  59. * for zero-mapped memory areas etc..
  60. */
  61. extern unsigned long empty_zero_page;
  62. extern unsigned long zero_page_mask;
  63. #define ZERO_PAGE(vaddr) \
  64. (virt_to_page((void *)(empty_zero_page + \
  65. (((unsigned long)(vaddr)) &zero_page_mask))))
  66. #define __HAVE_COLOR_ZERO_PAGE
  67. /* TODO: s390 cannot support io_remap_pfn_range... */
  68. #endif /* !__ASSEMBLY__ */
  69. /*
  70. * PMD_SHIFT determines the size of the area a second-level page
  71. * table can map
  72. * PGDIR_SHIFT determines what a third-level page table entry can map
  73. */
  74. #define PMD_SHIFT 20
  75. #define PUD_SHIFT 31
  76. #define PGDIR_SHIFT 42
  77. #define PMD_SIZE (1UL << PMD_SHIFT)
  78. #define PMD_MASK (~(PMD_SIZE-1))
  79. #define PUD_SIZE (1UL << PUD_SHIFT)
  80. #define PUD_MASK (~(PUD_SIZE-1))
  81. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  82. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  83. /*
  84. * entries per page directory level: the S390 is two-level, so
  85. * we don't really have any PMD directory physically.
  86. * for S390 segment-table entries are combined to one PGD
  87. * that leads to 1024 pte per pgd
  88. */
  89. #define PTRS_PER_PTE 256
  90. #define PTRS_PER_PMD 2048
  91. #define PTRS_PER_PUD 2048
  92. #define PTRS_PER_PGD 2048
  93. #define FIRST_USER_ADDRESS 0UL
  94. #define pte_ERROR(e) \
  95. printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  96. #define pmd_ERROR(e) \
  97. printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  98. #define pud_ERROR(e) \
  99. printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  100. #define pgd_ERROR(e) \
  101. printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  102. #ifndef __ASSEMBLY__
  103. /*
  104. * The vmalloc and module area will always be on the topmost area of the
  105. * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
  106. * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
  107. * modules will reside. That makes sure that inter module branches always
  108. * happen without trampolines and in addition the placement within a 2GB frame
  109. * is branch prediction unit friendly.
  110. */
  111. extern unsigned long VMALLOC_START;
  112. extern unsigned long VMALLOC_END;
  113. extern struct page *vmemmap;
  114. #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  115. extern unsigned long MODULES_VADDR;
  116. extern unsigned long MODULES_END;
  117. #define MODULES_VADDR MODULES_VADDR
  118. #define MODULES_END MODULES_END
  119. #define MODULES_LEN (1UL << 31)
  120. static inline int is_module_addr(void *addr)
  121. {
  122. BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
  123. if (addr < (void *)MODULES_VADDR)
  124. return 0;
  125. if (addr > (void *)MODULES_END)
  126. return 0;
  127. return 1;
  128. }
  129. /*
  130. * A 64 bit pagetable entry of S390 has following format:
  131. * | PFRA |0IPC| OS |
  132. * 0000000000111111111122222222223333333333444444444455555555556666
  133. * 0123456789012345678901234567890123456789012345678901234567890123
  134. *
  135. * I Page-Invalid Bit: Page is not available for address-translation
  136. * P Page-Protection Bit: Store access not possible for page
  137. * C Change-bit override: HW is not required to set change bit
  138. *
  139. * A 64 bit segmenttable entry of S390 has following format:
  140. * | P-table origin | TT
  141. * 0000000000111111111122222222223333333333444444444455555555556666
  142. * 0123456789012345678901234567890123456789012345678901234567890123
  143. *
  144. * I Segment-Invalid Bit: Segment is not available for address-translation
  145. * C Common-Segment Bit: Segment is not private (PoP 3-30)
  146. * P Page-Protection Bit: Store access not possible for page
  147. * TT Type 00
  148. *
  149. * A 64 bit region table entry of S390 has following format:
  150. * | S-table origin | TF TTTL
  151. * 0000000000111111111122222222223333333333444444444455555555556666
  152. * 0123456789012345678901234567890123456789012345678901234567890123
  153. *
  154. * I Segment-Invalid Bit: Segment is not available for address-translation
  155. * TT Type 01
  156. * TF
  157. * TL Table length
  158. *
  159. * The 64 bit regiontable origin of S390 has following format:
  160. * | region table origon | DTTL
  161. * 0000000000111111111122222222223333333333444444444455555555556666
  162. * 0123456789012345678901234567890123456789012345678901234567890123
  163. *
  164. * X Space-Switch event:
  165. * G Segment-Invalid Bit:
  166. * P Private-Space Bit:
  167. * S Storage-Alteration:
  168. * R Real space
  169. * TL Table-Length:
  170. *
  171. * A storage key has the following format:
  172. * | ACC |F|R|C|0|
  173. * 0 3 4 5 6 7
  174. * ACC: access key
  175. * F : fetch protection bit
  176. * R : referenced bit
  177. * C : changed bit
  178. */
  179. /* Hardware bits in the page table entry */
  180. #define _PAGE_PROTECT 0x200 /* HW read-only bit */
  181. #define _PAGE_INVALID 0x400 /* HW invalid bit */
  182. #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
  183. /* Software bits in the page table entry */
  184. #define _PAGE_PRESENT 0x001 /* SW pte present bit */
  185. #define _PAGE_YOUNG 0x004 /* SW pte young bit */
  186. #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
  187. #define _PAGE_READ 0x010 /* SW pte read bit */
  188. #define _PAGE_WRITE 0x020 /* SW pte write bit */
  189. #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
  190. #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
  191. #define __HAVE_ARCH_PTE_SPECIAL
  192. #ifdef CONFIG_MEM_SOFT_DIRTY
  193. #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
  194. #else
  195. #define _PAGE_SOFT_DIRTY 0x000
  196. #endif
  197. /* Set of bits not changed in pte_modify */
  198. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
  199. _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
  200. /*
  201. * handle_pte_fault uses pte_present and pte_none to find out the pte type
  202. * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
  203. * distinguish present from not-present ptes. It is changed only with the page
  204. * table lock held.
  205. *
  206. * The following table gives the different possible bit combinations for
  207. * the pte hardware and software bits in the last 12 bits of a pte
  208. * (. unassigned bit, x don't care, t swap type):
  209. *
  210. * 842100000000
  211. * 000084210000
  212. * 000000008421
  213. * .IR.uswrdy.p
  214. * empty .10.00000000
  215. * swap .11..ttttt.0
  216. * prot-none, clean, old .11.xx0000.1
  217. * prot-none, clean, young .11.xx0001.1
  218. * prot-none, dirty, old .11.xx0010.1
  219. * prot-none, dirty, young .11.xx0011.1
  220. * read-only, clean, old .11.xx0100.1
  221. * read-only, clean, young .01.xx0101.1
  222. * read-only, dirty, old .11.xx0110.1
  223. * read-only, dirty, young .01.xx0111.1
  224. * read-write, clean, old .11.xx1100.1
  225. * read-write, clean, young .01.xx1101.1
  226. * read-write, dirty, old .10.xx1110.1
  227. * read-write, dirty, young .00.xx1111.1
  228. * HW-bits: R read-only, I invalid
  229. * SW-bits: p present, y young, d dirty, r read, w write, s special,
  230. * u unused, l large
  231. *
  232. * pte_none is true for the bit pattern .10.00000000, pte == 0x400
  233. * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
  234. * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
  235. */
  236. /* Bits in the segment/region table address-space-control-element */
  237. #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
  238. #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
  239. #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
  240. #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
  241. #define _ASCE_REAL_SPACE 0x20 /* real space control */
  242. #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
  243. #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
  244. #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
  245. #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
  246. #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
  247. #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
  248. /* Bits in the region table entry */
  249. #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
  250. #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
  251. #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
  252. #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
  253. #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
  254. #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
  255. #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
  256. #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
  257. #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
  258. #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
  259. #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
  260. #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
  261. #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
  262. #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
  263. #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
  264. #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
  265. #define _REGION3_ENTRY_ORIGIN ~0x7ffUL/* region third table origin */
  266. #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
  267. #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
  268. #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
  269. #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
  270. #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
  271. #ifdef CONFIG_MEM_SOFT_DIRTY
  272. #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
  273. #else
  274. #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
  275. #endif
  276. #define _REGION_ENTRY_BITS 0xfffffffffffff227UL
  277. #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe27UL
  278. /* Bits in the segment table entry */
  279. #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
  280. #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
  281. #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
  282. #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
  283. #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
  284. #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
  285. #define _SEGMENT_ENTRY (0)
  286. #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
  287. #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
  288. #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
  289. #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
  290. #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
  291. #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
  292. #ifdef CONFIG_MEM_SOFT_DIRTY
  293. #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
  294. #else
  295. #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
  296. #endif
  297. /*
  298. * Segment table and region3 table entry encoding
  299. * (R = read-only, I = invalid, y = young bit):
  300. * dy..R...I...wr
  301. * prot-none, clean, old 00..1...1...00
  302. * prot-none, clean, young 01..1...1...00
  303. * prot-none, dirty, old 10..1...1...00
  304. * prot-none, dirty, young 11..1...1...00
  305. * read-only, clean, old 00..1...1...01
  306. * read-only, clean, young 01..1...0...01
  307. * read-only, dirty, old 10..1...1...01
  308. * read-only, dirty, young 11..1...0...01
  309. * read-write, clean, old 00..1...1...11
  310. * read-write, clean, young 01..1...0...11
  311. * read-write, dirty, old 10..0...1...11
  312. * read-write, dirty, young 11..0...0...11
  313. * The segment table origin is used to distinguish empty (origin==0) from
  314. * read-write, old segment table entries (origin!=0)
  315. * HW-bits: R read-only, I invalid
  316. * SW-bits: y young, d dirty, r read, w write
  317. */
  318. /* Page status table bits for virtualization */
  319. #define PGSTE_ACC_BITS 0xf000000000000000UL
  320. #define PGSTE_FP_BIT 0x0800000000000000UL
  321. #define PGSTE_PCL_BIT 0x0080000000000000UL
  322. #define PGSTE_HR_BIT 0x0040000000000000UL
  323. #define PGSTE_HC_BIT 0x0020000000000000UL
  324. #define PGSTE_GR_BIT 0x0004000000000000UL
  325. #define PGSTE_GC_BIT 0x0002000000000000UL
  326. #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
  327. #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
  328. #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
  329. /* Guest Page State used for virtualization */
  330. #define _PGSTE_GPS_ZERO 0x0000000080000000UL
  331. #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
  332. #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
  333. #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
  334. /*
  335. * A user page table pointer has the space-switch-event bit, the
  336. * private-space-control bit and the storage-alteration-event-control
  337. * bit set. A kernel page table pointer doesn't need them.
  338. */
  339. #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
  340. _ASCE_ALT_EVENT)
  341. /*
  342. * Page protection definitions.
  343. */
  344. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
  345. #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
  346. _PAGE_INVALID | _PAGE_PROTECT)
  347. #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  348. _PAGE_INVALID | _PAGE_PROTECT)
  349. #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  350. _PAGE_YOUNG | _PAGE_DIRTY)
  351. #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  352. _PAGE_YOUNG | _PAGE_DIRTY)
  353. #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
  354. _PAGE_PROTECT)
  355. /*
  356. * On s390 the page table entry has an invalid bit and a read-only bit.
  357. * Read permission implies execute permission and write permission
  358. * implies read permission.
  359. */
  360. /*xwr*/
  361. #define __P000 PAGE_NONE
  362. #define __P001 PAGE_READ
  363. #define __P010 PAGE_READ
  364. #define __P011 PAGE_READ
  365. #define __P100 PAGE_READ
  366. #define __P101 PAGE_READ
  367. #define __P110 PAGE_READ
  368. #define __P111 PAGE_READ
  369. #define __S000 PAGE_NONE
  370. #define __S001 PAGE_READ
  371. #define __S010 PAGE_WRITE
  372. #define __S011 PAGE_WRITE
  373. #define __S100 PAGE_READ
  374. #define __S101 PAGE_READ
  375. #define __S110 PAGE_WRITE
  376. #define __S111 PAGE_WRITE
  377. /*
  378. * Segment entry (large page) protection definitions.
  379. */
  380. #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
  381. _SEGMENT_ENTRY_PROTECT)
  382. #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
  383. _SEGMENT_ENTRY_READ)
  384. #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
  385. _SEGMENT_ENTRY_WRITE)
  386. #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
  387. _SEGMENT_ENTRY_LARGE | \
  388. _SEGMENT_ENTRY_READ | \
  389. _SEGMENT_ENTRY_WRITE | \
  390. _SEGMENT_ENTRY_YOUNG | \
  391. _SEGMENT_ENTRY_DIRTY)
  392. #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
  393. _SEGMENT_ENTRY_LARGE | \
  394. _SEGMENT_ENTRY_READ | \
  395. _SEGMENT_ENTRY_YOUNG | \
  396. _SEGMENT_ENTRY_PROTECT)
  397. /*
  398. * Region3 entry (large page) protection definitions.
  399. */
  400. #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
  401. _REGION3_ENTRY_LARGE | \
  402. _REGION3_ENTRY_READ | \
  403. _REGION3_ENTRY_WRITE | \
  404. _REGION3_ENTRY_YOUNG | \
  405. _REGION3_ENTRY_DIRTY)
  406. #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
  407. _REGION3_ENTRY_LARGE | \
  408. _REGION3_ENTRY_READ | \
  409. _REGION3_ENTRY_YOUNG | \
  410. _REGION_ENTRY_PROTECT)
  411. static inline int mm_has_pgste(struct mm_struct *mm)
  412. {
  413. #ifdef CONFIG_PGSTE
  414. if (unlikely(mm->context.has_pgste))
  415. return 1;
  416. #endif
  417. return 0;
  418. }
  419. static inline int mm_alloc_pgste(struct mm_struct *mm)
  420. {
  421. #ifdef CONFIG_PGSTE
  422. if (unlikely(mm->context.alloc_pgste))
  423. return 1;
  424. #endif
  425. return 0;
  426. }
  427. /*
  428. * In the case that a guest uses storage keys
  429. * faults should no longer be backed by zero pages
  430. */
  431. #define mm_forbids_zeropage mm_has_pgste
  432. static inline int mm_use_skey(struct mm_struct *mm)
  433. {
  434. #ifdef CONFIG_PGSTE
  435. if (mm->context.use_skey)
  436. return 1;
  437. #endif
  438. return 0;
  439. }
  440. static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
  441. {
  442. register unsigned long reg2 asm("2") = old;
  443. register unsigned long reg3 asm("3") = new;
  444. unsigned long address = (unsigned long)ptr | 1;
  445. asm volatile(
  446. " csp %0,%3"
  447. : "+d" (reg2), "+m" (*ptr)
  448. : "d" (reg3), "d" (address)
  449. : "cc");
  450. }
  451. static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
  452. {
  453. register unsigned long reg2 asm("2") = old;
  454. register unsigned long reg3 asm("3") = new;
  455. unsigned long address = (unsigned long)ptr | 1;
  456. asm volatile(
  457. " .insn rre,0xb98a0000,%0,%3"
  458. : "+d" (reg2), "+m" (*ptr)
  459. : "d" (reg3), "d" (address)
  460. : "cc");
  461. }
  462. #define CRDTE_DTT_PAGE 0x00UL
  463. #define CRDTE_DTT_SEGMENT 0x10UL
  464. #define CRDTE_DTT_REGION3 0x14UL
  465. #define CRDTE_DTT_REGION2 0x18UL
  466. #define CRDTE_DTT_REGION1 0x1cUL
  467. static inline void crdte(unsigned long old, unsigned long new,
  468. unsigned long table, unsigned long dtt,
  469. unsigned long address, unsigned long asce)
  470. {
  471. register unsigned long reg2 asm("2") = old;
  472. register unsigned long reg3 asm("3") = new;
  473. register unsigned long reg4 asm("4") = table | dtt;
  474. register unsigned long reg5 asm("5") = address;
  475. asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
  476. : "+d" (reg2)
  477. : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
  478. : "memory", "cc");
  479. }
  480. /*
  481. * pgd/pmd/pte query functions
  482. */
  483. static inline int pgd_present(pgd_t pgd)
  484. {
  485. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  486. return 1;
  487. return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
  488. }
  489. static inline int pgd_none(pgd_t pgd)
  490. {
  491. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  492. return 0;
  493. return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
  494. }
  495. static inline int pgd_bad(pgd_t pgd)
  496. {
  497. /*
  498. * With dynamic page table levels the pgd can be a region table
  499. * entry or a segment table entry. Check for the bit that are
  500. * invalid for either table entry.
  501. */
  502. unsigned long mask =
  503. ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
  504. ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
  505. return (pgd_val(pgd) & mask) != 0;
  506. }
  507. static inline int pud_present(pud_t pud)
  508. {
  509. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  510. return 1;
  511. return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
  512. }
  513. static inline int pud_none(pud_t pud)
  514. {
  515. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  516. return 0;
  517. return pud_val(pud) == _REGION3_ENTRY_EMPTY;
  518. }
  519. static inline int pud_large(pud_t pud)
  520. {
  521. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
  522. return 0;
  523. return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
  524. }
  525. static inline unsigned long pud_pfn(pud_t pud)
  526. {
  527. unsigned long origin_mask;
  528. origin_mask = _REGION3_ENTRY_ORIGIN;
  529. if (pud_large(pud))
  530. origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
  531. return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
  532. }
  533. static inline int pmd_large(pmd_t pmd)
  534. {
  535. return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
  536. }
  537. static inline int pmd_bad(pmd_t pmd)
  538. {
  539. if (pmd_large(pmd))
  540. return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
  541. return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
  542. }
  543. static inline int pud_bad(pud_t pud)
  544. {
  545. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  546. return pmd_bad(__pmd(pud_val(pud)));
  547. if (pud_large(pud))
  548. return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
  549. return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
  550. }
  551. static inline int pmd_present(pmd_t pmd)
  552. {
  553. return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
  554. }
  555. static inline int pmd_none(pmd_t pmd)
  556. {
  557. return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
  558. }
  559. static inline unsigned long pmd_pfn(pmd_t pmd)
  560. {
  561. unsigned long origin_mask;
  562. origin_mask = _SEGMENT_ENTRY_ORIGIN;
  563. if (pmd_large(pmd))
  564. origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
  565. return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
  566. }
  567. #define __HAVE_ARCH_PMD_WRITE
  568. static inline int pmd_write(pmd_t pmd)
  569. {
  570. return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
  571. }
  572. static inline int pmd_dirty(pmd_t pmd)
  573. {
  574. int dirty = 1;
  575. if (pmd_large(pmd))
  576. dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
  577. return dirty;
  578. }
  579. static inline int pmd_young(pmd_t pmd)
  580. {
  581. int young = 1;
  582. if (pmd_large(pmd))
  583. young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
  584. return young;
  585. }
  586. static inline int pte_present(pte_t pte)
  587. {
  588. /* Bit pattern: (pte & 0x001) == 0x001 */
  589. return (pte_val(pte) & _PAGE_PRESENT) != 0;
  590. }
  591. static inline int pte_none(pte_t pte)
  592. {
  593. /* Bit pattern: pte == 0x400 */
  594. return pte_val(pte) == _PAGE_INVALID;
  595. }
  596. static inline int pte_swap(pte_t pte)
  597. {
  598. /* Bit pattern: (pte & 0x201) == 0x200 */
  599. return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
  600. == _PAGE_PROTECT;
  601. }
  602. static inline int pte_special(pte_t pte)
  603. {
  604. return (pte_val(pte) & _PAGE_SPECIAL);
  605. }
  606. #define __HAVE_ARCH_PTE_SAME
  607. static inline int pte_same(pte_t a, pte_t b)
  608. {
  609. return pte_val(a) == pte_val(b);
  610. }
  611. #ifdef CONFIG_NUMA_BALANCING
  612. static inline int pte_protnone(pte_t pte)
  613. {
  614. return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
  615. }
  616. static inline int pmd_protnone(pmd_t pmd)
  617. {
  618. /* pmd_large(pmd) implies pmd_present(pmd) */
  619. return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
  620. }
  621. #endif
  622. static inline int pte_soft_dirty(pte_t pte)
  623. {
  624. return pte_val(pte) & _PAGE_SOFT_DIRTY;
  625. }
  626. #define pte_swp_soft_dirty pte_soft_dirty
  627. static inline pte_t pte_mksoft_dirty(pte_t pte)
  628. {
  629. pte_val(pte) |= _PAGE_SOFT_DIRTY;
  630. return pte;
  631. }
  632. #define pte_swp_mksoft_dirty pte_mksoft_dirty
  633. static inline pte_t pte_clear_soft_dirty(pte_t pte)
  634. {
  635. pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
  636. return pte;
  637. }
  638. #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
  639. static inline int pmd_soft_dirty(pmd_t pmd)
  640. {
  641. return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
  642. }
  643. static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
  644. {
  645. pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
  646. return pmd;
  647. }
  648. static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
  649. {
  650. pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
  651. return pmd;
  652. }
  653. /*
  654. * query functions pte_write/pte_dirty/pte_young only work if
  655. * pte_present() is true. Undefined behaviour if not..
  656. */
  657. static inline int pte_write(pte_t pte)
  658. {
  659. return (pte_val(pte) & _PAGE_WRITE) != 0;
  660. }
  661. static inline int pte_dirty(pte_t pte)
  662. {
  663. return (pte_val(pte) & _PAGE_DIRTY) != 0;
  664. }
  665. static inline int pte_young(pte_t pte)
  666. {
  667. return (pte_val(pte) & _PAGE_YOUNG) != 0;
  668. }
  669. #define __HAVE_ARCH_PTE_UNUSED
  670. static inline int pte_unused(pte_t pte)
  671. {
  672. return pte_val(pte) & _PAGE_UNUSED;
  673. }
  674. /*
  675. * pgd/pmd/pte modification functions
  676. */
  677. static inline void pgd_clear(pgd_t *pgd)
  678. {
  679. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  680. pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
  681. }
  682. static inline void pud_clear(pud_t *pud)
  683. {
  684. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  685. pud_val(*pud) = _REGION3_ENTRY_EMPTY;
  686. }
  687. static inline void pmd_clear(pmd_t *pmdp)
  688. {
  689. pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
  690. }
  691. static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  692. {
  693. pte_val(*ptep) = _PAGE_INVALID;
  694. }
  695. /*
  696. * The following pte modification functions only work if
  697. * pte_present() is true. Undefined behaviour if not..
  698. */
  699. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  700. {
  701. pte_val(pte) &= _PAGE_CHG_MASK;
  702. pte_val(pte) |= pgprot_val(newprot);
  703. /*
  704. * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
  705. * invalid bit set, clear it again for readable, young pages
  706. */
  707. if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
  708. pte_val(pte) &= ~_PAGE_INVALID;
  709. /*
  710. * newprot for PAGE_READ and PAGE_WRITE has the page protection
  711. * bit set, clear it again for writable, dirty pages
  712. */
  713. if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
  714. pte_val(pte) &= ~_PAGE_PROTECT;
  715. return pte;
  716. }
  717. static inline pte_t pte_wrprotect(pte_t pte)
  718. {
  719. pte_val(pte) &= ~_PAGE_WRITE;
  720. pte_val(pte) |= _PAGE_PROTECT;
  721. return pte;
  722. }
  723. static inline pte_t pte_mkwrite(pte_t pte)
  724. {
  725. pte_val(pte) |= _PAGE_WRITE;
  726. if (pte_val(pte) & _PAGE_DIRTY)
  727. pte_val(pte) &= ~_PAGE_PROTECT;
  728. return pte;
  729. }
  730. static inline pte_t pte_mkclean(pte_t pte)
  731. {
  732. pte_val(pte) &= ~_PAGE_DIRTY;
  733. pte_val(pte) |= _PAGE_PROTECT;
  734. return pte;
  735. }
  736. static inline pte_t pte_mkdirty(pte_t pte)
  737. {
  738. pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
  739. if (pte_val(pte) & _PAGE_WRITE)
  740. pte_val(pte) &= ~_PAGE_PROTECT;
  741. return pte;
  742. }
  743. static inline pte_t pte_mkold(pte_t pte)
  744. {
  745. pte_val(pte) &= ~_PAGE_YOUNG;
  746. pte_val(pte) |= _PAGE_INVALID;
  747. return pte;
  748. }
  749. static inline pte_t pte_mkyoung(pte_t pte)
  750. {
  751. pte_val(pte) |= _PAGE_YOUNG;
  752. if (pte_val(pte) & _PAGE_READ)
  753. pte_val(pte) &= ~_PAGE_INVALID;
  754. return pte;
  755. }
  756. static inline pte_t pte_mkspecial(pte_t pte)
  757. {
  758. pte_val(pte) |= _PAGE_SPECIAL;
  759. return pte;
  760. }
  761. #ifdef CONFIG_HUGETLB_PAGE
  762. static inline pte_t pte_mkhuge(pte_t pte)
  763. {
  764. pte_val(pte) |= _PAGE_LARGE;
  765. return pte;
  766. }
  767. #endif
  768. #define IPTE_GLOBAL 0
  769. #define IPTE_LOCAL 1
  770. static inline void __ptep_ipte(unsigned long address, pte_t *ptep, int local)
  771. {
  772. unsigned long pto = (unsigned long) ptep;
  773. /* Invalidation + TLB flush for the pte */
  774. asm volatile(
  775. " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
  776. : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
  777. [m4] "i" (local));
  778. }
  779. static inline void __ptep_ipte_range(unsigned long address, int nr,
  780. pte_t *ptep, int local)
  781. {
  782. unsigned long pto = (unsigned long) ptep;
  783. /* Invalidate a range of ptes + TLB flush of the ptes */
  784. do {
  785. asm volatile(
  786. " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
  787. : [r2] "+a" (address), [r3] "+a" (nr)
  788. : [r1] "a" (pto), [m4] "i" (local) : "memory");
  789. } while (nr != 255);
  790. }
  791. /*
  792. * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
  793. * both clear the TLB for the unmapped pte. The reason is that
  794. * ptep_get_and_clear is used in common code (e.g. change_pte_range)
  795. * to modify an active pte. The sequence is
  796. * 1) ptep_get_and_clear
  797. * 2) set_pte_at
  798. * 3) flush_tlb_range
  799. * On s390 the tlb needs to get flushed with the modification of the pte
  800. * if the pte is active. The only way how this can be implemented is to
  801. * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
  802. * is a nop.
  803. */
  804. pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
  805. pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
  806. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  807. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  808. unsigned long addr, pte_t *ptep)
  809. {
  810. pte_t pte = *ptep;
  811. pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
  812. return pte_young(pte);
  813. }
  814. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  815. static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
  816. unsigned long address, pte_t *ptep)
  817. {
  818. return ptep_test_and_clear_young(vma, address, ptep);
  819. }
  820. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  821. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  822. unsigned long addr, pte_t *ptep)
  823. {
  824. return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
  825. }
  826. #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
  827. pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
  828. void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
  829. #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
  830. static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
  831. unsigned long addr, pte_t *ptep)
  832. {
  833. return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
  834. }
  835. /*
  836. * The batched pte unmap code uses ptep_get_and_clear_full to clear the
  837. * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
  838. * tlbs of an mm if it can guarantee that the ptes of the mm_struct
  839. * cannot be accessed while the batched unmap is running. In this case
  840. * full==1 and a simple pte_clear is enough. See tlb.h.
  841. */
  842. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
  843. static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
  844. unsigned long addr,
  845. pte_t *ptep, int full)
  846. {
  847. if (full) {
  848. pte_t pte = *ptep;
  849. *ptep = __pte(_PAGE_INVALID);
  850. return pte;
  851. }
  852. return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
  853. }
  854. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  855. static inline void ptep_set_wrprotect(struct mm_struct *mm,
  856. unsigned long addr, pte_t *ptep)
  857. {
  858. pte_t pte = *ptep;
  859. if (pte_write(pte))
  860. ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
  861. }
  862. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  863. static inline int ptep_set_access_flags(struct vm_area_struct *vma,
  864. unsigned long addr, pte_t *ptep,
  865. pte_t entry, int dirty)
  866. {
  867. if (pte_same(*ptep, entry))
  868. return 0;
  869. ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
  870. return 1;
  871. }
  872. /*
  873. * Additional functions to handle KVM guest page tables
  874. */
  875. void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
  876. pte_t *ptep, pte_t entry);
  877. void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
  878. void ptep_notify(struct mm_struct *mm, unsigned long addr,
  879. pte_t *ptep, unsigned long bits);
  880. int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
  881. pte_t *ptep, int prot, unsigned long bit);
  882. void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
  883. pte_t *ptep , int reset);
  884. void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
  885. int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
  886. pte_t *sptep, pte_t *tptep, pte_t pte);
  887. void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
  888. bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
  889. int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
  890. unsigned char key, bool nq);
  891. int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
  892. unsigned char key, unsigned char *oldkey,
  893. bool nq, bool mr, bool mc);
  894. int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
  895. int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
  896. unsigned char *key);
  897. /*
  898. * Certain architectures need to do special things when PTEs
  899. * within a page table are directly modified. Thus, the following
  900. * hook is made available.
  901. */
  902. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  903. pte_t *ptep, pte_t entry)
  904. {
  905. if (pte_present(entry))
  906. pte_val(entry) &= ~_PAGE_UNUSED;
  907. if (mm_has_pgste(mm))
  908. ptep_set_pte_at(mm, addr, ptep, entry);
  909. else
  910. *ptep = entry;
  911. }
  912. /*
  913. * Conversion functions: convert a page and protection to a page entry,
  914. * and a page entry and page directory to the page they refer to.
  915. */
  916. static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
  917. {
  918. pte_t __pte;
  919. pte_val(__pte) = physpage + pgprot_val(pgprot);
  920. return pte_mkyoung(__pte);
  921. }
  922. static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
  923. {
  924. unsigned long physpage = page_to_phys(page);
  925. pte_t __pte = mk_pte_phys(physpage, pgprot);
  926. if (pte_write(__pte) && PageDirty(page))
  927. __pte = pte_mkdirty(__pte);
  928. return __pte;
  929. }
  930. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
  931. #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
  932. #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
  933. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
  934. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  935. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  936. #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
  937. #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
  938. #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
  939. static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
  940. {
  941. pud_t *pud = (pud_t *) pgd;
  942. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  943. pud = (pud_t *) pgd_deref(*pgd);
  944. return pud + pud_index(address);
  945. }
  946. static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
  947. {
  948. pmd_t *pmd = (pmd_t *) pud;
  949. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  950. pmd = (pmd_t *) pud_deref(*pud);
  951. return pmd + pmd_index(address);
  952. }
  953. #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
  954. #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
  955. #define pte_page(x) pfn_to_page(pte_pfn(x))
  956. #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
  957. #define pud_page(pud) pfn_to_page(pud_pfn(pud))
  958. /* Find an entry in the lowest level page table.. */
  959. #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
  960. #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
  961. #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
  962. #define pte_unmap(pte) do { } while (0)
  963. static inline pmd_t pmd_wrprotect(pmd_t pmd)
  964. {
  965. pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
  966. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  967. return pmd;
  968. }
  969. static inline pmd_t pmd_mkwrite(pmd_t pmd)
  970. {
  971. pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
  972. if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
  973. return pmd;
  974. pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
  975. return pmd;
  976. }
  977. static inline pmd_t pmd_mkclean(pmd_t pmd)
  978. {
  979. if (pmd_large(pmd)) {
  980. pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
  981. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  982. }
  983. return pmd;
  984. }
  985. static inline pmd_t pmd_mkdirty(pmd_t pmd)
  986. {
  987. if (pmd_large(pmd)) {
  988. pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
  989. _SEGMENT_ENTRY_SOFT_DIRTY;
  990. if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
  991. pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
  992. }
  993. return pmd;
  994. }
  995. static inline pud_t pud_wrprotect(pud_t pud)
  996. {
  997. pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
  998. pud_val(pud) |= _REGION_ENTRY_PROTECT;
  999. return pud;
  1000. }
  1001. static inline pud_t pud_mkwrite(pud_t pud)
  1002. {
  1003. pud_val(pud) |= _REGION3_ENTRY_WRITE;
  1004. if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
  1005. return pud;
  1006. pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
  1007. return pud;
  1008. }
  1009. static inline pud_t pud_mkclean(pud_t pud)
  1010. {
  1011. if (pud_large(pud)) {
  1012. pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
  1013. pud_val(pud) |= _REGION_ENTRY_PROTECT;
  1014. }
  1015. return pud;
  1016. }
  1017. static inline pud_t pud_mkdirty(pud_t pud)
  1018. {
  1019. if (pud_large(pud)) {
  1020. pud_val(pud) |= _REGION3_ENTRY_DIRTY |
  1021. _REGION3_ENTRY_SOFT_DIRTY;
  1022. if (pud_val(pud) & _REGION3_ENTRY_WRITE)
  1023. pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
  1024. }
  1025. return pud;
  1026. }
  1027. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
  1028. static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
  1029. {
  1030. /*
  1031. * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
  1032. * Convert to segment table entry format.
  1033. */
  1034. if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
  1035. return pgprot_val(SEGMENT_NONE);
  1036. if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
  1037. return pgprot_val(SEGMENT_READ);
  1038. return pgprot_val(SEGMENT_WRITE);
  1039. }
  1040. static inline pmd_t pmd_mkyoung(pmd_t pmd)
  1041. {
  1042. if (pmd_large(pmd)) {
  1043. pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
  1044. if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
  1045. pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
  1046. }
  1047. return pmd;
  1048. }
  1049. static inline pmd_t pmd_mkold(pmd_t pmd)
  1050. {
  1051. if (pmd_large(pmd)) {
  1052. pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
  1053. pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
  1054. }
  1055. return pmd;
  1056. }
  1057. static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
  1058. {
  1059. if (pmd_large(pmd)) {
  1060. pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
  1061. _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
  1062. _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
  1063. pmd_val(pmd) |= massage_pgprot_pmd(newprot);
  1064. if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
  1065. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  1066. if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
  1067. pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
  1068. return pmd;
  1069. }
  1070. pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
  1071. pmd_val(pmd) |= massage_pgprot_pmd(newprot);
  1072. return pmd;
  1073. }
  1074. static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
  1075. {
  1076. pmd_t __pmd;
  1077. pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
  1078. return __pmd;
  1079. }
  1080. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
  1081. static inline void __pmdp_csp(pmd_t *pmdp)
  1082. {
  1083. csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
  1084. pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
  1085. }
  1086. #define IDTE_GLOBAL 0
  1087. #define IDTE_LOCAL 1
  1088. static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp, int local)
  1089. {
  1090. unsigned long sto;
  1091. sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
  1092. asm volatile(
  1093. " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
  1094. : "+m" (*pmdp)
  1095. : [r1] "a" (sto), [r2] "a" ((address & HPAGE_MASK)),
  1096. [m4] "i" (local)
  1097. : "cc" );
  1098. }
  1099. static inline void __pudp_idte(unsigned long address, pud_t *pudp, int local)
  1100. {
  1101. unsigned long r3o;
  1102. r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
  1103. r3o |= _ASCE_TYPE_REGION3;
  1104. asm volatile(
  1105. " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
  1106. : "+m" (*pudp)
  1107. : [r1] "a" (r3o), [r2] "a" ((address & PUD_MASK)),
  1108. [m4] "i" (local)
  1109. : "cc");
  1110. }
  1111. pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
  1112. pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
  1113. pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
  1114. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1115. #define __HAVE_ARCH_PGTABLE_DEPOSIT
  1116. void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
  1117. pgtable_t pgtable);
  1118. #define __HAVE_ARCH_PGTABLE_WITHDRAW
  1119. pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
  1120. #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  1121. static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
  1122. unsigned long addr, pmd_t *pmdp,
  1123. pmd_t entry, int dirty)
  1124. {
  1125. VM_BUG_ON(addr & ~HPAGE_MASK);
  1126. entry = pmd_mkyoung(entry);
  1127. if (dirty)
  1128. entry = pmd_mkdirty(entry);
  1129. if (pmd_val(*pmdp) == pmd_val(entry))
  1130. return 0;
  1131. pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
  1132. return 1;
  1133. }
  1134. #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  1135. static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  1136. unsigned long addr, pmd_t *pmdp)
  1137. {
  1138. pmd_t pmd = *pmdp;
  1139. pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
  1140. return pmd_young(pmd);
  1141. }
  1142. #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
  1143. static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
  1144. unsigned long addr, pmd_t *pmdp)
  1145. {
  1146. VM_BUG_ON(addr & ~HPAGE_MASK);
  1147. return pmdp_test_and_clear_young(vma, addr, pmdp);
  1148. }
  1149. static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  1150. pmd_t *pmdp, pmd_t entry)
  1151. {
  1152. *pmdp = entry;
  1153. }
  1154. static inline pmd_t pmd_mkhuge(pmd_t pmd)
  1155. {
  1156. pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
  1157. pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
  1158. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  1159. return pmd;
  1160. }
  1161. #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
  1162. static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
  1163. unsigned long addr, pmd_t *pmdp)
  1164. {
  1165. return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
  1166. }
  1167. #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
  1168. static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
  1169. unsigned long addr,
  1170. pmd_t *pmdp, int full)
  1171. {
  1172. if (full) {
  1173. pmd_t pmd = *pmdp;
  1174. *pmdp = __pmd(_SEGMENT_ENTRY_INVALID);
  1175. return pmd;
  1176. }
  1177. return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
  1178. }
  1179. #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
  1180. static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
  1181. unsigned long addr, pmd_t *pmdp)
  1182. {
  1183. return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
  1184. }
  1185. #define __HAVE_ARCH_PMDP_INVALIDATE
  1186. static inline void pmdp_invalidate(struct vm_area_struct *vma,
  1187. unsigned long addr, pmd_t *pmdp)
  1188. {
  1189. pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
  1190. pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
  1191. }
  1192. #define __HAVE_ARCH_PMDP_SET_WRPROTECT
  1193. static inline void pmdp_set_wrprotect(struct mm_struct *mm,
  1194. unsigned long addr, pmd_t *pmdp)
  1195. {
  1196. pmd_t pmd = *pmdp;
  1197. if (pmd_write(pmd))
  1198. pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
  1199. }
  1200. static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
  1201. unsigned long address,
  1202. pmd_t *pmdp)
  1203. {
  1204. return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
  1205. }
  1206. #define pmdp_collapse_flush pmdp_collapse_flush
  1207. #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
  1208. #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
  1209. static inline int pmd_trans_huge(pmd_t pmd)
  1210. {
  1211. return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
  1212. }
  1213. #define has_transparent_hugepage has_transparent_hugepage
  1214. static inline int has_transparent_hugepage(void)
  1215. {
  1216. return MACHINE_HAS_HPAGE ? 1 : 0;
  1217. }
  1218. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1219. /*
  1220. * 64 bit swap entry format:
  1221. * A page-table entry has some bits we have to treat in a special way.
  1222. * Bits 52 and bit 55 have to be zero, otherwise a specification
  1223. * exception will occur instead of a page translation exception. The
  1224. * specification exception has the bad habit not to store necessary
  1225. * information in the lowcore.
  1226. * Bits 54 and 63 are used to indicate the page type.
  1227. * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
  1228. * This leaves the bits 0-51 and bits 56-62 to store type and offset.
  1229. * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
  1230. * for the offset.
  1231. * | offset |01100|type |00|
  1232. * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
  1233. * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
  1234. */
  1235. #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
  1236. #define __SWP_OFFSET_SHIFT 12
  1237. #define __SWP_TYPE_MASK ((1UL << 5) - 1)
  1238. #define __SWP_TYPE_SHIFT 2
  1239. static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
  1240. {
  1241. pte_t pte;
  1242. pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
  1243. pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
  1244. pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
  1245. return pte;
  1246. }
  1247. static inline unsigned long __swp_type(swp_entry_t entry)
  1248. {
  1249. return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
  1250. }
  1251. static inline unsigned long __swp_offset(swp_entry_t entry)
  1252. {
  1253. return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
  1254. }
  1255. static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
  1256. {
  1257. return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
  1258. }
  1259. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  1260. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  1261. #endif /* !__ASSEMBLY__ */
  1262. #define kern_addr_valid(addr) (1)
  1263. extern int vmem_add_mapping(unsigned long start, unsigned long size);
  1264. extern int vmem_remove_mapping(unsigned long start, unsigned long size);
  1265. extern int s390_enable_sie(void);
  1266. extern int s390_enable_skey(void);
  1267. extern void s390_reset_cmma(struct mm_struct *mm);
  1268. /* s390 has a private copy of get unmapped area to deal with cache synonyms */
  1269. #define HAVE_ARCH_UNMAPPED_AREA
  1270. #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
  1271. /*
  1272. * No page table caches to initialise
  1273. */
  1274. static inline void pgtable_cache_init(void) { }
  1275. static inline void check_pgt_cache(void) { }
  1276. #include <asm-generic/pgtable.h>
  1277. #endif /* _S390_PAGE_H */