123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455 |
- |
- | stan.sa 3.3 7/29/91
- |
- | The entry point stan computes the tangent of
- | an input argument;
- | stand does the same except for denormalized input.
- |
- | Input: Double-extended number X in location pointed to
- | by address register a0.
- |
- | Output: The value tan(X) returned in floating-point register Fp0.
- |
- | Accuracy and Monotonicity: The returned result is within 3 ulp in
- | 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
- | result is subsequently rounded to double precision. The
- | result is provably monotonic in double precision.
- |
- | Speed: The program sTAN takes approximately 170 cycles for
- | input argument X such that |X| < 15Pi, which is the usual
- | situation.
- |
- | Algorithm:
- |
- | 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
- |
- | 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
- | k = N mod 2, so in particular, k = 0 or 1.
- |
- | 3. If k is odd, go to 5.
- |
- | 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a
- | rational function U/V where
- | U = r + r*s*(P1 + s*(P2 + s*P3)), and
- | V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r.
- | Exit.
- |
- | 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a
- | rational function U/V where
- | U = r + r*s*(P1 + s*(P2 + s*P3)), and
- | V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r,
- | -Cot(r) = -V/U. Exit.
- |
- | 6. If |X| > 1, go to 8.
- |
- | 7. (|X|<2**(-40)) Tan(X) = X. Exit.
- |
- | 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
- |
- | Copyright (C) Motorola, Inc. 1990
- | All Rights Reserved
- |
- | For details on the license for this file, please see the
- | file, README, in this same directory.
- |STAN idnt 2,1 | Motorola 040 Floating Point Software Package
- |section 8
- #include "fpsp.h"
- BOUNDS1: .long 0x3FD78000,0x4004BC7E
- TWOBYPI: .long 0x3FE45F30,0x6DC9C883
- TANQ4: .long 0x3EA0B759,0xF50F8688
- TANP3: .long 0xBEF2BAA5,0xA8924F04
- TANQ3: .long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000
- TANP2: .long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000
- TANQ2: .long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000
- TANP1: .long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000
- TANQ1: .long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000
- INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000
- TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
- TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
- |--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
- |--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
- |--MOST 69 BITS LONG.
- .global PITBL
- PITBL:
- .long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000
- .long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000
- .long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000
- .long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000
- .long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000
- .long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000
- .long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000
- .long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000
- .long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000
- .long 0xC0040000,0x90836524,0x88034B96,0x20B00000
- .long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000
- .long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000
- .long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000
- .long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000
- .long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000
- .long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000
- .long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000
- .long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000
- .long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000
- .long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000
- .long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000
- .long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000
- .long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000
- .long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000
- .long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000
- .long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000
- .long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000
- .long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000
- .long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000
- .long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000
- .long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000
- .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000
- .long 0x00000000,0x00000000,0x00000000,0x00000000
- .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000
- .long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000
- .long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000
- .long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000
- .long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000
- .long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000
- .long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000
- .long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000
- .long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000
- .long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000
- .long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000
- .long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000
- .long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000
- .long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000
- .long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000
- .long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000
- .long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000
- .long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000
- .long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000
- .long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000
- .long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000
- .long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000
- .long 0x40040000,0x90836524,0x88034B96,0xA0B00000
- .long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000
- .long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000
- .long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000
- .long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000
- .long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000
- .long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000
- .long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000
- .long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000
- .long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000
- .set INARG,FP_SCR4
- .set TWOTO63,L_SCR1
- .set ENDFLAG,L_SCR2
- .set N,L_SCR3
- | xref t_frcinx
- |xref t_extdnrm
- .global stand
- stand:
- |--TAN(X) = X FOR DENORMALIZED X
- bra t_extdnrm
- .global stan
- stan:
- fmovex (%a0),%fp0 | ...LOAD INPUT
- movel (%a0),%d0
- movew 4(%a0),%d0
- andil #0x7FFFFFFF,%d0
- cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)?
- bges TANOK1
- bra TANSM
- TANOK1:
- cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI?
- blts TANMAIN
- bra REDUCEX
- TANMAIN:
- |--THIS IS THE USUAL CASE, |X| <= 15 PI.
- |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
- fmovex %fp0,%fp1
- fmuld TWOBYPI,%fp1 | ...X*2/PI
- |--HIDE THE NEXT TWO INSTRUCTIONS
- leal PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
- |--FP1 IS NOW READY
- fmovel %fp1,%d0 | ...CONVERT TO INTEGER
- asll #4,%d0
- addal %d0,%a1 | ...ADDRESS N*PIBY2 IN Y1, Y2
- fsubx (%a1)+,%fp0 | ...X-Y1
- |--HIDE THE NEXT ONE
- fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2
- rorl #5,%d0
- andil #0x80000000,%d0 | ...D0 WAS ODD IFF D0 < 0
- TANCONT:
- cmpil #0,%d0
- blt NODD
- fmovex %fp0,%fp1
- fmulx %fp1,%fp1 | ...S = R*R
- fmoved TANQ4,%fp3
- fmoved TANP3,%fp2
- fmulx %fp1,%fp3 | ...SQ4
- fmulx %fp1,%fp2 | ...SP3
- faddd TANQ3,%fp3 | ...Q3+SQ4
- faddx TANP2,%fp2 | ...P2+SP3
- fmulx %fp1,%fp3 | ...S(Q3+SQ4)
- fmulx %fp1,%fp2 | ...S(P2+SP3)
- faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4)
- faddx TANP1,%fp2 | ...P1+S(P2+SP3)
- fmulx %fp1,%fp3 | ...S(Q2+S(Q3+SQ4))
- fmulx %fp1,%fp2 | ...S(P1+S(P2+SP3))
- faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4))
- fmulx %fp0,%fp2 | ...RS(P1+S(P2+SP3))
- fmulx %fp3,%fp1 | ...S(Q1+S(Q2+S(Q3+SQ4)))
- faddx %fp2,%fp0 | ...R+RS(P1+S(P2+SP3))
- fadds #0x3F800000,%fp1 | ...1+S(Q1+...)
- fmovel %d1,%fpcr |restore users exceptions
- fdivx %fp1,%fp0 |last inst - possible exception set
- bra t_frcinx
- NODD:
- fmovex %fp0,%fp1
- fmulx %fp0,%fp0 | ...S = R*R
- fmoved TANQ4,%fp3
- fmoved TANP3,%fp2
- fmulx %fp0,%fp3 | ...SQ4
- fmulx %fp0,%fp2 | ...SP3
- faddd TANQ3,%fp3 | ...Q3+SQ4
- faddx TANP2,%fp2 | ...P2+SP3
- fmulx %fp0,%fp3 | ...S(Q3+SQ4)
- fmulx %fp0,%fp2 | ...S(P2+SP3)
- faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4)
- faddx TANP1,%fp2 | ...P1+S(P2+SP3)
- fmulx %fp0,%fp3 | ...S(Q2+S(Q3+SQ4))
- fmulx %fp0,%fp2 | ...S(P1+S(P2+SP3))
- faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4))
- fmulx %fp1,%fp2 | ...RS(P1+S(P2+SP3))
- fmulx %fp3,%fp0 | ...S(Q1+S(Q2+S(Q3+SQ4)))
- faddx %fp2,%fp1 | ...R+RS(P1+S(P2+SP3))
- fadds #0x3F800000,%fp0 | ...1+S(Q1+...)
- fmovex %fp1,-(%sp)
- eoril #0x80000000,(%sp)
- fmovel %d1,%fpcr |restore users exceptions
- fdivx (%sp)+,%fp0 |last inst - possible exception set
- bra t_frcinx
- TANBORS:
- |--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
- |--IF |X| < 2**(-40), RETURN X OR 1.
- cmpil #0x3FFF8000,%d0
- bgts REDUCEX
- TANSM:
- fmovex %fp0,-(%sp)
- fmovel %d1,%fpcr |restore users exceptions
- fmovex (%sp)+,%fp0 |last inst - possible exception set
- bra t_frcinx
- REDUCEX:
- |--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
- |--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
- |--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
- fmovemx %fp2-%fp5,-(%a7) | ...save FP2 through FP5
- movel %d2,-(%a7)
- fmoves #0x00000000,%fp1
- |--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
- |--there is a danger of unwanted overflow in first LOOP iteration. In this
- |--case, reduce argument by one remainder step to make subsequent reduction
- |--safe.
- cmpil #0x7ffeffff,%d0 |is argument dangerously large?
- bnes LOOP
- movel #0x7ffe0000,FP_SCR2(%a6) |yes
- | ;create 2**16383*PI/2
- movel #0xc90fdaa2,FP_SCR2+4(%a6)
- clrl FP_SCR2+8(%a6)
- ftstx %fp0 |test sign of argument
- movel #0x7fdc0000,FP_SCR3(%a6) |create low half of 2**16383*
- | ;PI/2 at FP_SCR3
- movel #0x85a308d3,FP_SCR3+4(%a6)
- clrl FP_SCR3+8(%a6)
- fblt red_neg
- orw #0x8000,FP_SCR2(%a6) |positive arg
- orw #0x8000,FP_SCR3(%a6)
- red_neg:
- faddx FP_SCR2(%a6),%fp0 |high part of reduction is exact
- fmovex %fp0,%fp1 |save high result in fp1
- faddx FP_SCR3(%a6),%fp0 |low part of reduction
- fsubx %fp0,%fp1 |determine low component of result
- faddx FP_SCR3(%a6),%fp1 |fp0/fp1 are reduced argument.
- |--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
- |--integer quotient will be stored in N
- |--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
- LOOP:
- fmovex %fp0,INARG(%a6) | ...+-2**K * F, 1 <= F < 2
- movew INARG(%a6),%d0
- movel %d0,%a1 | ...save a copy of D0
- andil #0x00007FFF,%d0
- subil #0x00003FFF,%d0 | ...D0 IS K
- cmpil #28,%d0
- bles LASTLOOP
- CONTLOOP:
- subil #27,%d0 | ...D0 IS L := K-27
- movel #0,ENDFLAG(%a6)
- bras WORK
- LASTLOOP:
- clrl %d0 | ...D0 IS L := 0
- movel #1,ENDFLAG(%a6)
- WORK:
- |--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
- |--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
- |--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
- |--2**L * (PIby2_1), 2**L * (PIby2_2)
- movel #0x00003FFE,%d2 | ...BIASED EXPO OF 2/PI
- subl %d0,%d2 | ...BIASED EXPO OF 2**(-L)*(2/PI)
- movel #0xA2F9836E,FP_SCR1+4(%a6)
- movel #0x4E44152A,FP_SCR1+8(%a6)
- movew %d2,FP_SCR1(%a6) | ...FP_SCR1 is 2**(-L)*(2/PI)
- fmovex %fp0,%fp2
- fmulx FP_SCR1(%a6),%fp2
- |--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
- |--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
- |--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
- |--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
- |--US THE DESIRED VALUE IN FLOATING POINT.
- |--HIDE SIX CYCLES OF INSTRUCTION
- movel %a1,%d2
- swap %d2
- andil #0x80000000,%d2
- oril #0x5F000000,%d2 | ...D2 IS SIGN(INARG)*2**63 IN SGL
- movel %d2,TWOTO63(%a6)
- movel %d0,%d2
- addil #0x00003FFF,%d2 | ...BIASED EXPO OF 2**L * (PI/2)
- |--FP2 IS READY
- fadds TWOTO63(%a6),%fp2 | ...THE FRACTIONAL PART OF FP1 IS ROUNDED
- |--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2
- movew %d2,FP_SCR2(%a6)
- clrw FP_SCR2+2(%a6)
- movel #0xC90FDAA2,FP_SCR2+4(%a6)
- clrl FP_SCR2+8(%a6) | ...FP_SCR2 is 2**(L) * Piby2_1
- |--FP2 IS READY
- fsubs TWOTO63(%a6),%fp2 | ...FP2 is N
- addil #0x00003FDD,%d0
- movew %d0,FP_SCR3(%a6)
- clrw FP_SCR3+2(%a6)
- movel #0x85A308D3,FP_SCR3+4(%a6)
- clrl FP_SCR3+8(%a6) | ...FP_SCR3 is 2**(L) * Piby2_2
- movel ENDFLAG(%a6),%d0
- |--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
- |--P2 = 2**(L) * Piby2_2
- fmovex %fp2,%fp4
- fmulx FP_SCR2(%a6),%fp4 | ...W = N*P1
- fmovex %fp2,%fp5
- fmulx FP_SCR3(%a6),%fp5 | ...w = N*P2
- fmovex %fp4,%fp3
- |--we want P+p = W+w but |p| <= half ulp of P
- |--Then, we need to compute A := R-P and a := r-p
- faddx %fp5,%fp3 | ...FP3 is P
- fsubx %fp3,%fp4 | ...W-P
- fsubx %fp3,%fp0 | ...FP0 is A := R - P
- faddx %fp5,%fp4 | ...FP4 is p = (W-P)+w
- fmovex %fp0,%fp3 | ...FP3 A
- fsubx %fp4,%fp1 | ...FP1 is a := r - p
- |--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
- |--|r| <= half ulp of R.
- faddx %fp1,%fp0 | ...FP0 is R := A+a
- |--No need to calculate r if this is the last loop
- cmpil #0,%d0
- bgt RESTORE
- |--Need to calculate r
- fsubx %fp0,%fp3 | ...A-R
- faddx %fp3,%fp1 | ...FP1 is r := (A-R)+a
- bra LOOP
- RESTORE:
- fmovel %fp2,N(%a6)
- movel (%a7)+,%d2
- fmovemx (%a7)+,%fp2-%fp5
- movel N(%a6),%d0
- rorl #1,%d0
- bra TANCONT
- |end
|