123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610 |
- /*
- * Copyright (C) 2004-2006 Atmel Corporation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #include <linux/clk.h>
- #include <linux/init.h>
- #include <linux/initrd.h>
- #include <linux/sched.h>
- #include <linux/console.h>
- #include <linux/ioport.h>
- #include <linux/bootmem.h>
- #include <linux/fs.h>
- #include <linux/module.h>
- #include <linux/pfn.h>
- #include <linux/root_dev.h>
- #include <linux/cpu.h>
- #include <linux/kernel.h>
- #include <asm/sections.h>
- #include <asm/processor.h>
- #include <asm/pgtable.h>
- #include <asm/setup.h>
- #include <asm/sysreg.h>
- #include <mach/board.h>
- #include <mach/init.h>
- extern int root_mountflags;
- /*
- * Initialize loops_per_jiffy as 5000000 (500MIPS).
- * Better make it too large than too small...
- */
- struct avr32_cpuinfo boot_cpu_data = {
- .loops_per_jiffy = 5000000
- };
- EXPORT_SYMBOL(boot_cpu_data);
- static char __initdata command_line[COMMAND_LINE_SIZE];
- /*
- * Standard memory resources
- */
- static struct resource __initdata kernel_data = {
- .name = "Kernel data",
- .start = 0,
- .end = 0,
- .flags = IORESOURCE_SYSTEM_RAM,
- };
- static struct resource __initdata kernel_code = {
- .name = "Kernel code",
- .start = 0,
- .end = 0,
- .flags = IORESOURCE_SYSTEM_RAM,
- .sibling = &kernel_data,
- };
- /*
- * Available system RAM and reserved regions as singly linked
- * lists. These lists are traversed using the sibling pointer in
- * struct resource and are kept sorted at all times.
- */
- static struct resource *__initdata system_ram;
- static struct resource *__initdata reserved = &kernel_code;
- /*
- * We need to allocate these before the bootmem allocator is up and
- * running, so we need this "cache". 32 entries are probably enough
- * for all but the most insanely complex systems.
- */
- static struct resource __initdata res_cache[32];
- static unsigned int __initdata res_cache_next_free;
- static void __init resource_init(void)
- {
- struct resource *mem, *res;
- struct resource *new;
- kernel_code.start = __pa(init_mm.start_code);
- for (mem = system_ram; mem; mem = mem->sibling) {
- new = alloc_bootmem_low(sizeof(struct resource));
- memcpy(new, mem, sizeof(struct resource));
- new->sibling = NULL;
- if (request_resource(&iomem_resource, new))
- printk(KERN_WARNING "Bad RAM resource %08x-%08x\n",
- mem->start, mem->end);
- }
- for (res = reserved; res; res = res->sibling) {
- new = alloc_bootmem_low(sizeof(struct resource));
- memcpy(new, res, sizeof(struct resource));
- new->sibling = NULL;
- if (insert_resource(&iomem_resource, new))
- printk(KERN_WARNING
- "Bad reserved resource %s (%08x-%08x)\n",
- res->name, res->start, res->end);
- }
- }
- static void __init
- add_physical_memory(resource_size_t start, resource_size_t end)
- {
- struct resource *new, *next, **pprev;
- for (pprev = &system_ram, next = system_ram; next;
- pprev = &next->sibling, next = next->sibling) {
- if (end < next->start)
- break;
- if (start <= next->end) {
- printk(KERN_WARNING
- "Warning: Physical memory map is broken\n");
- printk(KERN_WARNING
- "Warning: %08x-%08x overlaps %08x-%08x\n",
- start, end, next->start, next->end);
- return;
- }
- }
- if (res_cache_next_free >= ARRAY_SIZE(res_cache)) {
- printk(KERN_WARNING
- "Warning: Failed to add physical memory %08x-%08x\n",
- start, end);
- return;
- }
- new = &res_cache[res_cache_next_free++];
- new->start = start;
- new->end = end;
- new->name = "System RAM";
- new->flags = IORESOURCE_SYSTEM_RAM;
- *pprev = new;
- }
- static int __init
- add_reserved_region(resource_size_t start, resource_size_t end,
- const char *name)
- {
- struct resource *new, *next, **pprev;
- if (end < start)
- return -EINVAL;
- if (res_cache_next_free >= ARRAY_SIZE(res_cache))
- return -ENOMEM;
- for (pprev = &reserved, next = reserved; next;
- pprev = &next->sibling, next = next->sibling) {
- if (end < next->start)
- break;
- if (start <= next->end)
- return -EBUSY;
- }
- new = &res_cache[res_cache_next_free++];
- new->start = start;
- new->end = end;
- new->name = name;
- new->sibling = next;
- new->flags = IORESOURCE_MEM;
- *pprev = new;
- return 0;
- }
- static unsigned long __init
- find_free_region(const struct resource *mem, resource_size_t size,
- resource_size_t align)
- {
- struct resource *res;
- unsigned long target;
- target = ALIGN(mem->start, align);
- for (res = reserved; res; res = res->sibling) {
- if ((target + size) <= res->start)
- break;
- if (target <= res->end)
- target = ALIGN(res->end + 1, align);
- }
- if ((target + size) > (mem->end + 1))
- return mem->end + 1;
- return target;
- }
- static int __init
- alloc_reserved_region(resource_size_t *start, resource_size_t size,
- resource_size_t align, const char *name)
- {
- struct resource *mem;
- resource_size_t target;
- int ret;
- for (mem = system_ram; mem; mem = mem->sibling) {
- target = find_free_region(mem, size, align);
- if (target <= mem->end) {
- ret = add_reserved_region(target, target + size - 1,
- name);
- if (!ret)
- *start = target;
- return ret;
- }
- }
- return -ENOMEM;
- }
- /*
- * Early framebuffer allocation. Works as follows:
- * - If fbmem_size is zero, nothing will be allocated or reserved.
- * - If fbmem_start is zero when setup_bootmem() is called,
- * a block of fbmem_size bytes will be reserved before bootmem
- * initialization. It will be aligned to the largest page size
- * that fbmem_size is a multiple of.
- * - If fbmem_start is nonzero, an area of size fbmem_size will be
- * reserved at the physical address fbmem_start if possible. If
- * it collides with other reserved memory, a different block of
- * same size will be allocated, just as if fbmem_start was zero.
- *
- * Board-specific code may use these variables to set up platform data
- * for the framebuffer driver if fbmem_size is nonzero.
- */
- resource_size_t __initdata fbmem_start;
- resource_size_t __initdata fbmem_size;
- /*
- * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
- * use as framebuffer.
- *
- * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
- * starting at yyy to be reserved for use as framebuffer.
- *
- * The kernel won't verify that the memory region starting at yyy
- * actually contains usable RAM.
- */
- static int __init early_parse_fbmem(char *p)
- {
- int ret;
- unsigned long align;
- fbmem_size = memparse(p, &p);
- if (*p == '@') {
- fbmem_start = memparse(p + 1, &p);
- ret = add_reserved_region(fbmem_start,
- fbmem_start + fbmem_size - 1,
- "Framebuffer");
- if (ret) {
- printk(KERN_WARNING
- "Failed to reserve framebuffer memory\n");
- fbmem_start = 0;
- }
- }
- if (!fbmem_start) {
- if ((fbmem_size & 0x000fffffUL) == 0)
- align = 0x100000; /* 1 MiB */
- else if ((fbmem_size & 0x0000ffffUL) == 0)
- align = 0x10000; /* 64 KiB */
- else
- align = 0x1000; /* 4 KiB */
- ret = alloc_reserved_region(&fbmem_start, fbmem_size,
- align, "Framebuffer");
- if (ret) {
- printk(KERN_WARNING
- "Failed to allocate framebuffer memory\n");
- fbmem_size = 0;
- } else {
- memset(__va(fbmem_start), 0, fbmem_size);
- }
- }
- return 0;
- }
- early_param("fbmem", early_parse_fbmem);
- /*
- * Pick out the memory size. We look for mem=size@start,
- * where start and size are "size[KkMmGg]"
- */
- static int __init early_mem(char *p)
- {
- resource_size_t size, start;
- start = system_ram->start;
- size = memparse(p, &p);
- if (*p == '@')
- start = memparse(p + 1, &p);
- system_ram->start = start;
- system_ram->end = system_ram->start + size - 1;
- return 0;
- }
- early_param("mem", early_mem);
- static int __init parse_tag_core(struct tag *tag)
- {
- if (tag->hdr.size > 2) {
- if ((tag->u.core.flags & 1) == 0)
- root_mountflags &= ~MS_RDONLY;
- ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
- }
- return 0;
- }
- __tagtable(ATAG_CORE, parse_tag_core);
- static int __init parse_tag_mem(struct tag *tag)
- {
- unsigned long start, end;
- /*
- * Ignore zero-sized entries. If we're running standalone, the
- * SDRAM code may emit such entries if something goes
- * wrong...
- */
- if (tag->u.mem_range.size == 0)
- return 0;
- start = tag->u.mem_range.addr;
- end = tag->u.mem_range.addr + tag->u.mem_range.size - 1;
- add_physical_memory(start, end);
- return 0;
- }
- __tagtable(ATAG_MEM, parse_tag_mem);
- static int __init parse_tag_rdimg(struct tag *tag)
- {
- #ifdef CONFIG_BLK_DEV_INITRD
- struct tag_mem_range *mem = &tag->u.mem_range;
- int ret;
- if (initrd_start) {
- printk(KERN_WARNING
- "Warning: Only the first initrd image will be used\n");
- return 0;
- }
- ret = add_reserved_region(mem->addr, mem->addr + mem->size - 1,
- "initrd");
- if (ret) {
- printk(KERN_WARNING
- "Warning: Failed to reserve initrd memory\n");
- return ret;
- }
- initrd_start = (unsigned long)__va(mem->addr);
- initrd_end = initrd_start + mem->size;
- #else
- printk(KERN_WARNING "RAM disk image present, but "
- "no initrd support in kernel, ignoring\n");
- #endif
- return 0;
- }
- __tagtable(ATAG_RDIMG, parse_tag_rdimg);
- static int __init parse_tag_rsvd_mem(struct tag *tag)
- {
- struct tag_mem_range *mem = &tag->u.mem_range;
- return add_reserved_region(mem->addr, mem->addr + mem->size - 1,
- "Reserved");
- }
- __tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);
- static int __init parse_tag_cmdline(struct tag *tag)
- {
- strlcpy(boot_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
- return 0;
- }
- __tagtable(ATAG_CMDLINE, parse_tag_cmdline);
- static int __init parse_tag_clock(struct tag *tag)
- {
- /*
- * We'll figure out the clocks by peeking at the system
- * manager regs directly.
- */
- return 0;
- }
- __tagtable(ATAG_CLOCK, parse_tag_clock);
- /*
- * The board_number correspond to the bd->bi_board_number in U-Boot. This
- * parameter is only available during initialisation and can be used in some
- * kind of board identification.
- */
- u32 __initdata board_number;
- static int __init parse_tag_boardinfo(struct tag *tag)
- {
- board_number = tag->u.boardinfo.board_number;
- return 0;
- }
- __tagtable(ATAG_BOARDINFO, parse_tag_boardinfo);
- /*
- * Scan the tag table for this tag, and call its parse function. The
- * tag table is built by the linker from all the __tagtable
- * declarations.
- */
- static int __init parse_tag(struct tag *tag)
- {
- extern struct tagtable __tagtable_begin, __tagtable_end;
- struct tagtable *t;
- for (t = &__tagtable_begin; t < &__tagtable_end; t++)
- if (tag->hdr.tag == t->tag) {
- t->parse(tag);
- break;
- }
- return t < &__tagtable_end;
- }
- /*
- * Parse all tags in the list we got from the boot loader
- */
- static void __init parse_tags(struct tag *t)
- {
- for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
- if (!parse_tag(t))
- printk(KERN_WARNING
- "Ignoring unrecognised tag 0x%08x\n",
- t->hdr.tag);
- }
- /*
- * Find a free memory region large enough for storing the
- * bootmem bitmap.
- */
- static unsigned long __init
- find_bootmap_pfn(const struct resource *mem)
- {
- unsigned long bootmap_pages, bootmap_len;
- unsigned long node_pages = PFN_UP(resource_size(mem));
- unsigned long bootmap_start;
- bootmap_pages = bootmem_bootmap_pages(node_pages);
- bootmap_len = bootmap_pages << PAGE_SHIFT;
- /*
- * Find a large enough region without reserved pages for
- * storing the bootmem bitmap. We can take advantage of the
- * fact that all lists have been sorted.
- *
- * We have to check that we don't collide with any reserved
- * regions, which includes the kernel image and any RAMDISK
- * images.
- */
- bootmap_start = find_free_region(mem, bootmap_len, PAGE_SIZE);
- return bootmap_start >> PAGE_SHIFT;
- }
- #define MAX_LOWMEM HIGHMEM_START
- #define MAX_LOWMEM_PFN PFN_DOWN(MAX_LOWMEM)
- static void __init setup_bootmem(void)
- {
- unsigned bootmap_size;
- unsigned long first_pfn, bootmap_pfn, pages;
- unsigned long max_pfn, max_low_pfn;
- unsigned node = 0;
- struct resource *res;
- printk(KERN_INFO "Physical memory:\n");
- for (res = system_ram; res; res = res->sibling)
- printk(" %08x-%08x\n", res->start, res->end);
- printk(KERN_INFO "Reserved memory:\n");
- for (res = reserved; res; res = res->sibling)
- printk(" %08x-%08x: %s\n",
- res->start, res->end, res->name);
- nodes_clear(node_online_map);
- if (system_ram->sibling)
- printk(KERN_WARNING "Only using first memory bank\n");
- for (res = system_ram; res; res = NULL) {
- first_pfn = PFN_UP(res->start);
- max_low_pfn = max_pfn = PFN_DOWN(res->end + 1);
- bootmap_pfn = find_bootmap_pfn(res);
- if (bootmap_pfn > max_pfn)
- panic("No space for bootmem bitmap!\n");
- if (max_low_pfn > MAX_LOWMEM_PFN) {
- max_low_pfn = MAX_LOWMEM_PFN;
- #ifndef CONFIG_HIGHMEM
- /*
- * Lowmem is memory that can be addressed
- * directly through P1/P2
- */
- printk(KERN_WARNING
- "Node %u: Only %ld MiB of memory will be used.\n",
- node, MAX_LOWMEM >> 20);
- printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
- #else
- #error HIGHMEM is not supported by AVR32 yet
- #endif
- }
- /* Initialize the boot-time allocator with low memory only. */
- bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn,
- first_pfn, max_low_pfn);
- /*
- * Register fully available RAM pages with the bootmem
- * allocator.
- */
- pages = max_low_pfn - first_pfn;
- free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn),
- PFN_PHYS(pages));
- /* Reserve space for the bootmem bitmap... */
- reserve_bootmem_node(NODE_DATA(node),
- PFN_PHYS(bootmap_pfn),
- bootmap_size,
- BOOTMEM_DEFAULT);
- /* ...and any other reserved regions. */
- for (res = reserved; res; res = res->sibling) {
- if (res->start > PFN_PHYS(max_pfn))
- break;
- /*
- * resource_init will complain about partial
- * overlaps, so we'll just ignore such
- * resources for now.
- */
- if (res->start >= PFN_PHYS(first_pfn)
- && res->end < PFN_PHYS(max_pfn))
- reserve_bootmem_node(NODE_DATA(node),
- res->start,
- resource_size(res),
- BOOTMEM_DEFAULT);
- }
- node_set_online(node);
- }
- }
- void __init setup_arch (char **cmdline_p)
- {
- struct clk *cpu_clk;
- init_mm.start_code = (unsigned long)_stext;
- init_mm.end_code = (unsigned long)_etext;
- init_mm.end_data = (unsigned long)_edata;
- init_mm.brk = (unsigned long)_end;
- /*
- * Include .init section to make allocations easier. It will
- * be removed before the resource is actually requested.
- */
- kernel_code.start = __pa(__init_begin);
- kernel_code.end = __pa(init_mm.end_code - 1);
- kernel_data.start = __pa(init_mm.end_code);
- kernel_data.end = __pa(init_mm.brk - 1);
- parse_tags(bootloader_tags);
- setup_processor();
- setup_platform();
- setup_board();
- cpu_clk = clk_get(NULL, "cpu");
- if (IS_ERR(cpu_clk)) {
- printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
- } else {
- unsigned long cpu_hz = clk_get_rate(cpu_clk);
- /*
- * Well, duh, but it's probably a good idea to
- * increment the use count.
- */
- clk_enable(cpu_clk);
- boot_cpu_data.clk = cpu_clk;
- boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
- printk("CPU: Running at %lu.%03lu MHz\n",
- ((cpu_hz + 500) / 1000) / 1000,
- ((cpu_hz + 500) / 1000) % 1000);
- }
- strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
- *cmdline_p = command_line;
- parse_early_param();
- setup_bootmem();
- #ifdef CONFIG_VT
- conswitchp = &dummy_con;
- #endif
- paging_init();
- resource_init();
- }
|