123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560 |
- /*
- * Copyright 2010 Tilera Corporation. All Rights Reserved.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation, version 2.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- * NON INFRINGEMENT. See the GNU General Public License for
- * more details.
- */
- #include <arch/chip.h>
- /*
- * This file shares the implementation of the userspace memcpy and
- * the kernel's memcpy, copy_to_user and copy_from_user.
- */
- #include <linux/linkage.h>
- #define IS_MEMCPY 0
- #define IS_COPY_FROM_USER 1
- #define IS_COPY_FROM_USER_ZEROING 2
- #define IS_COPY_TO_USER -1
- .section .text.memcpy_common, "ax"
- .align 64
- /* Use this to preface each bundle that can cause an exception so
- * the kernel can clean up properly. The special cleanup code should
- * not use these, since it knows what it is doing.
- */
- #define EX \
- .pushsection __ex_table, "a"; \
- .align 4; \
- .word 9f, memcpy_common_fixup; \
- .popsection; \
- 9
- /* __copy_from_user_inatomic takes the kernel target address in r0,
- * the user source in r1, and the bytes to copy in r2.
- * It returns the number of uncopiable bytes (hopefully zero) in r0.
- */
- ENTRY(__copy_from_user_inatomic)
- .type __copy_from_user_inatomic, @function
- FEEDBACK_ENTER_EXPLICIT(__copy_from_user_inatomic, \
- .text.memcpy_common, \
- .Lend_memcpy_common - __copy_from_user_inatomic)
- { movei r29, IS_COPY_FROM_USER; j memcpy_common }
- .size __copy_from_user_inatomic, . - __copy_from_user_inatomic
- /* __copy_from_user_zeroing is like __copy_from_user_inatomic, but
- * any uncopiable bytes are zeroed in the target.
- */
- ENTRY(__copy_from_user_zeroing)
- .type __copy_from_user_zeroing, @function
- FEEDBACK_REENTER(__copy_from_user_inatomic)
- { movei r29, IS_COPY_FROM_USER_ZEROING; j memcpy_common }
- .size __copy_from_user_zeroing, . - __copy_from_user_zeroing
- /* __copy_to_user_inatomic takes the user target address in r0,
- * the kernel source in r1, and the bytes to copy in r2.
- * It returns the number of uncopiable bytes (hopefully zero) in r0.
- */
- ENTRY(__copy_to_user_inatomic)
- .type __copy_to_user_inatomic, @function
- FEEDBACK_REENTER(__copy_from_user_inatomic)
- { movei r29, IS_COPY_TO_USER; j memcpy_common }
- .size __copy_to_user_inatomic, . - __copy_to_user_inatomic
- ENTRY(memcpy)
- .type memcpy, @function
- FEEDBACK_REENTER(__copy_from_user_inatomic)
- { movei r29, IS_MEMCPY }
- .size memcpy, . - memcpy
- /* Fall through */
- .type memcpy_common, @function
- memcpy_common:
- /* On entry, r29 holds one of the IS_* macro values from above. */
- /* r0 is the dest, r1 is the source, r2 is the size. */
- /* Save aside original dest so we can return it at the end. */
- { sw sp, lr; move r23, r0; or r4, r0, r1 }
- /* Check for an empty size. */
- { bz r2, .Ldone; andi r4, r4, 3 }
- /* Save aside original values in case of a fault. */
- { move r24, r1; move r25, r2 }
- move r27, lr
- /* Check for an unaligned source or dest. */
- { bnz r4, .Lcopy_unaligned_maybe_many; addli r4, r2, -256 }
- .Lcheck_aligned_copy_size:
- /* If we are copying < 256 bytes, branch to simple case. */
- { blzt r4, .Lcopy_8_check; slti_u r8, r2, 8 }
- /* Copying >= 256 bytes, so jump to complex prefetching loop. */
- { andi r6, r1, 63; j .Lcopy_many }
- /*
- *
- * Aligned 4 byte at a time copy loop
- *
- */
- .Lcopy_8_loop:
- /* Copy two words at a time to hide load latency. */
- EX: { lw r3, r1; addi r1, r1, 4; slti_u r8, r2, 16 }
- EX: { lw r4, r1; addi r1, r1, 4 }
- EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
- EX: { sw r0, r4; addi r0, r0, 4; addi r2, r2, -4 }
- .Lcopy_8_check:
- { bzt r8, .Lcopy_8_loop; slti_u r4, r2, 4 }
- /* Copy odd leftover word, if any. */
- { bnzt r4, .Lcheck_odd_stragglers }
- EX: { lw r3, r1; addi r1, r1, 4 }
- EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
- .Lcheck_odd_stragglers:
- { bnz r2, .Lcopy_unaligned_few }
- .Ldone:
- /* For memcpy return original dest address, else zero. */
- { mz r0, r29, r23; jrp lr }
- /*
- *
- * Prefetching multiple cache line copy handler (for large transfers).
- *
- */
- /* Copy words until r1 is cache-line-aligned. */
- .Lalign_loop:
- EX: { lw r3, r1; addi r1, r1, 4 }
- { andi r6, r1, 63 }
- EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
- .Lcopy_many:
- { bnzt r6, .Lalign_loop; addi r9, r0, 63 }
- { addi r3, r1, 60; andi r9, r9, -64 }
- /* No need to prefetch dst, we'll just do the wh64
- * right before we copy a line.
- */
- EX: { lw r5, r3; addi r3, r3, 64; movei r4, 1 }
- /* Intentionally stall for a few cycles to leave L2 cache alone. */
- { bnzt zero, .; move r27, lr }
- EX: { lw r6, r3; addi r3, r3, 64 }
- /* Intentionally stall for a few cycles to leave L2 cache alone. */
- { bnzt zero, . }
- EX: { lw r7, r3; addi r3, r3, 64 }
- /* Intentionally stall for a few cycles to leave L2 cache alone. */
- { bz zero, .Lbig_loop2 }
- /* On entry to this loop:
- * - r0 points to the start of dst line 0
- * - r1 points to start of src line 0
- * - r2 >= (256 - 60), only the first time the loop trips.
- * - r3 contains r1 + 128 + 60 [pointer to end of source line 2]
- * This is our prefetch address. When we get near the end
- * rather than prefetching off the end this is changed to point
- * to some "safe" recently loaded address.
- * - r5 contains *(r1 + 60) [i.e. last word of source line 0]
- * - r6 contains *(r1 + 64 + 60) [i.e. last word of source line 1]
- * - r9 contains ((r0 + 63) & -64)
- * [start of next dst cache line.]
- */
- .Lbig_loop:
- { jal .Lcopy_line2; add r15, r1, r2 }
- .Lbig_loop2:
- /* Copy line 0, first stalling until r5 is ready. */
- EX: { move r12, r5; lw r16, r1 }
- { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
- /* Prefetch several lines ahead. */
- EX: { lw r5, r3; addi r3, r3, 64 }
- { jal .Lcopy_line }
- /* Copy line 1, first stalling until r6 is ready. */
- EX: { move r12, r6; lw r16, r1 }
- { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
- /* Prefetch several lines ahead. */
- EX: { lw r6, r3; addi r3, r3, 64 }
- { jal .Lcopy_line }
- /* Copy line 2, first stalling until r7 is ready. */
- EX: { move r12, r7; lw r16, r1 }
- { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
- /* Prefetch several lines ahead. */
- EX: { lw r7, r3; addi r3, r3, 64 }
- /* Use up a caches-busy cycle by jumping back to the top of the
- * loop. Might as well get it out of the way now.
- */
- { j .Lbig_loop }
- /* On entry:
- * - r0 points to the destination line.
- * - r1 points to the source line.
- * - r3 is the next prefetch address.
- * - r9 holds the last address used for wh64.
- * - r12 = WORD_15
- * - r16 = WORD_0.
- * - r17 == r1 + 16.
- * - r27 holds saved lr to restore.
- *
- * On exit:
- * - r0 is incremented by 64.
- * - r1 is incremented by 64, unless that would point to a word
- * beyond the end of the source array, in which case it is redirected
- * to point to an arbitrary word already in the cache.
- * - r2 is decremented by 64.
- * - r3 is unchanged, unless it points to a word beyond the
- * end of the source array, in which case it is redirected
- * to point to an arbitrary word already in the cache.
- * Redirecting is OK since if we are that close to the end
- * of the array we will not come back to this subroutine
- * and use the contents of the prefetched address.
- * - r4 is nonzero iff r2 >= 64.
- * - r9 is incremented by 64, unless it points beyond the
- * end of the last full destination cache line, in which
- * case it is redirected to a "safe address" that can be
- * clobbered (sp - 64)
- * - lr contains the value in r27.
- */
- /* r26 unused */
- .Lcopy_line:
- /* TODO: when r3 goes past the end, we would like to redirect it
- * to prefetch the last partial cache line (if any) just once, for the
- * benefit of the final cleanup loop. But we don't want to
- * prefetch that line more than once, or subsequent prefetches
- * will go into the RTF. But then .Lbig_loop should unconditionally
- * branch to top of loop to execute final prefetch, and its
- * nop should become a conditional branch.
- */
- /* We need two non-memory cycles here to cover the resources
- * used by the loads initiated by the caller.
- */
- { add r15, r1, r2 }
- .Lcopy_line2:
- { slt_u r13, r3, r15; addi r17, r1, 16 }
- /* NOTE: this will stall for one cycle as L1 is busy. */
- /* Fill second L1D line. */
- EX: { lw r17, r17; addi r1, r1, 48; mvz r3, r13, r1 } /* r17 = WORD_4 */
- /* Prepare destination line for writing. */
- EX: { wh64 r9; addi r9, r9, 64 }
- /* Load seven words that are L1D hits to cover wh64 L2 usage. */
- /* Load the three remaining words from the last L1D line, which
- * we know has already filled the L1D.
- */
- EX: { lw r4, r1; addi r1, r1, 4; addi r20, r1, 16 } /* r4 = WORD_12 */
- EX: { lw r8, r1; addi r1, r1, 4; slt_u r13, r20, r15 }/* r8 = WORD_13 */
- EX: { lw r11, r1; addi r1, r1, -52; mvz r20, r13, r1 } /* r11 = WORD_14 */
- /* Load the three remaining words from the first L1D line, first
- * stalling until it has filled by "looking at" r16.
- */
- EX: { lw r13, r1; addi r1, r1, 4; move zero, r16 } /* r13 = WORD_1 */
- EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_2 */
- EX: { lw r15, r1; addi r1, r1, 8; addi r10, r0, 60 } /* r15 = WORD_3 */
- /* Load second word from the second L1D line, first
- * stalling until it has filled by "looking at" r17.
- */
- EX: { lw r19, r1; addi r1, r1, 4; move zero, r17 } /* r19 = WORD_5 */
- /* Store last word to the destination line, potentially dirtying it
- * for the first time, which keeps the L2 busy for two cycles.
- */
- EX: { sw r10, r12 } /* store(WORD_15) */
- /* Use two L1D hits to cover the sw L2 access above. */
- EX: { lw r10, r1; addi r1, r1, 4 } /* r10 = WORD_6 */
- EX: { lw r12, r1; addi r1, r1, 4 } /* r12 = WORD_7 */
- /* Fill third L1D line. */
- EX: { lw r18, r1; addi r1, r1, 4 } /* r18 = WORD_8 */
- /* Store first L1D line. */
- EX: { sw r0, r16; addi r0, r0, 4; add r16, r0, r2 } /* store(WORD_0) */
- EX: { sw r0, r13; addi r0, r0, 4; andi r16, r16, -64 } /* store(WORD_1) */
- EX: { sw r0, r14; addi r0, r0, 4; slt_u r16, r9, r16 } /* store(WORD_2) */
- EX: { sw r0, r15; addi r0, r0, 4; addi r13, sp, -64 } /* store(WORD_3) */
- /* Store second L1D line. */
- EX: { sw r0, r17; addi r0, r0, 4; mvz r9, r16, r13 }/* store(WORD_4) */
- EX: { sw r0, r19; addi r0, r0, 4 } /* store(WORD_5) */
- EX: { sw r0, r10; addi r0, r0, 4 } /* store(WORD_6) */
- EX: { sw r0, r12; addi r0, r0, 4 } /* store(WORD_7) */
- EX: { lw r13, r1; addi r1, r1, 4; move zero, r18 } /* r13 = WORD_9 */
- EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_10 */
- EX: { lw r15, r1; move r1, r20 } /* r15 = WORD_11 */
- /* Store third L1D line. */
- EX: { sw r0, r18; addi r0, r0, 4 } /* store(WORD_8) */
- EX: { sw r0, r13; addi r0, r0, 4 } /* store(WORD_9) */
- EX: { sw r0, r14; addi r0, r0, 4 } /* store(WORD_10) */
- EX: { sw r0, r15; addi r0, r0, 4 } /* store(WORD_11) */
- /* Store rest of fourth L1D line. */
- EX: { sw r0, r4; addi r0, r0, 4 } /* store(WORD_12) */
- {
- EX: sw r0, r8 /* store(WORD_13) */
- addi r0, r0, 4
- /* Will r2 be > 64 after we subtract 64 below? */
- shri r4, r2, 7
- }
- {
- EX: sw r0, r11 /* store(WORD_14) */
- addi r0, r0, 8
- /* Record 64 bytes successfully copied. */
- addi r2, r2, -64
- }
- { jrp lr; move lr, r27 }
- /* Convey to the backtrace library that the stack frame is size
- * zero, and the real return address is on the stack rather than
- * in 'lr'.
- */
- { info 8 }
- .align 64
- .Lcopy_unaligned_maybe_many:
- /* Skip the setup overhead if we aren't copying many bytes. */
- { slti_u r8, r2, 20; sub r4, zero, r0 }
- { bnzt r8, .Lcopy_unaligned_few; andi r4, r4, 3 }
- { bz r4, .Ldest_is_word_aligned; add r18, r1, r2 }
- /*
- *
- * unaligned 4 byte at a time copy handler.
- *
- */
- /* Copy single bytes until r0 == 0 mod 4, so we can store words. */
- .Lalign_dest_loop:
- EX: { lb_u r3, r1; addi r1, r1, 1; addi r4, r4, -1 }
- EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
- { bnzt r4, .Lalign_dest_loop; andi r3, r1, 3 }
- /* If source and dest are now *both* aligned, do an aligned copy. */
- { bz r3, .Lcheck_aligned_copy_size; addli r4, r2, -256 }
- .Ldest_is_word_aligned:
- EX: { andi r8, r0, 63; lwadd_na r6, r1, 4}
- { slti_u r9, r2, 64; bz r8, .Ldest_is_L2_line_aligned }
- /* This copies unaligned words until either there are fewer
- * than 4 bytes left to copy, or until the destination pointer
- * is cache-aligned, whichever comes first.
- *
- * On entry:
- * - r0 is the next store address.
- * - r1 points 4 bytes past the load address corresponding to r0.
- * - r2 >= 4
- * - r6 is the next aligned word loaded.
- */
- .Lcopy_unaligned_src_words:
- EX: { lwadd_na r7, r1, 4; slti_u r8, r2, 4 + 4 }
- /* stall */
- { dword_align r6, r7, r1; slti_u r9, r2, 64 + 4 }
- EX: { swadd r0, r6, 4; addi r2, r2, -4 }
- { bnz r8, .Lcleanup_unaligned_words; andi r8, r0, 63 }
- { bnzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
- /* On entry:
- * - r0 is the next store address.
- * - r1 points 4 bytes past the load address corresponding to r0.
- * - r2 >= 4 (# of bytes left to store).
- * - r6 is the next aligned src word value.
- * - r9 = (r2 < 64U).
- * - r18 points one byte past the end of source memory.
- */
- .Ldest_is_L2_line_aligned:
- {
- /* Not a full cache line remains. */
- bnz r9, .Lcleanup_unaligned_words
- move r7, r6
- }
- /* r2 >= 64 */
- /* Kick off two prefetches, but don't go past the end. */
- { addi r3, r1, 63 - 4; addi r8, r1, 64 + 63 - 4 }
- { prefetch r3; move r3, r8; slt_u r8, r8, r18 }
- { mvz r3, r8, r1; addi r8, r3, 64 }
- { prefetch r3; move r3, r8; slt_u r8, r8, r18 }
- { mvz r3, r8, r1; movei r17, 0 }
- .Lcopy_unaligned_line:
- /* Prefetch another line. */
- { prefetch r3; addi r15, r1, 60; addi r3, r3, 64 }
- /* Fire off a load of the last word we are about to copy. */
- EX: { lw_na r15, r15; slt_u r8, r3, r18 }
- EX: { mvz r3, r8, r1; wh64 r0 }
- /* This loop runs twice.
- *
- * On entry:
- * - r17 is even before the first iteration, and odd before
- * the second. It is incremented inside the loop. Encountering
- * an even value at the end of the loop makes it stop.
- */
- .Lcopy_half_an_unaligned_line:
- EX: {
- /* Stall until the last byte is ready. In the steady state this
- * guarantees all words to load below will be in the L2 cache, which
- * avoids shunting the loads to the RTF.
- */
- move zero, r15
- lwadd_na r7, r1, 16
- }
- EX: { lwadd_na r11, r1, 12 }
- EX: { lwadd_na r14, r1, -24 }
- EX: { lwadd_na r8, r1, 4 }
- EX: { lwadd_na r9, r1, 4 }
- EX: {
- lwadd_na r10, r1, 8
- /* r16 = (r2 < 64), after we subtract 32 from r2 below. */
- slti_u r16, r2, 64 + 32
- }
- EX: { lwadd_na r12, r1, 4; addi r17, r17, 1 }
- EX: { lwadd_na r13, r1, 8; dword_align r6, r7, r1 }
- EX: { swadd r0, r6, 4; dword_align r7, r8, r1 }
- EX: { swadd r0, r7, 4; dword_align r8, r9, r1 }
- EX: { swadd r0, r8, 4; dword_align r9, r10, r1 }
- EX: { swadd r0, r9, 4; dword_align r10, r11, r1 }
- EX: { swadd r0, r10, 4; dword_align r11, r12, r1 }
- EX: { swadd r0, r11, 4; dword_align r12, r13, r1 }
- EX: { swadd r0, r12, 4; dword_align r13, r14, r1 }
- EX: { swadd r0, r13, 4; addi r2, r2, -32 }
- { move r6, r14; bbst r17, .Lcopy_half_an_unaligned_line }
- { bzt r16, .Lcopy_unaligned_line; move r7, r6 }
- /* On entry:
- * - r0 is the next store address.
- * - r1 points 4 bytes past the load address corresponding to r0.
- * - r2 >= 0 (# of bytes left to store).
- * - r7 is the next aligned src word value.
- */
- .Lcleanup_unaligned_words:
- /* Handle any trailing bytes. */
- { bz r2, .Lcopy_unaligned_done; slti_u r8, r2, 4 }
- { bzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
- /* Move r1 back to the point where it corresponds to r0. */
- { addi r1, r1, -4 }
- /* Fall through */
- /*
- *
- * 1 byte at a time copy handler.
- *
- */
- .Lcopy_unaligned_few:
- EX: { lb_u r3, r1; addi r1, r1, 1 }
- EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
- { bnzt r2, .Lcopy_unaligned_few }
- .Lcopy_unaligned_done:
- /* For memcpy return original dest address, else zero. */
- { mz r0, r29, r23; jrp lr }
- .Lend_memcpy_common:
- .size memcpy_common, .Lend_memcpy_common - memcpy_common
- .section .fixup,"ax"
- memcpy_common_fixup:
- .type memcpy_common_fixup, @function
- /* Skip any bytes we already successfully copied.
- * r2 (num remaining) is correct, but r0 (dst) and r1 (src)
- * may not be quite right because of unrolling and prefetching.
- * So we need to recompute their values as the address just
- * after the last byte we are sure was successfully loaded and
- * then stored.
- */
- /* Determine how many bytes we successfully copied. */
- { sub r3, r25, r2 }
- /* Add this to the original r0 and r1 to get their new values. */
- { add r0, r23, r3; add r1, r24, r3 }
- { bzt r29, memcpy_fixup_loop }
- { blzt r29, copy_to_user_fixup_loop }
- copy_from_user_fixup_loop:
- /* Try copying the rest one byte at a time, expecting a load fault. */
- .Lcfu: { lb_u r3, r1; addi r1, r1, 1 }
- { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
- { bnzt r2, copy_from_user_fixup_loop }
- .Lcopy_from_user_fixup_zero_remainder:
- { bbs r29, 2f } /* low bit set means IS_COPY_FROM_USER */
- /* byte-at-a-time loop faulted, so zero the rest. */
- { move r3, r2; bz r2, 2f /* should be impossible, but handle it. */ }
- 1: { sb r0, zero; addi r0, r0, 1; addi r3, r3, -1 }
- { bnzt r3, 1b }
- 2: move lr, r27
- { move r0, r2; jrp lr }
- copy_to_user_fixup_loop:
- /* Try copying the rest one byte at a time, expecting a store fault. */
- { lb_u r3, r1; addi r1, r1, 1 }
- .Lctu: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
- { bnzt r2, copy_to_user_fixup_loop }
- .Lcopy_to_user_fixup_done:
- move lr, r27
- { move r0, r2; jrp lr }
- memcpy_fixup_loop:
- /* Try copying the rest one byte at a time. We expect a disastrous
- * fault to happen since we are in fixup code, but let it happen.
- */
- { lb_u r3, r1; addi r1, r1, 1 }
- { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
- { bnzt r2, memcpy_fixup_loop }
- /* This should be unreachable, we should have faulted again.
- * But be paranoid and handle it in case some interrupt changed
- * the TLB or something.
- */
- move lr, r27
- { move r0, r23; jrp lr }
- .size memcpy_common_fixup, . - memcpy_common_fixup
- .section __ex_table,"a"
- .align 4
- .word .Lcfu, .Lcopy_from_user_fixup_zero_remainder
- .word .Lctu, .Lcopy_to_user_fixup_done
|