123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631 |
- /*
- * Kernel Probes (KProbes)
- * arch/mips/kernel/kprobes.c
- *
- * Copyright 2006 Sony Corp.
- * Copyright 2010 Cavium Networks
- *
- * Some portions copied from the powerpc version.
- *
- * Copyright (C) IBM Corporation, 2002, 2004
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; version 2 of the License.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- */
- #include <linux/kprobes.h>
- #include <linux/preempt.h>
- #include <linux/uaccess.h>
- #include <linux/kdebug.h>
- #include <linux/slab.h>
- #include <asm/ptrace.h>
- #include <asm/branch.h>
- #include <asm/break.h>
- #include "probes-common.h"
- static const union mips_instruction breakpoint_insn = {
- .b_format = {
- .opcode = spec_op,
- .code = BRK_KPROBE_BP,
- .func = break_op
- }
- };
- static const union mips_instruction breakpoint2_insn = {
- .b_format = {
- .opcode = spec_op,
- .code = BRK_KPROBE_SSTEPBP,
- .func = break_op
- }
- };
- DEFINE_PER_CPU(struct kprobe *, current_kprobe);
- DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
- static int __kprobes insn_has_delayslot(union mips_instruction insn)
- {
- return __insn_has_delay_slot(insn);
- }
- /*
- * insn_has_ll_or_sc function checks whether instruction is ll or sc
- * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
- * so we need to prevent it and refuse kprobes insertion for such
- * instructions; cannot do much about breakpoint in the middle of
- * ll/sc pair; it is upto user to avoid those places
- */
- static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
- {
- int ret = 0;
- switch (insn.i_format.opcode) {
- case ll_op:
- case lld_op:
- case sc_op:
- case scd_op:
- ret = 1;
- break;
- default:
- break;
- }
- return ret;
- }
- int __kprobes arch_prepare_kprobe(struct kprobe *p)
- {
- union mips_instruction insn;
- union mips_instruction prev_insn;
- int ret = 0;
- insn = p->addr[0];
- if (insn_has_ll_or_sc(insn)) {
- pr_notice("Kprobes for ll and sc instructions are not"
- "supported\n");
- ret = -EINVAL;
- goto out;
- }
- if ((probe_kernel_read(&prev_insn, p->addr - 1,
- sizeof(mips_instruction)) == 0) &&
- insn_has_delayslot(prev_insn)) {
- pr_notice("Kprobes for branch delayslot are not supported\n");
- ret = -EINVAL;
- goto out;
- }
- if (__insn_is_compact_branch(insn)) {
- pr_notice("Kprobes for compact branches are not supported\n");
- ret = -EINVAL;
- goto out;
- }
- /* insn: must be on special executable page on mips. */
- p->ainsn.insn = get_insn_slot();
- if (!p->ainsn.insn) {
- ret = -ENOMEM;
- goto out;
- }
- /*
- * In the kprobe->ainsn.insn[] array we store the original
- * instruction at index zero and a break trap instruction at
- * index one.
- *
- * On MIPS arch if the instruction at probed address is a
- * branch instruction, we need to execute the instruction at
- * Branch Delayslot (BD) at the time of probe hit. As MIPS also
- * doesn't have single stepping support, the BD instruction can
- * not be executed in-line and it would be executed on SSOL slot
- * using a normal breakpoint instruction in the next slot.
- * So, read the instruction and save it for later execution.
- */
- if (insn_has_delayslot(insn))
- memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
- else
- memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
- p->ainsn.insn[1] = breakpoint2_insn;
- p->opcode = *p->addr;
- out:
- return ret;
- }
- void __kprobes arch_arm_kprobe(struct kprobe *p)
- {
- *p->addr = breakpoint_insn;
- flush_insn_slot(p);
- }
- void __kprobes arch_disarm_kprobe(struct kprobe *p)
- {
- *p->addr = p->opcode;
- flush_insn_slot(p);
- }
- void __kprobes arch_remove_kprobe(struct kprobe *p)
- {
- if (p->ainsn.insn) {
- free_insn_slot(p->ainsn.insn, 0);
- p->ainsn.insn = NULL;
- }
- }
- static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
- {
- kcb->prev_kprobe.kp = kprobe_running();
- kcb->prev_kprobe.status = kcb->kprobe_status;
- kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
- kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
- kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
- }
- static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
- {
- __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
- kcb->kprobe_status = kcb->prev_kprobe.status;
- kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
- kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
- kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
- }
- static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
- struct kprobe_ctlblk *kcb)
- {
- __this_cpu_write(current_kprobe, p);
- kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
- kcb->kprobe_saved_epc = regs->cp0_epc;
- }
- /**
- * evaluate_branch_instrucion -
- *
- * Evaluate the branch instruction at probed address during probe hit. The
- * result of evaluation would be the updated epc. The insturction in delayslot
- * would actually be single stepped using a normal breakpoint) on SSOL slot.
- *
- * The result is also saved in the kprobe control block for later use,
- * in case we need to execute the delayslot instruction. The latter will be
- * false for NOP instruction in dealyslot and the branch-likely instructions
- * when the branch is taken. And for those cases we set a flag as
- * SKIP_DELAYSLOT in the kprobe control block
- */
- static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
- struct kprobe_ctlblk *kcb)
- {
- union mips_instruction insn = p->opcode;
- long epc;
- int ret = 0;
- epc = regs->cp0_epc;
- if (epc & 3)
- goto unaligned;
- if (p->ainsn.insn->word == 0)
- kcb->flags |= SKIP_DELAYSLOT;
- else
- kcb->flags &= ~SKIP_DELAYSLOT;
- ret = __compute_return_epc_for_insn(regs, insn);
- if (ret < 0)
- return ret;
- if (ret == BRANCH_LIKELY_TAKEN)
- kcb->flags |= SKIP_DELAYSLOT;
- kcb->target_epc = regs->cp0_epc;
- return 0;
- unaligned:
- pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
- force_sig(SIGBUS, current);
- return -EFAULT;
- }
- static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
- struct kprobe_ctlblk *kcb)
- {
- int ret = 0;
- regs->cp0_status &= ~ST0_IE;
- /* single step inline if the instruction is a break */
- if (p->opcode.word == breakpoint_insn.word ||
- p->opcode.word == breakpoint2_insn.word)
- regs->cp0_epc = (unsigned long)p->addr;
- else if (insn_has_delayslot(p->opcode)) {
- ret = evaluate_branch_instruction(p, regs, kcb);
- if (ret < 0) {
- pr_notice("Kprobes: Error in evaluating branch\n");
- return;
- }
- }
- regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
- }
- /*
- * Called after single-stepping. p->addr is the address of the
- * instruction whose first byte has been replaced by the "break 0"
- * instruction. To avoid the SMP problems that can occur when we
- * temporarily put back the original opcode to single-step, we
- * single-stepped a copy of the instruction. The address of this
- * copy is p->ainsn.insn.
- *
- * This function prepares to return from the post-single-step
- * breakpoint trap. In case of branch instructions, the target
- * epc to be restored.
- */
- static void __kprobes resume_execution(struct kprobe *p,
- struct pt_regs *regs,
- struct kprobe_ctlblk *kcb)
- {
- if (insn_has_delayslot(p->opcode))
- regs->cp0_epc = kcb->target_epc;
- else {
- unsigned long orig_epc = kcb->kprobe_saved_epc;
- regs->cp0_epc = orig_epc + 4;
- }
- }
- static int __kprobes kprobe_handler(struct pt_regs *regs)
- {
- struct kprobe *p;
- int ret = 0;
- kprobe_opcode_t *addr;
- struct kprobe_ctlblk *kcb;
- addr = (kprobe_opcode_t *) regs->cp0_epc;
- /*
- * We don't want to be preempted for the entire
- * duration of kprobe processing
- */
- preempt_disable();
- kcb = get_kprobe_ctlblk();
- /* Check we're not actually recursing */
- if (kprobe_running()) {
- p = get_kprobe(addr);
- if (p) {
- if (kcb->kprobe_status == KPROBE_HIT_SS &&
- p->ainsn.insn->word == breakpoint_insn.word) {
- regs->cp0_status &= ~ST0_IE;
- regs->cp0_status |= kcb->kprobe_saved_SR;
- goto no_kprobe;
- }
- /*
- * We have reentered the kprobe_handler(), since
- * another probe was hit while within the handler.
- * We here save the original kprobes variables and
- * just single step on the instruction of the new probe
- * without calling any user handlers.
- */
- save_previous_kprobe(kcb);
- set_current_kprobe(p, regs, kcb);
- kprobes_inc_nmissed_count(p);
- prepare_singlestep(p, regs, kcb);
- kcb->kprobe_status = KPROBE_REENTER;
- if (kcb->flags & SKIP_DELAYSLOT) {
- resume_execution(p, regs, kcb);
- restore_previous_kprobe(kcb);
- preempt_enable_no_resched();
- }
- return 1;
- } else {
- if (addr->word != breakpoint_insn.word) {
- /*
- * The breakpoint instruction was removed by
- * another cpu right after we hit, no further
- * handling of this interrupt is appropriate
- */
- ret = 1;
- goto no_kprobe;
- }
- p = __this_cpu_read(current_kprobe);
- if (p->break_handler && p->break_handler(p, regs))
- goto ss_probe;
- }
- goto no_kprobe;
- }
- p = get_kprobe(addr);
- if (!p) {
- if (addr->word != breakpoint_insn.word) {
- /*
- * The breakpoint instruction was removed right
- * after we hit it. Another cpu has removed
- * either a probepoint or a debugger breakpoint
- * at this address. In either case, no further
- * handling of this interrupt is appropriate.
- */
- ret = 1;
- }
- /* Not one of ours: let kernel handle it */
- goto no_kprobe;
- }
- set_current_kprobe(p, regs, kcb);
- kcb->kprobe_status = KPROBE_HIT_ACTIVE;
- if (p->pre_handler && p->pre_handler(p, regs)) {
- /* handler has already set things up, so skip ss setup */
- return 1;
- }
- ss_probe:
- prepare_singlestep(p, regs, kcb);
- if (kcb->flags & SKIP_DELAYSLOT) {
- kcb->kprobe_status = KPROBE_HIT_SSDONE;
- if (p->post_handler)
- p->post_handler(p, regs, 0);
- resume_execution(p, regs, kcb);
- preempt_enable_no_resched();
- } else
- kcb->kprobe_status = KPROBE_HIT_SS;
- return 1;
- no_kprobe:
- preempt_enable_no_resched();
- return ret;
- }
- static inline int post_kprobe_handler(struct pt_regs *regs)
- {
- struct kprobe *cur = kprobe_running();
- struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
- if (!cur)
- return 0;
- if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
- kcb->kprobe_status = KPROBE_HIT_SSDONE;
- cur->post_handler(cur, regs, 0);
- }
- resume_execution(cur, regs, kcb);
- regs->cp0_status |= kcb->kprobe_saved_SR;
- /* Restore back the original saved kprobes variables and continue. */
- if (kcb->kprobe_status == KPROBE_REENTER) {
- restore_previous_kprobe(kcb);
- goto out;
- }
- reset_current_kprobe();
- out:
- preempt_enable_no_resched();
- return 1;
- }
- static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
- {
- struct kprobe *cur = kprobe_running();
- struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
- if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
- return 1;
- if (kcb->kprobe_status & KPROBE_HIT_SS) {
- resume_execution(cur, regs, kcb);
- regs->cp0_status |= kcb->kprobe_old_SR;
- reset_current_kprobe();
- preempt_enable_no_resched();
- }
- return 0;
- }
- /*
- * Wrapper routine for handling exceptions.
- */
- int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
- unsigned long val, void *data)
- {
- struct die_args *args = (struct die_args *)data;
- int ret = NOTIFY_DONE;
- switch (val) {
- case DIE_BREAK:
- if (kprobe_handler(args->regs))
- ret = NOTIFY_STOP;
- break;
- case DIE_SSTEPBP:
- if (post_kprobe_handler(args->regs))
- ret = NOTIFY_STOP;
- break;
- case DIE_PAGE_FAULT:
- /* kprobe_running() needs smp_processor_id() */
- preempt_disable();
- if (kprobe_running()
- && kprobe_fault_handler(args->regs, args->trapnr))
- ret = NOTIFY_STOP;
- preempt_enable();
- break;
- default:
- break;
- }
- return ret;
- }
- int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
- {
- struct jprobe *jp = container_of(p, struct jprobe, kp);
- struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
- kcb->jprobe_saved_regs = *regs;
- kcb->jprobe_saved_sp = regs->regs[29];
- memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
- MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
- regs->cp0_epc = (unsigned long)(jp->entry);
- return 1;
- }
- /* Defined in the inline asm below. */
- void jprobe_return_end(void);
- void __kprobes jprobe_return(void)
- {
- /* Assembler quirk necessitates this '0,code' business. */
- asm volatile(
- "break 0,%0\n\t"
- ".globl jprobe_return_end\n"
- "jprobe_return_end:\n"
- : : "n" (BRK_KPROBE_BP) : "memory");
- }
- int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
- {
- struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
- if (regs->cp0_epc >= (unsigned long)jprobe_return &&
- regs->cp0_epc <= (unsigned long)jprobe_return_end) {
- *regs = kcb->jprobe_saved_regs;
- memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
- MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
- preempt_enable_no_resched();
- return 1;
- }
- return 0;
- }
- /*
- * Function return probe trampoline:
- * - init_kprobes() establishes a probepoint here
- * - When the probed function returns, this probe causes the
- * handlers to fire
- */
- static void __used kretprobe_trampoline_holder(void)
- {
- asm volatile(
- ".set push\n\t"
- /* Keep the assembler from reordering and placing JR here. */
- ".set noreorder\n\t"
- "nop\n\t"
- ".global kretprobe_trampoline\n"
- "kretprobe_trampoline:\n\t"
- "nop\n\t"
- ".set pop"
- : : : "memory");
- }
- void kretprobe_trampoline(void);
- void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
- struct pt_regs *regs)
- {
- ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
- /* Replace the return addr with trampoline addr */
- regs->regs[31] = (unsigned long)kretprobe_trampoline;
- }
- /*
- * Called when the probe at kretprobe trampoline is hit
- */
- static int __kprobes trampoline_probe_handler(struct kprobe *p,
- struct pt_regs *regs)
- {
- struct kretprobe_instance *ri = NULL;
- struct hlist_head *head, empty_rp;
- struct hlist_node *tmp;
- unsigned long flags, orig_ret_address = 0;
- unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
- INIT_HLIST_HEAD(&empty_rp);
- kretprobe_hash_lock(current, &head, &flags);
- /*
- * It is possible to have multiple instances associated with a given
- * task either because an multiple functions in the call path
- * have a return probe installed on them, and/or more than one return
- * return probe was registered for a target function.
- *
- * We can handle this because:
- * - instances are always inserted at the head of the list
- * - when multiple return probes are registered for the same
- * function, the first instance's ret_addr will point to the
- * real return address, and all the rest will point to
- * kretprobe_trampoline
- */
- hlist_for_each_entry_safe(ri, tmp, head, hlist) {
- if (ri->task != current)
- /* another task is sharing our hash bucket */
- continue;
- if (ri->rp && ri->rp->handler)
- ri->rp->handler(ri, regs);
- orig_ret_address = (unsigned long)ri->ret_addr;
- recycle_rp_inst(ri, &empty_rp);
- if (orig_ret_address != trampoline_address)
- /*
- * This is the real return address. Any other
- * instances associated with this task are for
- * other calls deeper on the call stack
- */
- break;
- }
- kretprobe_assert(ri, orig_ret_address, trampoline_address);
- instruction_pointer(regs) = orig_ret_address;
- reset_current_kprobe();
- kretprobe_hash_unlock(current, &flags);
- preempt_enable_no_resched();
- hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
- hlist_del(&ri->hlist);
- kfree(ri);
- }
- /*
- * By returning a non-zero value, we are telling
- * kprobe_handler() that we don't want the post_handler
- * to run (and have re-enabled preemption)
- */
- return 1;
- }
- int __kprobes arch_trampoline_kprobe(struct kprobe *p)
- {
- if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
- return 1;
- return 0;
- }
- static struct kprobe trampoline_p = {
- .addr = (kprobe_opcode_t *)kretprobe_trampoline,
- .pre_handler = trampoline_probe_handler
- };
- int __init arch_init_kprobes(void)
- {
- return register_kprobe(&trampoline_p);
- }
|