conditional.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668
  1. /* Authors: Karl MacMillan <kmacmillan@tresys.com>
  2. * Frank Mayer <mayerf@tresys.com>
  3. *
  4. * Copyright (C) 2003 - 2004 Tresys Technology, LLC
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, version 2.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/errno.h>
  11. #include <linux/string.h>
  12. #include <linux/spinlock.h>
  13. #include <linux/slab.h>
  14. #include "security.h"
  15. #include "conditional.h"
  16. #include "services.h"
  17. /*
  18. * cond_evaluate_expr evaluates a conditional expr
  19. * in reverse polish notation. It returns true (1), false (0),
  20. * or undefined (-1). Undefined occurs when the expression
  21. * exceeds the stack depth of COND_EXPR_MAXDEPTH.
  22. */
  23. static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
  24. {
  25. struct cond_expr *cur;
  26. int s[COND_EXPR_MAXDEPTH];
  27. int sp = -1;
  28. for (cur = expr; cur; cur = cur->next) {
  29. switch (cur->expr_type) {
  30. case COND_BOOL:
  31. if (sp == (COND_EXPR_MAXDEPTH - 1))
  32. return -1;
  33. sp++;
  34. s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
  35. break;
  36. case COND_NOT:
  37. if (sp < 0)
  38. return -1;
  39. s[sp] = !s[sp];
  40. break;
  41. case COND_OR:
  42. if (sp < 1)
  43. return -1;
  44. sp--;
  45. s[sp] |= s[sp + 1];
  46. break;
  47. case COND_AND:
  48. if (sp < 1)
  49. return -1;
  50. sp--;
  51. s[sp] &= s[sp + 1];
  52. break;
  53. case COND_XOR:
  54. if (sp < 1)
  55. return -1;
  56. sp--;
  57. s[sp] ^= s[sp + 1];
  58. break;
  59. case COND_EQ:
  60. if (sp < 1)
  61. return -1;
  62. sp--;
  63. s[sp] = (s[sp] == s[sp + 1]);
  64. break;
  65. case COND_NEQ:
  66. if (sp < 1)
  67. return -1;
  68. sp--;
  69. s[sp] = (s[sp] != s[sp + 1]);
  70. break;
  71. default:
  72. return -1;
  73. }
  74. }
  75. return s[0];
  76. }
  77. /*
  78. * evaluate_cond_node evaluates the conditional stored in
  79. * a struct cond_node and if the result is different than the
  80. * current state of the node it sets the rules in the true/false
  81. * list appropriately. If the result of the expression is undefined
  82. * all of the rules are disabled for safety.
  83. */
  84. int evaluate_cond_node(struct policydb *p, struct cond_node *node)
  85. {
  86. int new_state;
  87. struct cond_av_list *cur;
  88. new_state = cond_evaluate_expr(p, node->expr);
  89. if (new_state != node->cur_state) {
  90. node->cur_state = new_state;
  91. if (new_state == -1)
  92. printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n");
  93. /* turn the rules on or off */
  94. for (cur = node->true_list; cur; cur = cur->next) {
  95. if (new_state <= 0)
  96. cur->node->key.specified &= ~AVTAB_ENABLED;
  97. else
  98. cur->node->key.specified |= AVTAB_ENABLED;
  99. }
  100. for (cur = node->false_list; cur; cur = cur->next) {
  101. /* -1 or 1 */
  102. if (new_state)
  103. cur->node->key.specified &= ~AVTAB_ENABLED;
  104. else
  105. cur->node->key.specified |= AVTAB_ENABLED;
  106. }
  107. }
  108. return 0;
  109. }
  110. int cond_policydb_init(struct policydb *p)
  111. {
  112. int rc;
  113. p->bool_val_to_struct = NULL;
  114. p->cond_list = NULL;
  115. rc = avtab_init(&p->te_cond_avtab);
  116. if (rc)
  117. return rc;
  118. return 0;
  119. }
  120. static void cond_av_list_destroy(struct cond_av_list *list)
  121. {
  122. struct cond_av_list *cur, *next;
  123. for (cur = list; cur; cur = next) {
  124. next = cur->next;
  125. /* the avtab_ptr_t node is destroy by the avtab */
  126. kfree(cur);
  127. }
  128. }
  129. static void cond_node_destroy(struct cond_node *node)
  130. {
  131. struct cond_expr *cur_expr, *next_expr;
  132. for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
  133. next_expr = cur_expr->next;
  134. kfree(cur_expr);
  135. }
  136. cond_av_list_destroy(node->true_list);
  137. cond_av_list_destroy(node->false_list);
  138. kfree(node);
  139. }
  140. static void cond_list_destroy(struct cond_node *list)
  141. {
  142. struct cond_node *next, *cur;
  143. if (list == NULL)
  144. return;
  145. for (cur = list; cur; cur = next) {
  146. next = cur->next;
  147. cond_node_destroy(cur);
  148. }
  149. }
  150. void cond_policydb_destroy(struct policydb *p)
  151. {
  152. kfree(p->bool_val_to_struct);
  153. avtab_destroy(&p->te_cond_avtab);
  154. cond_list_destroy(p->cond_list);
  155. }
  156. int cond_init_bool_indexes(struct policydb *p)
  157. {
  158. kfree(p->bool_val_to_struct);
  159. p->bool_val_to_struct =
  160. kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL);
  161. if (!p->bool_val_to_struct)
  162. return -ENOMEM;
  163. return 0;
  164. }
  165. int cond_destroy_bool(void *key, void *datum, void *p)
  166. {
  167. kfree(key);
  168. kfree(datum);
  169. return 0;
  170. }
  171. int cond_index_bool(void *key, void *datum, void *datap)
  172. {
  173. struct policydb *p;
  174. struct cond_bool_datum *booldatum;
  175. struct flex_array *fa;
  176. booldatum = datum;
  177. p = datap;
  178. if (!booldatum->value || booldatum->value > p->p_bools.nprim)
  179. return -EINVAL;
  180. fa = p->sym_val_to_name[SYM_BOOLS];
  181. if (flex_array_put_ptr(fa, booldatum->value - 1, key,
  182. GFP_KERNEL | __GFP_ZERO))
  183. BUG();
  184. p->bool_val_to_struct[booldatum->value - 1] = booldatum;
  185. return 0;
  186. }
  187. static int bool_isvalid(struct cond_bool_datum *b)
  188. {
  189. if (!(b->state == 0 || b->state == 1))
  190. return 0;
  191. return 1;
  192. }
  193. int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
  194. {
  195. char *key = NULL;
  196. struct cond_bool_datum *booldatum;
  197. __le32 buf[3];
  198. u32 len;
  199. int rc;
  200. booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL);
  201. if (!booldatum)
  202. return -ENOMEM;
  203. rc = next_entry(buf, fp, sizeof buf);
  204. if (rc)
  205. goto err;
  206. booldatum->value = le32_to_cpu(buf[0]);
  207. booldatum->state = le32_to_cpu(buf[1]);
  208. rc = -EINVAL;
  209. if (!bool_isvalid(booldatum))
  210. goto err;
  211. len = le32_to_cpu(buf[2]);
  212. if (((len == 0) || (len == (u32)-1)))
  213. goto err;
  214. rc = -ENOMEM;
  215. key = kmalloc(len + 1, GFP_KERNEL);
  216. if (!key)
  217. goto err;
  218. rc = next_entry(key, fp, len);
  219. if (rc)
  220. goto err;
  221. key[len] = '\0';
  222. rc = hashtab_insert(h, key, booldatum);
  223. if (rc)
  224. goto err;
  225. return 0;
  226. err:
  227. cond_destroy_bool(key, booldatum, NULL);
  228. return rc;
  229. }
  230. struct cond_insertf_data {
  231. struct policydb *p;
  232. struct cond_av_list *other;
  233. struct cond_av_list *head;
  234. struct cond_av_list *tail;
  235. };
  236. static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
  237. {
  238. struct cond_insertf_data *data = ptr;
  239. struct policydb *p = data->p;
  240. struct cond_av_list *other = data->other, *list, *cur;
  241. struct avtab_node *node_ptr;
  242. u8 found;
  243. int rc = -EINVAL;
  244. /*
  245. * For type rules we have to make certain there aren't any
  246. * conflicting rules by searching the te_avtab and the
  247. * cond_te_avtab.
  248. */
  249. if (k->specified & AVTAB_TYPE) {
  250. if (avtab_search(&p->te_avtab, k)) {
  251. printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n");
  252. goto err;
  253. }
  254. /*
  255. * If we are reading the false list other will be a pointer to
  256. * the true list. We can have duplicate entries if there is only
  257. * 1 other entry and it is in our true list.
  258. *
  259. * If we are reading the true list (other == NULL) there shouldn't
  260. * be any other entries.
  261. */
  262. if (other) {
  263. node_ptr = avtab_search_node(&p->te_cond_avtab, k);
  264. if (node_ptr) {
  265. if (avtab_search_node_next(node_ptr, k->specified)) {
  266. printk(KERN_ERR "SELinux: too many conflicting type rules.\n");
  267. goto err;
  268. }
  269. found = 0;
  270. for (cur = other; cur; cur = cur->next) {
  271. if (cur->node == node_ptr) {
  272. found = 1;
  273. break;
  274. }
  275. }
  276. if (!found) {
  277. printk(KERN_ERR "SELinux: conflicting type rules.\n");
  278. goto err;
  279. }
  280. }
  281. } else {
  282. if (avtab_search(&p->te_cond_avtab, k)) {
  283. printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n");
  284. goto err;
  285. }
  286. }
  287. }
  288. node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
  289. if (!node_ptr) {
  290. printk(KERN_ERR "SELinux: could not insert rule.\n");
  291. rc = -ENOMEM;
  292. goto err;
  293. }
  294. list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL);
  295. if (!list) {
  296. rc = -ENOMEM;
  297. goto err;
  298. }
  299. list->node = node_ptr;
  300. if (!data->head)
  301. data->head = list;
  302. else
  303. data->tail->next = list;
  304. data->tail = list;
  305. return 0;
  306. err:
  307. cond_av_list_destroy(data->head);
  308. data->head = NULL;
  309. return rc;
  310. }
  311. static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
  312. {
  313. int i, rc;
  314. __le32 buf[1];
  315. u32 len;
  316. struct cond_insertf_data data;
  317. *ret_list = NULL;
  318. len = 0;
  319. rc = next_entry(buf, fp, sizeof(u32));
  320. if (rc)
  321. return rc;
  322. len = le32_to_cpu(buf[0]);
  323. if (len == 0)
  324. return 0;
  325. data.p = p;
  326. data.other = other;
  327. data.head = NULL;
  328. data.tail = NULL;
  329. for (i = 0; i < len; i++) {
  330. rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
  331. &data);
  332. if (rc)
  333. return rc;
  334. }
  335. *ret_list = data.head;
  336. return 0;
  337. }
  338. static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
  339. {
  340. if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
  341. printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n");
  342. return 0;
  343. }
  344. if (expr->bool > p->p_bools.nprim) {
  345. printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n");
  346. return 0;
  347. }
  348. return 1;
  349. }
  350. static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
  351. {
  352. __le32 buf[2];
  353. u32 len, i;
  354. int rc;
  355. struct cond_expr *expr = NULL, *last = NULL;
  356. rc = next_entry(buf, fp, sizeof(u32) * 2);
  357. if (rc)
  358. goto err;
  359. node->cur_state = le32_to_cpu(buf[0]);
  360. /* expr */
  361. len = le32_to_cpu(buf[1]);
  362. for (i = 0; i < len; i++) {
  363. rc = next_entry(buf, fp, sizeof(u32) * 2);
  364. if (rc)
  365. goto err;
  366. rc = -ENOMEM;
  367. expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL);
  368. if (!expr)
  369. goto err;
  370. expr->expr_type = le32_to_cpu(buf[0]);
  371. expr->bool = le32_to_cpu(buf[1]);
  372. if (!expr_isvalid(p, expr)) {
  373. rc = -EINVAL;
  374. kfree(expr);
  375. goto err;
  376. }
  377. if (i == 0)
  378. node->expr = expr;
  379. else
  380. last->next = expr;
  381. last = expr;
  382. }
  383. rc = cond_read_av_list(p, fp, &node->true_list, NULL);
  384. if (rc)
  385. goto err;
  386. rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
  387. if (rc)
  388. goto err;
  389. return 0;
  390. err:
  391. cond_node_destroy(node);
  392. return rc;
  393. }
  394. int cond_read_list(struct policydb *p, void *fp)
  395. {
  396. struct cond_node *node, *last = NULL;
  397. __le32 buf[1];
  398. u32 i, len;
  399. int rc;
  400. rc = next_entry(buf, fp, sizeof buf);
  401. if (rc)
  402. return rc;
  403. len = le32_to_cpu(buf[0]);
  404. rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
  405. if (rc)
  406. goto err;
  407. for (i = 0; i < len; i++) {
  408. rc = -ENOMEM;
  409. node = kzalloc(sizeof(struct cond_node), GFP_KERNEL);
  410. if (!node)
  411. goto err;
  412. rc = cond_read_node(p, node, fp);
  413. if (rc)
  414. goto err;
  415. if (i == 0)
  416. p->cond_list = node;
  417. else
  418. last->next = node;
  419. last = node;
  420. }
  421. return 0;
  422. err:
  423. cond_list_destroy(p->cond_list);
  424. p->cond_list = NULL;
  425. return rc;
  426. }
  427. int cond_write_bool(void *vkey, void *datum, void *ptr)
  428. {
  429. char *key = vkey;
  430. struct cond_bool_datum *booldatum = datum;
  431. struct policy_data *pd = ptr;
  432. void *fp = pd->fp;
  433. __le32 buf[3];
  434. u32 len;
  435. int rc;
  436. len = strlen(key);
  437. buf[0] = cpu_to_le32(booldatum->value);
  438. buf[1] = cpu_to_le32(booldatum->state);
  439. buf[2] = cpu_to_le32(len);
  440. rc = put_entry(buf, sizeof(u32), 3, fp);
  441. if (rc)
  442. return rc;
  443. rc = put_entry(key, 1, len, fp);
  444. if (rc)
  445. return rc;
  446. return 0;
  447. }
  448. /*
  449. * cond_write_cond_av_list doesn't write out the av_list nodes.
  450. * Instead it writes out the key/value pairs from the avtab. This
  451. * is necessary because there is no way to uniquely identifying rules
  452. * in the avtab so it is not possible to associate individual rules
  453. * in the avtab with a conditional without saving them as part of
  454. * the conditional. This means that the avtab with the conditional
  455. * rules will not be saved but will be rebuilt on policy load.
  456. */
  457. static int cond_write_av_list(struct policydb *p,
  458. struct cond_av_list *list, struct policy_file *fp)
  459. {
  460. __le32 buf[1];
  461. struct cond_av_list *cur_list;
  462. u32 len;
  463. int rc;
  464. len = 0;
  465. for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
  466. len++;
  467. buf[0] = cpu_to_le32(len);
  468. rc = put_entry(buf, sizeof(u32), 1, fp);
  469. if (rc)
  470. return rc;
  471. if (len == 0)
  472. return 0;
  473. for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
  474. rc = avtab_write_item(p, cur_list->node, fp);
  475. if (rc)
  476. return rc;
  477. }
  478. return 0;
  479. }
  480. static int cond_write_node(struct policydb *p, struct cond_node *node,
  481. struct policy_file *fp)
  482. {
  483. struct cond_expr *cur_expr;
  484. __le32 buf[2];
  485. int rc;
  486. u32 len = 0;
  487. buf[0] = cpu_to_le32(node->cur_state);
  488. rc = put_entry(buf, sizeof(u32), 1, fp);
  489. if (rc)
  490. return rc;
  491. for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
  492. len++;
  493. buf[0] = cpu_to_le32(len);
  494. rc = put_entry(buf, sizeof(u32), 1, fp);
  495. if (rc)
  496. return rc;
  497. for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
  498. buf[0] = cpu_to_le32(cur_expr->expr_type);
  499. buf[1] = cpu_to_le32(cur_expr->bool);
  500. rc = put_entry(buf, sizeof(u32), 2, fp);
  501. if (rc)
  502. return rc;
  503. }
  504. rc = cond_write_av_list(p, node->true_list, fp);
  505. if (rc)
  506. return rc;
  507. rc = cond_write_av_list(p, node->false_list, fp);
  508. if (rc)
  509. return rc;
  510. return 0;
  511. }
  512. int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
  513. {
  514. struct cond_node *cur;
  515. u32 len;
  516. __le32 buf[1];
  517. int rc;
  518. len = 0;
  519. for (cur = list; cur != NULL; cur = cur->next)
  520. len++;
  521. buf[0] = cpu_to_le32(len);
  522. rc = put_entry(buf, sizeof(u32), 1, fp);
  523. if (rc)
  524. return rc;
  525. for (cur = list; cur != NULL; cur = cur->next) {
  526. rc = cond_write_node(p, cur, fp);
  527. if (rc)
  528. return rc;
  529. }
  530. return 0;
  531. }
  532. void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
  533. struct extended_perms_decision *xpermd)
  534. {
  535. struct avtab_node *node;
  536. if (!ctab || !key || !xpermd)
  537. return;
  538. for (node = avtab_search_node(ctab, key); node;
  539. node = avtab_search_node_next(node, key->specified)) {
  540. if (node->key.specified & AVTAB_ENABLED)
  541. services_compute_xperms_decision(xpermd, node);
  542. }
  543. return;
  544. }
  545. /* Determine whether additional permissions are granted by the conditional
  546. * av table, and if so, add them to the result
  547. */
  548. void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
  549. struct av_decision *avd, struct extended_perms *xperms)
  550. {
  551. struct avtab_node *node;
  552. if (!ctab || !key || !avd)
  553. return;
  554. for (node = avtab_search_node(ctab, key); node;
  555. node = avtab_search_node_next(node, key->specified)) {
  556. if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
  557. (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
  558. avd->allowed |= node->datum.u.data;
  559. if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
  560. (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
  561. /* Since a '0' in an auditdeny mask represents a
  562. * permission we do NOT want to audit (dontaudit), we use
  563. * the '&' operand to ensure that all '0's in the mask
  564. * are retained (much unlike the allow and auditallow cases).
  565. */
  566. avd->auditdeny &= node->datum.u.data;
  567. if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
  568. (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
  569. avd->auditallow |= node->datum.u.data;
  570. if (xperms && (node->key.specified & AVTAB_ENABLED) &&
  571. (node->key.specified & AVTAB_XPERMS))
  572. services_compute_xperms_drivers(xperms, node);
  573. }
  574. return;
  575. }