ib_recv.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/slab.h>
  35. #include <linux/pci.h>
  36. #include <linux/dma-mapping.h>
  37. #include <rdma/rdma_cm.h>
  38. #include "rds_single_path.h"
  39. #include "rds.h"
  40. #include "ib.h"
  41. static struct kmem_cache *rds_ib_incoming_slab;
  42. static struct kmem_cache *rds_ib_frag_slab;
  43. static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
  44. void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
  45. {
  46. struct rds_ib_recv_work *recv;
  47. u32 i;
  48. for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
  49. struct ib_sge *sge;
  50. recv->r_ibinc = NULL;
  51. recv->r_frag = NULL;
  52. recv->r_wr.next = NULL;
  53. recv->r_wr.wr_id = i;
  54. recv->r_wr.sg_list = recv->r_sge;
  55. recv->r_wr.num_sge = RDS_IB_RECV_SGE;
  56. sge = &recv->r_sge[0];
  57. sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
  58. sge->length = sizeof(struct rds_header);
  59. sge->lkey = ic->i_pd->local_dma_lkey;
  60. sge = &recv->r_sge[1];
  61. sge->addr = 0;
  62. sge->length = RDS_FRAG_SIZE;
  63. sge->lkey = ic->i_pd->local_dma_lkey;
  64. }
  65. }
  66. /*
  67. * The entire 'from' list, including the from element itself, is put on
  68. * to the tail of the 'to' list.
  69. */
  70. static void list_splice_entire_tail(struct list_head *from,
  71. struct list_head *to)
  72. {
  73. struct list_head *from_last = from->prev;
  74. list_splice_tail(from_last, to);
  75. list_add_tail(from_last, to);
  76. }
  77. static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
  78. {
  79. struct list_head *tmp;
  80. tmp = xchg(&cache->xfer, NULL);
  81. if (tmp) {
  82. if (cache->ready)
  83. list_splice_entire_tail(tmp, cache->ready);
  84. else
  85. cache->ready = tmp;
  86. }
  87. }
  88. static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
  89. {
  90. struct rds_ib_cache_head *head;
  91. int cpu;
  92. cache->percpu = alloc_percpu(struct rds_ib_cache_head);
  93. if (!cache->percpu)
  94. return -ENOMEM;
  95. for_each_possible_cpu(cpu) {
  96. head = per_cpu_ptr(cache->percpu, cpu);
  97. head->first = NULL;
  98. head->count = 0;
  99. }
  100. cache->xfer = NULL;
  101. cache->ready = NULL;
  102. return 0;
  103. }
  104. int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
  105. {
  106. int ret;
  107. ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
  108. if (!ret) {
  109. ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
  110. if (ret)
  111. free_percpu(ic->i_cache_incs.percpu);
  112. }
  113. return ret;
  114. }
  115. static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
  116. struct list_head *caller_list)
  117. {
  118. struct rds_ib_cache_head *head;
  119. int cpu;
  120. for_each_possible_cpu(cpu) {
  121. head = per_cpu_ptr(cache->percpu, cpu);
  122. if (head->first) {
  123. list_splice_entire_tail(head->first, caller_list);
  124. head->first = NULL;
  125. }
  126. }
  127. if (cache->ready) {
  128. list_splice_entire_tail(cache->ready, caller_list);
  129. cache->ready = NULL;
  130. }
  131. }
  132. void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
  133. {
  134. struct rds_ib_incoming *inc;
  135. struct rds_ib_incoming *inc_tmp;
  136. struct rds_page_frag *frag;
  137. struct rds_page_frag *frag_tmp;
  138. LIST_HEAD(list);
  139. rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
  140. rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
  141. free_percpu(ic->i_cache_incs.percpu);
  142. list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
  143. list_del(&inc->ii_cache_entry);
  144. WARN_ON(!list_empty(&inc->ii_frags));
  145. kmem_cache_free(rds_ib_incoming_slab, inc);
  146. }
  147. rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
  148. rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
  149. free_percpu(ic->i_cache_frags.percpu);
  150. list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
  151. list_del(&frag->f_cache_entry);
  152. WARN_ON(!list_empty(&frag->f_item));
  153. kmem_cache_free(rds_ib_frag_slab, frag);
  154. }
  155. }
  156. /* fwd decl */
  157. static void rds_ib_recv_cache_put(struct list_head *new_item,
  158. struct rds_ib_refill_cache *cache);
  159. static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
  160. /* Recycle frag and attached recv buffer f_sg */
  161. static void rds_ib_frag_free(struct rds_ib_connection *ic,
  162. struct rds_page_frag *frag)
  163. {
  164. rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
  165. rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
  166. }
  167. /* Recycle inc after freeing attached frags */
  168. void rds_ib_inc_free(struct rds_incoming *inc)
  169. {
  170. struct rds_ib_incoming *ibinc;
  171. struct rds_page_frag *frag;
  172. struct rds_page_frag *pos;
  173. struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
  174. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  175. /* Free attached frags */
  176. list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
  177. list_del_init(&frag->f_item);
  178. rds_ib_frag_free(ic, frag);
  179. }
  180. BUG_ON(!list_empty(&ibinc->ii_frags));
  181. rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
  182. rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
  183. }
  184. static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
  185. struct rds_ib_recv_work *recv)
  186. {
  187. if (recv->r_ibinc) {
  188. rds_inc_put(&recv->r_ibinc->ii_inc);
  189. recv->r_ibinc = NULL;
  190. }
  191. if (recv->r_frag) {
  192. ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
  193. rds_ib_frag_free(ic, recv->r_frag);
  194. recv->r_frag = NULL;
  195. }
  196. }
  197. void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
  198. {
  199. u32 i;
  200. for (i = 0; i < ic->i_recv_ring.w_nr; i++)
  201. rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
  202. }
  203. static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
  204. gfp_t slab_mask)
  205. {
  206. struct rds_ib_incoming *ibinc;
  207. struct list_head *cache_item;
  208. int avail_allocs;
  209. cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
  210. if (cache_item) {
  211. ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
  212. } else {
  213. avail_allocs = atomic_add_unless(&rds_ib_allocation,
  214. 1, rds_ib_sysctl_max_recv_allocation);
  215. if (!avail_allocs) {
  216. rds_ib_stats_inc(s_ib_rx_alloc_limit);
  217. return NULL;
  218. }
  219. ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
  220. if (!ibinc) {
  221. atomic_dec(&rds_ib_allocation);
  222. return NULL;
  223. }
  224. }
  225. INIT_LIST_HEAD(&ibinc->ii_frags);
  226. rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
  227. return ibinc;
  228. }
  229. static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
  230. gfp_t slab_mask, gfp_t page_mask)
  231. {
  232. struct rds_page_frag *frag;
  233. struct list_head *cache_item;
  234. int ret;
  235. cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
  236. if (cache_item) {
  237. frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
  238. } else {
  239. frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
  240. if (!frag)
  241. return NULL;
  242. sg_init_table(&frag->f_sg, 1);
  243. ret = rds_page_remainder_alloc(&frag->f_sg,
  244. RDS_FRAG_SIZE, page_mask);
  245. if (ret) {
  246. kmem_cache_free(rds_ib_frag_slab, frag);
  247. return NULL;
  248. }
  249. }
  250. INIT_LIST_HEAD(&frag->f_item);
  251. return frag;
  252. }
  253. static int rds_ib_recv_refill_one(struct rds_connection *conn,
  254. struct rds_ib_recv_work *recv, gfp_t gfp)
  255. {
  256. struct rds_ib_connection *ic = conn->c_transport_data;
  257. struct ib_sge *sge;
  258. int ret = -ENOMEM;
  259. gfp_t slab_mask = GFP_NOWAIT;
  260. gfp_t page_mask = GFP_NOWAIT;
  261. if (gfp & __GFP_DIRECT_RECLAIM) {
  262. slab_mask = GFP_KERNEL;
  263. page_mask = GFP_HIGHUSER;
  264. }
  265. if (!ic->i_cache_incs.ready)
  266. rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
  267. if (!ic->i_cache_frags.ready)
  268. rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
  269. /*
  270. * ibinc was taken from recv if recv contained the start of a message.
  271. * recvs that were continuations will still have this allocated.
  272. */
  273. if (!recv->r_ibinc) {
  274. recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
  275. if (!recv->r_ibinc)
  276. goto out;
  277. }
  278. WARN_ON(recv->r_frag); /* leak! */
  279. recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
  280. if (!recv->r_frag)
  281. goto out;
  282. ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
  283. 1, DMA_FROM_DEVICE);
  284. WARN_ON(ret != 1);
  285. sge = &recv->r_sge[0];
  286. sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
  287. sge->length = sizeof(struct rds_header);
  288. sge = &recv->r_sge[1];
  289. sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
  290. sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
  291. ret = 0;
  292. out:
  293. return ret;
  294. }
  295. static int acquire_refill(struct rds_connection *conn)
  296. {
  297. return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
  298. }
  299. static void release_refill(struct rds_connection *conn)
  300. {
  301. clear_bit(RDS_RECV_REFILL, &conn->c_flags);
  302. /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
  303. * hot path and finding waiters is very rare. We don't want to walk
  304. * the system-wide hashed waitqueue buckets in the fast path only to
  305. * almost never find waiters.
  306. */
  307. if (waitqueue_active(&conn->c_waitq))
  308. wake_up_all(&conn->c_waitq);
  309. }
  310. /*
  311. * This tries to allocate and post unused work requests after making sure that
  312. * they have all the allocations they need to queue received fragments into
  313. * sockets.
  314. *
  315. * -1 is returned if posting fails due to temporary resource exhaustion.
  316. */
  317. void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
  318. {
  319. struct rds_ib_connection *ic = conn->c_transport_data;
  320. struct rds_ib_recv_work *recv;
  321. struct ib_recv_wr *failed_wr;
  322. unsigned int posted = 0;
  323. int ret = 0;
  324. bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
  325. u32 pos;
  326. /* the goal here is to just make sure that someone, somewhere
  327. * is posting buffers. If we can't get the refill lock,
  328. * let them do their thing
  329. */
  330. if (!acquire_refill(conn))
  331. return;
  332. while ((prefill || rds_conn_up(conn)) &&
  333. rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
  334. if (pos >= ic->i_recv_ring.w_nr) {
  335. printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
  336. pos);
  337. break;
  338. }
  339. recv = &ic->i_recvs[pos];
  340. ret = rds_ib_recv_refill_one(conn, recv, gfp);
  341. if (ret) {
  342. break;
  343. }
  344. /* XXX when can this fail? */
  345. ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
  346. rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
  347. recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
  348. (long) ib_sg_dma_address(
  349. ic->i_cm_id->device,
  350. &recv->r_frag->f_sg),
  351. ret);
  352. if (ret) {
  353. rds_ib_conn_error(conn, "recv post on "
  354. "%pI4 returned %d, disconnecting and "
  355. "reconnecting\n", &conn->c_faddr,
  356. ret);
  357. break;
  358. }
  359. posted++;
  360. }
  361. /* We're doing flow control - update the window. */
  362. if (ic->i_flowctl && posted)
  363. rds_ib_advertise_credits(conn, posted);
  364. if (ret)
  365. rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
  366. release_refill(conn);
  367. /* if we're called from the softirq handler, we'll be GFP_NOWAIT.
  368. * in this case the ring being low is going to lead to more interrupts
  369. * and we can safely let the softirq code take care of it unless the
  370. * ring is completely empty.
  371. *
  372. * if we're called from krdsd, we'll be GFP_KERNEL. In this case
  373. * we might have raced with the softirq code while we had the refill
  374. * lock held. Use rds_ib_ring_low() instead of ring_empty to decide
  375. * if we should requeue.
  376. */
  377. if (rds_conn_up(conn) &&
  378. ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
  379. rds_ib_ring_empty(&ic->i_recv_ring))) {
  380. queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
  381. }
  382. }
  383. /*
  384. * We want to recycle several types of recv allocations, like incs and frags.
  385. * To use this, the *_free() function passes in the ptr to a list_head within
  386. * the recyclee, as well as the cache to put it on.
  387. *
  388. * First, we put the memory on a percpu list. When this reaches a certain size,
  389. * We move it to an intermediate non-percpu list in a lockless manner, with some
  390. * xchg/compxchg wizardry.
  391. *
  392. * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
  393. * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
  394. * list_empty() will return true with one element is actually present.
  395. */
  396. static void rds_ib_recv_cache_put(struct list_head *new_item,
  397. struct rds_ib_refill_cache *cache)
  398. {
  399. unsigned long flags;
  400. struct list_head *old, *chpfirst;
  401. local_irq_save(flags);
  402. chpfirst = __this_cpu_read(cache->percpu->first);
  403. if (!chpfirst)
  404. INIT_LIST_HEAD(new_item);
  405. else /* put on front */
  406. list_add_tail(new_item, chpfirst);
  407. __this_cpu_write(cache->percpu->first, new_item);
  408. __this_cpu_inc(cache->percpu->count);
  409. if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
  410. goto end;
  411. /*
  412. * Return our per-cpu first list to the cache's xfer by atomically
  413. * grabbing the current xfer list, appending it to our per-cpu list,
  414. * and then atomically returning that entire list back to the
  415. * cache's xfer list as long as it's still empty.
  416. */
  417. do {
  418. old = xchg(&cache->xfer, NULL);
  419. if (old)
  420. list_splice_entire_tail(old, chpfirst);
  421. old = cmpxchg(&cache->xfer, NULL, chpfirst);
  422. } while (old);
  423. __this_cpu_write(cache->percpu->first, NULL);
  424. __this_cpu_write(cache->percpu->count, 0);
  425. end:
  426. local_irq_restore(flags);
  427. }
  428. static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
  429. {
  430. struct list_head *head = cache->ready;
  431. if (head) {
  432. if (!list_empty(head)) {
  433. cache->ready = head->next;
  434. list_del_init(head);
  435. } else
  436. cache->ready = NULL;
  437. }
  438. return head;
  439. }
  440. int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
  441. {
  442. struct rds_ib_incoming *ibinc;
  443. struct rds_page_frag *frag;
  444. unsigned long to_copy;
  445. unsigned long frag_off = 0;
  446. int copied = 0;
  447. int ret;
  448. u32 len;
  449. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  450. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  451. len = be32_to_cpu(inc->i_hdr.h_len);
  452. while (iov_iter_count(to) && copied < len) {
  453. if (frag_off == RDS_FRAG_SIZE) {
  454. frag = list_entry(frag->f_item.next,
  455. struct rds_page_frag, f_item);
  456. frag_off = 0;
  457. }
  458. to_copy = min_t(unsigned long, iov_iter_count(to),
  459. RDS_FRAG_SIZE - frag_off);
  460. to_copy = min_t(unsigned long, to_copy, len - copied);
  461. /* XXX needs + offset for multiple recvs per page */
  462. rds_stats_add(s_copy_to_user, to_copy);
  463. ret = copy_page_to_iter(sg_page(&frag->f_sg),
  464. frag->f_sg.offset + frag_off,
  465. to_copy,
  466. to);
  467. if (ret != to_copy)
  468. return -EFAULT;
  469. frag_off += to_copy;
  470. copied += to_copy;
  471. }
  472. return copied;
  473. }
  474. /* ic starts out kzalloc()ed */
  475. void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
  476. {
  477. struct ib_send_wr *wr = &ic->i_ack_wr;
  478. struct ib_sge *sge = &ic->i_ack_sge;
  479. sge->addr = ic->i_ack_dma;
  480. sge->length = sizeof(struct rds_header);
  481. sge->lkey = ic->i_pd->local_dma_lkey;
  482. wr->sg_list = sge;
  483. wr->num_sge = 1;
  484. wr->opcode = IB_WR_SEND;
  485. wr->wr_id = RDS_IB_ACK_WR_ID;
  486. wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
  487. }
  488. /*
  489. * You'd think that with reliable IB connections you wouldn't need to ack
  490. * messages that have been received. The problem is that IB hardware generates
  491. * an ack message before it has DMAed the message into memory. This creates a
  492. * potential message loss if the HCA is disabled for any reason between when it
  493. * sends the ack and before the message is DMAed and processed. This is only a
  494. * potential issue if another HCA is available for fail-over.
  495. *
  496. * When the remote host receives our ack they'll free the sent message from
  497. * their send queue. To decrease the latency of this we always send an ack
  498. * immediately after we've received messages.
  499. *
  500. * For simplicity, we only have one ack in flight at a time. This puts
  501. * pressure on senders to have deep enough send queues to absorb the latency of
  502. * a single ack frame being in flight. This might not be good enough.
  503. *
  504. * This is implemented by have a long-lived send_wr and sge which point to a
  505. * statically allocated ack frame. This ack wr does not fall under the ring
  506. * accounting that the tx and rx wrs do. The QP attribute specifically makes
  507. * room for it beyond the ring size. Send completion notices its special
  508. * wr_id and avoids working with the ring in that case.
  509. */
  510. #ifndef KERNEL_HAS_ATOMIC64
  511. void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
  512. {
  513. unsigned long flags;
  514. spin_lock_irqsave(&ic->i_ack_lock, flags);
  515. ic->i_ack_next = seq;
  516. if (ack_required)
  517. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  518. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  519. }
  520. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  521. {
  522. unsigned long flags;
  523. u64 seq;
  524. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  525. spin_lock_irqsave(&ic->i_ack_lock, flags);
  526. seq = ic->i_ack_next;
  527. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  528. return seq;
  529. }
  530. #else
  531. void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
  532. {
  533. atomic64_set(&ic->i_ack_next, seq);
  534. if (ack_required) {
  535. smp_mb__before_atomic();
  536. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  537. }
  538. }
  539. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  540. {
  541. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  542. smp_mb__after_atomic();
  543. return atomic64_read(&ic->i_ack_next);
  544. }
  545. #endif
  546. static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
  547. {
  548. struct rds_header *hdr = ic->i_ack;
  549. struct ib_send_wr *failed_wr;
  550. u64 seq;
  551. int ret;
  552. seq = rds_ib_get_ack(ic);
  553. rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
  554. rds_message_populate_header(hdr, 0, 0, 0);
  555. hdr->h_ack = cpu_to_be64(seq);
  556. hdr->h_credit = adv_credits;
  557. rds_message_make_checksum(hdr);
  558. ic->i_ack_queued = jiffies;
  559. ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
  560. if (unlikely(ret)) {
  561. /* Failed to send. Release the WR, and
  562. * force another ACK.
  563. */
  564. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  565. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  566. rds_ib_stats_inc(s_ib_ack_send_failure);
  567. rds_ib_conn_error(ic->conn, "sending ack failed\n");
  568. } else
  569. rds_ib_stats_inc(s_ib_ack_sent);
  570. }
  571. /*
  572. * There are 3 ways of getting acknowledgements to the peer:
  573. * 1. We call rds_ib_attempt_ack from the recv completion handler
  574. * to send an ACK-only frame.
  575. * However, there can be only one such frame in the send queue
  576. * at any time, so we may have to postpone it.
  577. * 2. When another (data) packet is transmitted while there's
  578. * an ACK in the queue, we piggyback the ACK sequence number
  579. * on the data packet.
  580. * 3. If the ACK WR is done sending, we get called from the
  581. * send queue completion handler, and check whether there's
  582. * another ACK pending (postponed because the WR was on the
  583. * queue). If so, we transmit it.
  584. *
  585. * We maintain 2 variables:
  586. * - i_ack_flags, which keeps track of whether the ACK WR
  587. * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
  588. * - i_ack_next, which is the last sequence number we received
  589. *
  590. * Potentially, send queue and receive queue handlers can run concurrently.
  591. * It would be nice to not have to use a spinlock to synchronize things,
  592. * but the one problem that rules this out is that 64bit updates are
  593. * not atomic on all platforms. Things would be a lot simpler if
  594. * we had atomic64 or maybe cmpxchg64 everywhere.
  595. *
  596. * Reconnecting complicates this picture just slightly. When we
  597. * reconnect, we may be seeing duplicate packets. The peer
  598. * is retransmitting them, because it hasn't seen an ACK for
  599. * them. It is important that we ACK these.
  600. *
  601. * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
  602. * this flag set *MUST* be acknowledged immediately.
  603. */
  604. /*
  605. * When we get here, we're called from the recv queue handler.
  606. * Check whether we ought to transmit an ACK.
  607. */
  608. void rds_ib_attempt_ack(struct rds_ib_connection *ic)
  609. {
  610. unsigned int adv_credits;
  611. if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  612. return;
  613. if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
  614. rds_ib_stats_inc(s_ib_ack_send_delayed);
  615. return;
  616. }
  617. /* Can we get a send credit? */
  618. if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
  619. rds_ib_stats_inc(s_ib_tx_throttle);
  620. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  621. return;
  622. }
  623. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  624. rds_ib_send_ack(ic, adv_credits);
  625. }
  626. /*
  627. * We get here from the send completion handler, when the
  628. * adapter tells us the ACK frame was sent.
  629. */
  630. void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
  631. {
  632. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  633. rds_ib_attempt_ack(ic);
  634. }
  635. /*
  636. * This is called by the regular xmit code when it wants to piggyback
  637. * an ACK on an outgoing frame.
  638. */
  639. u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
  640. {
  641. if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  642. rds_ib_stats_inc(s_ib_ack_send_piggybacked);
  643. return rds_ib_get_ack(ic);
  644. }
  645. /*
  646. * It's kind of lame that we're copying from the posted receive pages into
  647. * long-lived bitmaps. We could have posted the bitmaps and rdma written into
  648. * them. But receiving new congestion bitmaps should be a *rare* event, so
  649. * hopefully we won't need to invest that complexity in making it more
  650. * efficient. By copying we can share a simpler core with TCP which has to
  651. * copy.
  652. */
  653. static void rds_ib_cong_recv(struct rds_connection *conn,
  654. struct rds_ib_incoming *ibinc)
  655. {
  656. struct rds_cong_map *map;
  657. unsigned int map_off;
  658. unsigned int map_page;
  659. struct rds_page_frag *frag;
  660. unsigned long frag_off;
  661. unsigned long to_copy;
  662. unsigned long copied;
  663. uint64_t uncongested = 0;
  664. void *addr;
  665. /* catch completely corrupt packets */
  666. if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
  667. return;
  668. map = conn->c_fcong;
  669. map_page = 0;
  670. map_off = 0;
  671. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  672. frag_off = 0;
  673. copied = 0;
  674. while (copied < RDS_CONG_MAP_BYTES) {
  675. uint64_t *src, *dst;
  676. unsigned int k;
  677. to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
  678. BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
  679. addr = kmap_atomic(sg_page(&frag->f_sg));
  680. src = addr + frag->f_sg.offset + frag_off;
  681. dst = (void *)map->m_page_addrs[map_page] + map_off;
  682. for (k = 0; k < to_copy; k += 8) {
  683. /* Record ports that became uncongested, ie
  684. * bits that changed from 0 to 1. */
  685. uncongested |= ~(*src) & *dst;
  686. *dst++ = *src++;
  687. }
  688. kunmap_atomic(addr);
  689. copied += to_copy;
  690. map_off += to_copy;
  691. if (map_off == PAGE_SIZE) {
  692. map_off = 0;
  693. map_page++;
  694. }
  695. frag_off += to_copy;
  696. if (frag_off == RDS_FRAG_SIZE) {
  697. frag = list_entry(frag->f_item.next,
  698. struct rds_page_frag, f_item);
  699. frag_off = 0;
  700. }
  701. }
  702. /* the congestion map is in little endian order */
  703. uncongested = le64_to_cpu(uncongested);
  704. rds_cong_map_updated(map, uncongested);
  705. }
  706. static void rds_ib_process_recv(struct rds_connection *conn,
  707. struct rds_ib_recv_work *recv, u32 data_len,
  708. struct rds_ib_ack_state *state)
  709. {
  710. struct rds_ib_connection *ic = conn->c_transport_data;
  711. struct rds_ib_incoming *ibinc = ic->i_ibinc;
  712. struct rds_header *ihdr, *hdr;
  713. /* XXX shut down the connection if port 0,0 are seen? */
  714. rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
  715. data_len);
  716. if (data_len < sizeof(struct rds_header)) {
  717. rds_ib_conn_error(conn, "incoming message "
  718. "from %pI4 didn't include a "
  719. "header, disconnecting and "
  720. "reconnecting\n",
  721. &conn->c_faddr);
  722. return;
  723. }
  724. data_len -= sizeof(struct rds_header);
  725. ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
  726. /* Validate the checksum. */
  727. if (!rds_message_verify_checksum(ihdr)) {
  728. rds_ib_conn_error(conn, "incoming message "
  729. "from %pI4 has corrupted header - "
  730. "forcing a reconnect\n",
  731. &conn->c_faddr);
  732. rds_stats_inc(s_recv_drop_bad_checksum);
  733. return;
  734. }
  735. /* Process the ACK sequence which comes with every packet */
  736. state->ack_recv = be64_to_cpu(ihdr->h_ack);
  737. state->ack_recv_valid = 1;
  738. /* Process the credits update if there was one */
  739. if (ihdr->h_credit)
  740. rds_ib_send_add_credits(conn, ihdr->h_credit);
  741. if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
  742. /* This is an ACK-only packet. The fact that it gets
  743. * special treatment here is that historically, ACKs
  744. * were rather special beasts.
  745. */
  746. rds_ib_stats_inc(s_ib_ack_received);
  747. /*
  748. * Usually the frags make their way on to incs and are then freed as
  749. * the inc is freed. We don't go that route, so we have to drop the
  750. * page ref ourselves. We can't just leave the page on the recv
  751. * because that confuses the dma mapping of pages and each recv's use
  752. * of a partial page.
  753. *
  754. * FIXME: Fold this into the code path below.
  755. */
  756. rds_ib_frag_free(ic, recv->r_frag);
  757. recv->r_frag = NULL;
  758. return;
  759. }
  760. /*
  761. * If we don't already have an inc on the connection then this
  762. * fragment has a header and starts a message.. copy its header
  763. * into the inc and save the inc so we can hang upcoming fragments
  764. * off its list.
  765. */
  766. if (!ibinc) {
  767. ibinc = recv->r_ibinc;
  768. recv->r_ibinc = NULL;
  769. ic->i_ibinc = ibinc;
  770. hdr = &ibinc->ii_inc.i_hdr;
  771. memcpy(hdr, ihdr, sizeof(*hdr));
  772. ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
  773. rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
  774. ic->i_recv_data_rem, hdr->h_flags);
  775. } else {
  776. hdr = &ibinc->ii_inc.i_hdr;
  777. /* We can't just use memcmp here; fragments of a
  778. * single message may carry different ACKs */
  779. if (hdr->h_sequence != ihdr->h_sequence ||
  780. hdr->h_len != ihdr->h_len ||
  781. hdr->h_sport != ihdr->h_sport ||
  782. hdr->h_dport != ihdr->h_dport) {
  783. rds_ib_conn_error(conn,
  784. "fragment header mismatch; forcing reconnect\n");
  785. return;
  786. }
  787. }
  788. list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
  789. recv->r_frag = NULL;
  790. if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
  791. ic->i_recv_data_rem -= RDS_FRAG_SIZE;
  792. else {
  793. ic->i_recv_data_rem = 0;
  794. ic->i_ibinc = NULL;
  795. if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
  796. rds_ib_cong_recv(conn, ibinc);
  797. else {
  798. rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
  799. &ibinc->ii_inc, GFP_ATOMIC);
  800. state->ack_next = be64_to_cpu(hdr->h_sequence);
  801. state->ack_next_valid = 1;
  802. }
  803. /* Evaluate the ACK_REQUIRED flag *after* we received
  804. * the complete frame, and after bumping the next_rx
  805. * sequence. */
  806. if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
  807. rds_stats_inc(s_recv_ack_required);
  808. state->ack_required = 1;
  809. }
  810. rds_inc_put(&ibinc->ii_inc);
  811. }
  812. }
  813. void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
  814. struct ib_wc *wc,
  815. struct rds_ib_ack_state *state)
  816. {
  817. struct rds_connection *conn = ic->conn;
  818. struct rds_ib_recv_work *recv;
  819. rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
  820. (unsigned long long)wc->wr_id, wc->status,
  821. ib_wc_status_msg(wc->status), wc->byte_len,
  822. be32_to_cpu(wc->ex.imm_data));
  823. rds_ib_stats_inc(s_ib_rx_cq_event);
  824. recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
  825. ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
  826. DMA_FROM_DEVICE);
  827. /* Also process recvs in connecting state because it is possible
  828. * to get a recv completion _before_ the rdmacm ESTABLISHED
  829. * event is processed.
  830. */
  831. if (wc->status == IB_WC_SUCCESS) {
  832. rds_ib_process_recv(conn, recv, wc->byte_len, state);
  833. } else {
  834. /* We expect errors as the qp is drained during shutdown */
  835. if (rds_conn_up(conn) || rds_conn_connecting(conn))
  836. rds_ib_conn_error(conn, "recv completion on %pI4 had status %u (%s), disconnecting and reconnecting\n",
  837. &conn->c_faddr,
  838. wc->status,
  839. ib_wc_status_msg(wc->status));
  840. }
  841. /* rds_ib_process_recv() doesn't always consume the frag, and
  842. * we might not have called it at all if the wc didn't indicate
  843. * success. We already unmapped the frag's pages, though, and
  844. * the following rds_ib_ring_free() call tells the refill path
  845. * that it will not find an allocated frag here. Make sure we
  846. * keep that promise by freeing a frag that's still on the ring.
  847. */
  848. if (recv->r_frag) {
  849. rds_ib_frag_free(ic, recv->r_frag);
  850. recv->r_frag = NULL;
  851. }
  852. rds_ib_ring_free(&ic->i_recv_ring, 1);
  853. /* If we ever end up with a really empty receive ring, we're
  854. * in deep trouble, as the sender will definitely see RNR
  855. * timeouts. */
  856. if (rds_ib_ring_empty(&ic->i_recv_ring))
  857. rds_ib_stats_inc(s_ib_rx_ring_empty);
  858. if (rds_ib_ring_low(&ic->i_recv_ring))
  859. rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
  860. }
  861. int rds_ib_recv_path(struct rds_conn_path *cp)
  862. {
  863. struct rds_connection *conn = cp->cp_conn;
  864. struct rds_ib_connection *ic = conn->c_transport_data;
  865. int ret = 0;
  866. rdsdebug("conn %p\n", conn);
  867. if (rds_conn_up(conn)) {
  868. rds_ib_attempt_ack(ic);
  869. rds_ib_recv_refill(conn, 0, GFP_KERNEL);
  870. }
  871. return ret;
  872. }
  873. int rds_ib_recv_init(void)
  874. {
  875. struct sysinfo si;
  876. int ret = -ENOMEM;
  877. /* Default to 30% of all available RAM for recv memory */
  878. si_meminfo(&si);
  879. rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
  880. rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
  881. sizeof(struct rds_ib_incoming),
  882. 0, SLAB_HWCACHE_ALIGN, NULL);
  883. if (!rds_ib_incoming_slab)
  884. goto out;
  885. rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
  886. sizeof(struct rds_page_frag),
  887. 0, SLAB_HWCACHE_ALIGN, NULL);
  888. if (!rds_ib_frag_slab) {
  889. kmem_cache_destroy(rds_ib_incoming_slab);
  890. rds_ib_incoming_slab = NULL;
  891. } else
  892. ret = 0;
  893. out:
  894. return ret;
  895. }
  896. void rds_ib_recv_exit(void)
  897. {
  898. kmem_cache_destroy(rds_ib_incoming_slab);
  899. kmem_cache_destroy(rds_ib_frag_slab);
  900. }