sock.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  92. #include <linux/capability.h>
  93. #include <linux/errno.h>
  94. #include <linux/errqueue.h>
  95. #include <linux/types.h>
  96. #include <linux/socket.h>
  97. #include <linux/in.h>
  98. #include <linux/kernel.h>
  99. #include <linux/module.h>
  100. #include <linux/proc_fs.h>
  101. #include <linux/seq_file.h>
  102. #include <linux/sched.h>
  103. #include <linux/timer.h>
  104. #include <linux/string.h>
  105. #include <linux/sockios.h>
  106. #include <linux/net.h>
  107. #include <linux/mm.h>
  108. #include <linux/slab.h>
  109. #include <linux/interrupt.h>
  110. #include <linux/poll.h>
  111. #include <linux/tcp.h>
  112. #include <linux/init.h>
  113. #include <linux/highmem.h>
  114. #include <linux/user_namespace.h>
  115. #include <linux/static_key.h>
  116. #include <linux/memcontrol.h>
  117. #include <linux/prefetch.h>
  118. #include <asm/uaccess.h>
  119. #include <linux/netdevice.h>
  120. #include <net/protocol.h>
  121. #include <linux/skbuff.h>
  122. #include <net/net_namespace.h>
  123. #include <net/request_sock.h>
  124. #include <net/sock.h>
  125. #include <linux/net_tstamp.h>
  126. #include <net/xfrm.h>
  127. #include <linux/ipsec.h>
  128. #include <net/cls_cgroup.h>
  129. #include <net/netprio_cgroup.h>
  130. #include <linux/sock_diag.h>
  131. #include <linux/filter.h>
  132. #include <net/sock_reuseport.h>
  133. #include <trace/events/sock.h>
  134. #include <net/tcp.h>
  135. #include <net/busy_poll.h>
  136. static DEFINE_MUTEX(proto_list_mutex);
  137. static LIST_HEAD(proto_list);
  138. /**
  139. * sk_ns_capable - General socket capability test
  140. * @sk: Socket to use a capability on or through
  141. * @user_ns: The user namespace of the capability to use
  142. * @cap: The capability to use
  143. *
  144. * Test to see if the opener of the socket had when the socket was
  145. * created and the current process has the capability @cap in the user
  146. * namespace @user_ns.
  147. */
  148. bool sk_ns_capable(const struct sock *sk,
  149. struct user_namespace *user_ns, int cap)
  150. {
  151. return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
  152. ns_capable(user_ns, cap);
  153. }
  154. EXPORT_SYMBOL(sk_ns_capable);
  155. /**
  156. * sk_capable - Socket global capability test
  157. * @sk: Socket to use a capability on or through
  158. * @cap: The global capability to use
  159. *
  160. * Test to see if the opener of the socket had when the socket was
  161. * created and the current process has the capability @cap in all user
  162. * namespaces.
  163. */
  164. bool sk_capable(const struct sock *sk, int cap)
  165. {
  166. return sk_ns_capable(sk, &init_user_ns, cap);
  167. }
  168. EXPORT_SYMBOL(sk_capable);
  169. /**
  170. * sk_net_capable - Network namespace socket capability test
  171. * @sk: Socket to use a capability on or through
  172. * @cap: The capability to use
  173. *
  174. * Test to see if the opener of the socket had when the socket was created
  175. * and the current process has the capability @cap over the network namespace
  176. * the socket is a member of.
  177. */
  178. bool sk_net_capable(const struct sock *sk, int cap)
  179. {
  180. return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
  181. }
  182. EXPORT_SYMBOL(sk_net_capable);
  183. /*
  184. * Each address family might have different locking rules, so we have
  185. * one slock key per address family:
  186. */
  187. static struct lock_class_key af_family_keys[AF_MAX];
  188. static struct lock_class_key af_family_slock_keys[AF_MAX];
  189. /*
  190. * Make lock validator output more readable. (we pre-construct these
  191. * strings build-time, so that runtime initialization of socket
  192. * locks is fast):
  193. */
  194. static const char *const af_family_key_strings[AF_MAX+1] = {
  195. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  196. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  197. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  198. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  199. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  200. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  201. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  202. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  203. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  204. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  205. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  206. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  207. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  208. "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_KCM" ,
  209. "sk_lock-AF_QIPCRTR", "sk_lock-AF_MAX"
  210. };
  211. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  212. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  213. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  214. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  215. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  216. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  217. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  218. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  219. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  220. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  221. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  222. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  223. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  224. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  225. "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_KCM" ,
  226. "slock-AF_QIPCRTR", "slock-AF_MAX"
  227. };
  228. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  229. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  230. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  231. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  232. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  233. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  234. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  235. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  236. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  237. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  238. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  239. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  240. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  241. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  242. "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_KCM" ,
  243. "clock-AF_QIPCRTR", "clock-AF_MAX"
  244. };
  245. /*
  246. * sk_callback_lock locking rules are per-address-family,
  247. * so split the lock classes by using a per-AF key:
  248. */
  249. static struct lock_class_key af_callback_keys[AF_MAX];
  250. /* Take into consideration the size of the struct sk_buff overhead in the
  251. * determination of these values, since that is non-constant across
  252. * platforms. This makes socket queueing behavior and performance
  253. * not depend upon such differences.
  254. */
  255. #define _SK_MEM_PACKETS 256
  256. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  257. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  258. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  259. /* Run time adjustable parameters. */
  260. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  261. EXPORT_SYMBOL(sysctl_wmem_max);
  262. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  263. EXPORT_SYMBOL(sysctl_rmem_max);
  264. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  265. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  266. /* Maximal space eaten by iovec or ancillary data plus some space */
  267. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  268. EXPORT_SYMBOL(sysctl_optmem_max);
  269. int sysctl_tstamp_allow_data __read_mostly = 1;
  270. struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
  271. EXPORT_SYMBOL_GPL(memalloc_socks);
  272. /**
  273. * sk_set_memalloc - sets %SOCK_MEMALLOC
  274. * @sk: socket to set it on
  275. *
  276. * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
  277. * It's the responsibility of the admin to adjust min_free_kbytes
  278. * to meet the requirements
  279. */
  280. void sk_set_memalloc(struct sock *sk)
  281. {
  282. sock_set_flag(sk, SOCK_MEMALLOC);
  283. sk->sk_allocation |= __GFP_MEMALLOC;
  284. static_key_slow_inc(&memalloc_socks);
  285. }
  286. EXPORT_SYMBOL_GPL(sk_set_memalloc);
  287. void sk_clear_memalloc(struct sock *sk)
  288. {
  289. sock_reset_flag(sk, SOCK_MEMALLOC);
  290. sk->sk_allocation &= ~__GFP_MEMALLOC;
  291. static_key_slow_dec(&memalloc_socks);
  292. /*
  293. * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
  294. * progress of swapping. SOCK_MEMALLOC may be cleared while
  295. * it has rmem allocations due to the last swapfile being deactivated
  296. * but there is a risk that the socket is unusable due to exceeding
  297. * the rmem limits. Reclaim the reserves and obey rmem limits again.
  298. */
  299. sk_mem_reclaim(sk);
  300. }
  301. EXPORT_SYMBOL_GPL(sk_clear_memalloc);
  302. int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
  303. {
  304. int ret;
  305. unsigned long pflags = current->flags;
  306. /* these should have been dropped before queueing */
  307. BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
  308. current->flags |= PF_MEMALLOC;
  309. ret = sk->sk_backlog_rcv(sk, skb);
  310. tsk_restore_flags(current, pflags, PF_MEMALLOC);
  311. return ret;
  312. }
  313. EXPORT_SYMBOL(__sk_backlog_rcv);
  314. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  315. {
  316. struct timeval tv;
  317. if (optlen < sizeof(tv))
  318. return -EINVAL;
  319. if (copy_from_user(&tv, optval, sizeof(tv)))
  320. return -EFAULT;
  321. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  322. return -EDOM;
  323. if (tv.tv_sec < 0) {
  324. static int warned __read_mostly;
  325. *timeo_p = 0;
  326. if (warned < 10 && net_ratelimit()) {
  327. warned++;
  328. pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
  329. __func__, current->comm, task_pid_nr(current));
  330. }
  331. return 0;
  332. }
  333. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  334. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  335. return 0;
  336. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  337. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  338. return 0;
  339. }
  340. static void sock_warn_obsolete_bsdism(const char *name)
  341. {
  342. static int warned;
  343. static char warncomm[TASK_COMM_LEN];
  344. if (strcmp(warncomm, current->comm) && warned < 5) {
  345. strcpy(warncomm, current->comm);
  346. pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
  347. warncomm, name);
  348. warned++;
  349. }
  350. }
  351. static bool sock_needs_netstamp(const struct sock *sk)
  352. {
  353. switch (sk->sk_family) {
  354. case AF_UNSPEC:
  355. case AF_UNIX:
  356. return false;
  357. default:
  358. return true;
  359. }
  360. }
  361. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  362. {
  363. if (sk->sk_flags & flags) {
  364. sk->sk_flags &= ~flags;
  365. if (sock_needs_netstamp(sk) &&
  366. !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  367. net_disable_timestamp();
  368. }
  369. }
  370. int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  371. {
  372. unsigned long flags;
  373. struct sk_buff_head *list = &sk->sk_receive_queue;
  374. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  375. atomic_inc(&sk->sk_drops);
  376. trace_sock_rcvqueue_full(sk, skb);
  377. return -ENOMEM;
  378. }
  379. if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
  380. atomic_inc(&sk->sk_drops);
  381. return -ENOBUFS;
  382. }
  383. skb->dev = NULL;
  384. skb_set_owner_r(skb, sk);
  385. /* we escape from rcu protected region, make sure we dont leak
  386. * a norefcounted dst
  387. */
  388. skb_dst_force(skb);
  389. spin_lock_irqsave(&list->lock, flags);
  390. sock_skb_set_dropcount(sk, skb);
  391. __skb_queue_tail(list, skb);
  392. spin_unlock_irqrestore(&list->lock, flags);
  393. if (!sock_flag(sk, SOCK_DEAD))
  394. sk->sk_data_ready(sk);
  395. return 0;
  396. }
  397. EXPORT_SYMBOL(__sock_queue_rcv_skb);
  398. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  399. {
  400. int err;
  401. err = sk_filter(sk, skb);
  402. if (err)
  403. return err;
  404. return __sock_queue_rcv_skb(sk, skb);
  405. }
  406. EXPORT_SYMBOL(sock_queue_rcv_skb);
  407. int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
  408. const int nested, unsigned int trim_cap, bool refcounted)
  409. {
  410. int rc = NET_RX_SUCCESS;
  411. if (sk_filter_trim_cap(sk, skb, trim_cap))
  412. goto discard_and_relse;
  413. skb->dev = NULL;
  414. if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
  415. atomic_inc(&sk->sk_drops);
  416. goto discard_and_relse;
  417. }
  418. if (nested)
  419. bh_lock_sock_nested(sk);
  420. else
  421. bh_lock_sock(sk);
  422. if (!sock_owned_by_user(sk)) {
  423. /*
  424. * trylock + unlock semantics:
  425. */
  426. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  427. rc = sk_backlog_rcv(sk, skb);
  428. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  429. } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  430. bh_unlock_sock(sk);
  431. atomic_inc(&sk->sk_drops);
  432. goto discard_and_relse;
  433. }
  434. bh_unlock_sock(sk);
  435. out:
  436. if (refcounted)
  437. sock_put(sk);
  438. return rc;
  439. discard_and_relse:
  440. kfree_skb(skb);
  441. goto out;
  442. }
  443. EXPORT_SYMBOL(__sk_receive_skb);
  444. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  445. {
  446. struct dst_entry *dst = __sk_dst_get(sk);
  447. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  448. sk_tx_queue_clear(sk);
  449. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  450. dst_release(dst);
  451. return NULL;
  452. }
  453. return dst;
  454. }
  455. EXPORT_SYMBOL(__sk_dst_check);
  456. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  457. {
  458. struct dst_entry *dst = sk_dst_get(sk);
  459. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  460. sk_dst_reset(sk);
  461. dst_release(dst);
  462. return NULL;
  463. }
  464. return dst;
  465. }
  466. EXPORT_SYMBOL(sk_dst_check);
  467. static int sock_setbindtodevice(struct sock *sk, char __user *optval,
  468. int optlen)
  469. {
  470. int ret = -ENOPROTOOPT;
  471. #ifdef CONFIG_NETDEVICES
  472. struct net *net = sock_net(sk);
  473. char devname[IFNAMSIZ];
  474. int index;
  475. /* Sorry... */
  476. ret = -EPERM;
  477. if (!ns_capable(net->user_ns, CAP_NET_RAW))
  478. goto out;
  479. ret = -EINVAL;
  480. if (optlen < 0)
  481. goto out;
  482. /* Bind this socket to a particular device like "eth0",
  483. * as specified in the passed interface name. If the
  484. * name is "" or the option length is zero the socket
  485. * is not bound.
  486. */
  487. if (optlen > IFNAMSIZ - 1)
  488. optlen = IFNAMSIZ - 1;
  489. memset(devname, 0, sizeof(devname));
  490. ret = -EFAULT;
  491. if (copy_from_user(devname, optval, optlen))
  492. goto out;
  493. index = 0;
  494. if (devname[0] != '\0') {
  495. struct net_device *dev;
  496. rcu_read_lock();
  497. dev = dev_get_by_name_rcu(net, devname);
  498. if (dev)
  499. index = dev->ifindex;
  500. rcu_read_unlock();
  501. ret = -ENODEV;
  502. if (!dev)
  503. goto out;
  504. }
  505. lock_sock(sk);
  506. sk->sk_bound_dev_if = index;
  507. sk_dst_reset(sk);
  508. release_sock(sk);
  509. ret = 0;
  510. out:
  511. #endif
  512. return ret;
  513. }
  514. static int sock_getbindtodevice(struct sock *sk, char __user *optval,
  515. int __user *optlen, int len)
  516. {
  517. int ret = -ENOPROTOOPT;
  518. #ifdef CONFIG_NETDEVICES
  519. struct net *net = sock_net(sk);
  520. char devname[IFNAMSIZ];
  521. if (sk->sk_bound_dev_if == 0) {
  522. len = 0;
  523. goto zero;
  524. }
  525. ret = -EINVAL;
  526. if (len < IFNAMSIZ)
  527. goto out;
  528. ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
  529. if (ret)
  530. goto out;
  531. len = strlen(devname) + 1;
  532. ret = -EFAULT;
  533. if (copy_to_user(optval, devname, len))
  534. goto out;
  535. zero:
  536. ret = -EFAULT;
  537. if (put_user(len, optlen))
  538. goto out;
  539. ret = 0;
  540. out:
  541. #endif
  542. return ret;
  543. }
  544. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  545. {
  546. if (valbool)
  547. sock_set_flag(sk, bit);
  548. else
  549. sock_reset_flag(sk, bit);
  550. }
  551. bool sk_mc_loop(struct sock *sk)
  552. {
  553. if (dev_recursion_level())
  554. return false;
  555. if (!sk)
  556. return true;
  557. switch (sk->sk_family) {
  558. case AF_INET:
  559. return inet_sk(sk)->mc_loop;
  560. #if IS_ENABLED(CONFIG_IPV6)
  561. case AF_INET6:
  562. return inet6_sk(sk)->mc_loop;
  563. #endif
  564. }
  565. WARN_ON(1);
  566. return true;
  567. }
  568. EXPORT_SYMBOL(sk_mc_loop);
  569. /*
  570. * This is meant for all protocols to use and covers goings on
  571. * at the socket level. Everything here is generic.
  572. */
  573. int sock_setsockopt(struct socket *sock, int level, int optname,
  574. char __user *optval, unsigned int optlen)
  575. {
  576. struct sock *sk = sock->sk;
  577. int val;
  578. int valbool;
  579. struct linger ling;
  580. int ret = 0;
  581. /*
  582. * Options without arguments
  583. */
  584. if (optname == SO_BINDTODEVICE)
  585. return sock_setbindtodevice(sk, optval, optlen);
  586. if (optlen < sizeof(int))
  587. return -EINVAL;
  588. if (get_user(val, (int __user *)optval))
  589. return -EFAULT;
  590. valbool = val ? 1 : 0;
  591. lock_sock(sk);
  592. switch (optname) {
  593. case SO_DEBUG:
  594. if (val && !capable(CAP_NET_ADMIN))
  595. ret = -EACCES;
  596. else
  597. sock_valbool_flag(sk, SOCK_DBG, valbool);
  598. break;
  599. case SO_REUSEADDR:
  600. sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
  601. break;
  602. case SO_REUSEPORT:
  603. sk->sk_reuseport = valbool;
  604. break;
  605. case SO_TYPE:
  606. case SO_PROTOCOL:
  607. case SO_DOMAIN:
  608. case SO_ERROR:
  609. ret = -ENOPROTOOPT;
  610. break;
  611. case SO_DONTROUTE:
  612. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  613. break;
  614. case SO_BROADCAST:
  615. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  616. break;
  617. case SO_SNDBUF:
  618. /* Don't error on this BSD doesn't and if you think
  619. * about it this is right. Otherwise apps have to
  620. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  621. * are treated in BSD as hints
  622. */
  623. val = min_t(u32, val, sysctl_wmem_max);
  624. set_sndbuf:
  625. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  626. sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
  627. /* Wake up sending tasks if we upped the value. */
  628. sk->sk_write_space(sk);
  629. break;
  630. case SO_SNDBUFFORCE:
  631. if (!capable(CAP_NET_ADMIN)) {
  632. ret = -EPERM;
  633. break;
  634. }
  635. goto set_sndbuf;
  636. case SO_RCVBUF:
  637. /* Don't error on this BSD doesn't and if you think
  638. * about it this is right. Otherwise apps have to
  639. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  640. * are treated in BSD as hints
  641. */
  642. val = min_t(u32, val, sysctl_rmem_max);
  643. set_rcvbuf:
  644. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  645. /*
  646. * We double it on the way in to account for
  647. * "struct sk_buff" etc. overhead. Applications
  648. * assume that the SO_RCVBUF setting they make will
  649. * allow that much actual data to be received on that
  650. * socket.
  651. *
  652. * Applications are unaware that "struct sk_buff" and
  653. * other overheads allocate from the receive buffer
  654. * during socket buffer allocation.
  655. *
  656. * And after considering the possible alternatives,
  657. * returning the value we actually used in getsockopt
  658. * is the most desirable behavior.
  659. */
  660. sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
  661. break;
  662. case SO_RCVBUFFORCE:
  663. if (!capable(CAP_NET_ADMIN)) {
  664. ret = -EPERM;
  665. break;
  666. }
  667. goto set_rcvbuf;
  668. case SO_KEEPALIVE:
  669. #ifdef CONFIG_INET
  670. if (sk->sk_protocol == IPPROTO_TCP &&
  671. sk->sk_type == SOCK_STREAM)
  672. tcp_set_keepalive(sk, valbool);
  673. #endif
  674. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  675. break;
  676. case SO_OOBINLINE:
  677. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  678. break;
  679. case SO_NO_CHECK:
  680. sk->sk_no_check_tx = valbool;
  681. break;
  682. case SO_PRIORITY:
  683. if ((val >= 0 && val <= 6) ||
  684. ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  685. sk->sk_priority = val;
  686. else
  687. ret = -EPERM;
  688. break;
  689. case SO_LINGER:
  690. if (optlen < sizeof(ling)) {
  691. ret = -EINVAL; /* 1003.1g */
  692. break;
  693. }
  694. if (copy_from_user(&ling, optval, sizeof(ling))) {
  695. ret = -EFAULT;
  696. break;
  697. }
  698. if (!ling.l_onoff)
  699. sock_reset_flag(sk, SOCK_LINGER);
  700. else {
  701. #if (BITS_PER_LONG == 32)
  702. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  703. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  704. else
  705. #endif
  706. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  707. sock_set_flag(sk, SOCK_LINGER);
  708. }
  709. break;
  710. case SO_BSDCOMPAT:
  711. sock_warn_obsolete_bsdism("setsockopt");
  712. break;
  713. case SO_PASSCRED:
  714. if (valbool)
  715. set_bit(SOCK_PASSCRED, &sock->flags);
  716. else
  717. clear_bit(SOCK_PASSCRED, &sock->flags);
  718. break;
  719. case SO_TIMESTAMP:
  720. case SO_TIMESTAMPNS:
  721. if (valbool) {
  722. if (optname == SO_TIMESTAMP)
  723. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  724. else
  725. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  726. sock_set_flag(sk, SOCK_RCVTSTAMP);
  727. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  728. } else {
  729. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  730. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  731. }
  732. break;
  733. case SO_TIMESTAMPING:
  734. if (val & ~SOF_TIMESTAMPING_MASK) {
  735. ret = -EINVAL;
  736. break;
  737. }
  738. if (val & SOF_TIMESTAMPING_OPT_ID &&
  739. !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
  740. if (sk->sk_protocol == IPPROTO_TCP &&
  741. sk->sk_type == SOCK_STREAM) {
  742. if ((1 << sk->sk_state) &
  743. (TCPF_CLOSE | TCPF_LISTEN)) {
  744. ret = -EINVAL;
  745. break;
  746. }
  747. sk->sk_tskey = tcp_sk(sk)->snd_una;
  748. } else {
  749. sk->sk_tskey = 0;
  750. }
  751. }
  752. sk->sk_tsflags = val;
  753. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  754. sock_enable_timestamp(sk,
  755. SOCK_TIMESTAMPING_RX_SOFTWARE);
  756. else
  757. sock_disable_timestamp(sk,
  758. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  759. break;
  760. case SO_RCVLOWAT:
  761. if (val < 0)
  762. val = INT_MAX;
  763. sk->sk_rcvlowat = val ? : 1;
  764. break;
  765. case SO_RCVTIMEO:
  766. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  767. break;
  768. case SO_SNDTIMEO:
  769. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  770. break;
  771. case SO_ATTACH_FILTER:
  772. ret = -EINVAL;
  773. if (optlen == sizeof(struct sock_fprog)) {
  774. struct sock_fprog fprog;
  775. ret = -EFAULT;
  776. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  777. break;
  778. ret = sk_attach_filter(&fprog, sk);
  779. }
  780. break;
  781. case SO_ATTACH_BPF:
  782. ret = -EINVAL;
  783. if (optlen == sizeof(u32)) {
  784. u32 ufd;
  785. ret = -EFAULT;
  786. if (copy_from_user(&ufd, optval, sizeof(ufd)))
  787. break;
  788. ret = sk_attach_bpf(ufd, sk);
  789. }
  790. break;
  791. case SO_ATTACH_REUSEPORT_CBPF:
  792. ret = -EINVAL;
  793. if (optlen == sizeof(struct sock_fprog)) {
  794. struct sock_fprog fprog;
  795. ret = -EFAULT;
  796. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  797. break;
  798. ret = sk_reuseport_attach_filter(&fprog, sk);
  799. }
  800. break;
  801. case SO_ATTACH_REUSEPORT_EBPF:
  802. ret = -EINVAL;
  803. if (optlen == sizeof(u32)) {
  804. u32 ufd;
  805. ret = -EFAULT;
  806. if (copy_from_user(&ufd, optval, sizeof(ufd)))
  807. break;
  808. ret = sk_reuseport_attach_bpf(ufd, sk);
  809. }
  810. break;
  811. case SO_DETACH_FILTER:
  812. ret = sk_detach_filter(sk);
  813. break;
  814. case SO_LOCK_FILTER:
  815. if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
  816. ret = -EPERM;
  817. else
  818. sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
  819. break;
  820. case SO_PASSSEC:
  821. if (valbool)
  822. set_bit(SOCK_PASSSEC, &sock->flags);
  823. else
  824. clear_bit(SOCK_PASSSEC, &sock->flags);
  825. break;
  826. case SO_MARK:
  827. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  828. ret = -EPERM;
  829. else
  830. sk->sk_mark = val;
  831. break;
  832. case SO_RXQ_OVFL:
  833. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  834. break;
  835. case SO_WIFI_STATUS:
  836. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  837. break;
  838. case SO_PEEK_OFF:
  839. if (sock->ops->set_peek_off)
  840. ret = sock->ops->set_peek_off(sk, val);
  841. else
  842. ret = -EOPNOTSUPP;
  843. break;
  844. case SO_NOFCS:
  845. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  846. break;
  847. case SO_SELECT_ERR_QUEUE:
  848. sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
  849. break;
  850. #ifdef CONFIG_NET_RX_BUSY_POLL
  851. case SO_BUSY_POLL:
  852. /* allow unprivileged users to decrease the value */
  853. if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
  854. ret = -EPERM;
  855. else {
  856. if (val < 0)
  857. ret = -EINVAL;
  858. else
  859. sk->sk_ll_usec = val;
  860. }
  861. break;
  862. #endif
  863. case SO_MAX_PACING_RATE:
  864. sk->sk_max_pacing_rate = val;
  865. sk->sk_pacing_rate = min(sk->sk_pacing_rate,
  866. sk->sk_max_pacing_rate);
  867. break;
  868. case SO_INCOMING_CPU:
  869. sk->sk_incoming_cpu = val;
  870. break;
  871. case SO_CNX_ADVICE:
  872. if (val == 1)
  873. dst_negative_advice(sk);
  874. break;
  875. default:
  876. ret = -ENOPROTOOPT;
  877. break;
  878. }
  879. release_sock(sk);
  880. return ret;
  881. }
  882. EXPORT_SYMBOL(sock_setsockopt);
  883. static void cred_to_ucred(struct pid *pid, const struct cred *cred,
  884. struct ucred *ucred)
  885. {
  886. ucred->pid = pid_vnr(pid);
  887. ucred->uid = ucred->gid = -1;
  888. if (cred) {
  889. struct user_namespace *current_ns = current_user_ns();
  890. ucred->uid = from_kuid_munged(current_ns, cred->euid);
  891. ucred->gid = from_kgid_munged(current_ns, cred->egid);
  892. }
  893. }
  894. int sock_getsockopt(struct socket *sock, int level, int optname,
  895. char __user *optval, int __user *optlen)
  896. {
  897. struct sock *sk = sock->sk;
  898. union {
  899. int val;
  900. struct linger ling;
  901. struct timeval tm;
  902. } v;
  903. int lv = sizeof(int);
  904. int len;
  905. if (get_user(len, optlen))
  906. return -EFAULT;
  907. if (len < 0)
  908. return -EINVAL;
  909. memset(&v, 0, sizeof(v));
  910. switch (optname) {
  911. case SO_DEBUG:
  912. v.val = sock_flag(sk, SOCK_DBG);
  913. break;
  914. case SO_DONTROUTE:
  915. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  916. break;
  917. case SO_BROADCAST:
  918. v.val = sock_flag(sk, SOCK_BROADCAST);
  919. break;
  920. case SO_SNDBUF:
  921. v.val = sk->sk_sndbuf;
  922. break;
  923. case SO_RCVBUF:
  924. v.val = sk->sk_rcvbuf;
  925. break;
  926. case SO_REUSEADDR:
  927. v.val = sk->sk_reuse;
  928. break;
  929. case SO_REUSEPORT:
  930. v.val = sk->sk_reuseport;
  931. break;
  932. case SO_KEEPALIVE:
  933. v.val = sock_flag(sk, SOCK_KEEPOPEN);
  934. break;
  935. case SO_TYPE:
  936. v.val = sk->sk_type;
  937. break;
  938. case SO_PROTOCOL:
  939. v.val = sk->sk_protocol;
  940. break;
  941. case SO_DOMAIN:
  942. v.val = sk->sk_family;
  943. break;
  944. case SO_ERROR:
  945. v.val = -sock_error(sk);
  946. if (v.val == 0)
  947. v.val = xchg(&sk->sk_err_soft, 0);
  948. break;
  949. case SO_OOBINLINE:
  950. v.val = sock_flag(sk, SOCK_URGINLINE);
  951. break;
  952. case SO_NO_CHECK:
  953. v.val = sk->sk_no_check_tx;
  954. break;
  955. case SO_PRIORITY:
  956. v.val = sk->sk_priority;
  957. break;
  958. case SO_LINGER:
  959. lv = sizeof(v.ling);
  960. v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
  961. v.ling.l_linger = sk->sk_lingertime / HZ;
  962. break;
  963. case SO_BSDCOMPAT:
  964. sock_warn_obsolete_bsdism("getsockopt");
  965. break;
  966. case SO_TIMESTAMP:
  967. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  968. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  969. break;
  970. case SO_TIMESTAMPNS:
  971. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  972. break;
  973. case SO_TIMESTAMPING:
  974. v.val = sk->sk_tsflags;
  975. break;
  976. case SO_RCVTIMEO:
  977. lv = sizeof(struct timeval);
  978. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  979. v.tm.tv_sec = 0;
  980. v.tm.tv_usec = 0;
  981. } else {
  982. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  983. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  984. }
  985. break;
  986. case SO_SNDTIMEO:
  987. lv = sizeof(struct timeval);
  988. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  989. v.tm.tv_sec = 0;
  990. v.tm.tv_usec = 0;
  991. } else {
  992. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  993. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  994. }
  995. break;
  996. case SO_RCVLOWAT:
  997. v.val = sk->sk_rcvlowat;
  998. break;
  999. case SO_SNDLOWAT:
  1000. v.val = 1;
  1001. break;
  1002. case SO_PASSCRED:
  1003. v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
  1004. break;
  1005. case SO_PEERCRED:
  1006. {
  1007. struct ucred peercred;
  1008. if (len > sizeof(peercred))
  1009. len = sizeof(peercred);
  1010. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  1011. if (copy_to_user(optval, &peercred, len))
  1012. return -EFAULT;
  1013. goto lenout;
  1014. }
  1015. case SO_PEERNAME:
  1016. {
  1017. char address[128];
  1018. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  1019. return -ENOTCONN;
  1020. if (lv < len)
  1021. return -EINVAL;
  1022. if (copy_to_user(optval, address, len))
  1023. return -EFAULT;
  1024. goto lenout;
  1025. }
  1026. /* Dubious BSD thing... Probably nobody even uses it, but
  1027. * the UNIX standard wants it for whatever reason... -DaveM
  1028. */
  1029. case SO_ACCEPTCONN:
  1030. v.val = sk->sk_state == TCP_LISTEN;
  1031. break;
  1032. case SO_PASSSEC:
  1033. v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
  1034. break;
  1035. case SO_PEERSEC:
  1036. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  1037. case SO_MARK:
  1038. v.val = sk->sk_mark;
  1039. break;
  1040. case SO_RXQ_OVFL:
  1041. v.val = sock_flag(sk, SOCK_RXQ_OVFL);
  1042. break;
  1043. case SO_WIFI_STATUS:
  1044. v.val = sock_flag(sk, SOCK_WIFI_STATUS);
  1045. break;
  1046. case SO_PEEK_OFF:
  1047. if (!sock->ops->set_peek_off)
  1048. return -EOPNOTSUPP;
  1049. v.val = sk->sk_peek_off;
  1050. break;
  1051. case SO_NOFCS:
  1052. v.val = sock_flag(sk, SOCK_NOFCS);
  1053. break;
  1054. case SO_BINDTODEVICE:
  1055. return sock_getbindtodevice(sk, optval, optlen, len);
  1056. case SO_GET_FILTER:
  1057. len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
  1058. if (len < 0)
  1059. return len;
  1060. goto lenout;
  1061. case SO_LOCK_FILTER:
  1062. v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
  1063. break;
  1064. case SO_BPF_EXTENSIONS:
  1065. v.val = bpf_tell_extensions();
  1066. break;
  1067. case SO_SELECT_ERR_QUEUE:
  1068. v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
  1069. break;
  1070. #ifdef CONFIG_NET_RX_BUSY_POLL
  1071. case SO_BUSY_POLL:
  1072. v.val = sk->sk_ll_usec;
  1073. break;
  1074. #endif
  1075. case SO_MAX_PACING_RATE:
  1076. v.val = sk->sk_max_pacing_rate;
  1077. break;
  1078. case SO_INCOMING_CPU:
  1079. v.val = sk->sk_incoming_cpu;
  1080. break;
  1081. default:
  1082. /* We implement the SO_SNDLOWAT etc to not be settable
  1083. * (1003.1g 7).
  1084. */
  1085. return -ENOPROTOOPT;
  1086. }
  1087. if (len > lv)
  1088. len = lv;
  1089. if (copy_to_user(optval, &v, len))
  1090. return -EFAULT;
  1091. lenout:
  1092. if (put_user(len, optlen))
  1093. return -EFAULT;
  1094. return 0;
  1095. }
  1096. /*
  1097. * Initialize an sk_lock.
  1098. *
  1099. * (We also register the sk_lock with the lock validator.)
  1100. */
  1101. static inline void sock_lock_init(struct sock *sk)
  1102. {
  1103. sock_lock_init_class_and_name(sk,
  1104. af_family_slock_key_strings[sk->sk_family],
  1105. af_family_slock_keys + sk->sk_family,
  1106. af_family_key_strings[sk->sk_family],
  1107. af_family_keys + sk->sk_family);
  1108. }
  1109. /*
  1110. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  1111. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  1112. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  1113. */
  1114. static void sock_copy(struct sock *nsk, const struct sock *osk)
  1115. {
  1116. #ifdef CONFIG_SECURITY_NETWORK
  1117. void *sptr = nsk->sk_security;
  1118. #endif
  1119. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  1120. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  1121. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  1122. #ifdef CONFIG_SECURITY_NETWORK
  1123. nsk->sk_security = sptr;
  1124. security_sk_clone(osk, nsk);
  1125. #endif
  1126. }
  1127. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  1128. int family)
  1129. {
  1130. struct sock *sk;
  1131. struct kmem_cache *slab;
  1132. slab = prot->slab;
  1133. if (slab != NULL) {
  1134. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  1135. if (!sk)
  1136. return sk;
  1137. if (priority & __GFP_ZERO)
  1138. sk_prot_clear_nulls(sk, prot->obj_size);
  1139. } else
  1140. sk = kmalloc(prot->obj_size, priority);
  1141. if (sk != NULL) {
  1142. kmemcheck_annotate_bitfield(sk, flags);
  1143. if (security_sk_alloc(sk, family, priority))
  1144. goto out_free;
  1145. if (!try_module_get(prot->owner))
  1146. goto out_free_sec;
  1147. sk_tx_queue_clear(sk);
  1148. }
  1149. return sk;
  1150. out_free_sec:
  1151. security_sk_free(sk);
  1152. out_free:
  1153. if (slab != NULL)
  1154. kmem_cache_free(slab, sk);
  1155. else
  1156. kfree(sk);
  1157. return NULL;
  1158. }
  1159. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1160. {
  1161. struct kmem_cache *slab;
  1162. struct module *owner;
  1163. owner = prot->owner;
  1164. slab = prot->slab;
  1165. cgroup_sk_free(&sk->sk_cgrp_data);
  1166. mem_cgroup_sk_free(sk);
  1167. security_sk_free(sk);
  1168. if (slab != NULL)
  1169. kmem_cache_free(slab, sk);
  1170. else
  1171. kfree(sk);
  1172. module_put(owner);
  1173. }
  1174. /**
  1175. * sk_alloc - All socket objects are allocated here
  1176. * @net: the applicable net namespace
  1177. * @family: protocol family
  1178. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1179. * @prot: struct proto associated with this new sock instance
  1180. * @kern: is this to be a kernel socket?
  1181. */
  1182. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1183. struct proto *prot, int kern)
  1184. {
  1185. struct sock *sk;
  1186. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1187. if (sk) {
  1188. sk->sk_family = family;
  1189. /*
  1190. * See comment in struct sock definition to understand
  1191. * why we need sk_prot_creator -acme
  1192. */
  1193. sk->sk_prot = sk->sk_prot_creator = prot;
  1194. sock_lock_init(sk);
  1195. sk->sk_net_refcnt = kern ? 0 : 1;
  1196. if (likely(sk->sk_net_refcnt))
  1197. get_net(net);
  1198. sock_net_set(sk, net);
  1199. atomic_set(&sk->sk_wmem_alloc, 1);
  1200. mem_cgroup_sk_alloc(sk);
  1201. cgroup_sk_alloc(&sk->sk_cgrp_data);
  1202. sock_update_classid(&sk->sk_cgrp_data);
  1203. sock_update_netprioidx(&sk->sk_cgrp_data);
  1204. }
  1205. return sk;
  1206. }
  1207. EXPORT_SYMBOL(sk_alloc);
  1208. /* Sockets having SOCK_RCU_FREE will call this function after one RCU
  1209. * grace period. This is the case for UDP sockets and TCP listeners.
  1210. */
  1211. static void __sk_destruct(struct rcu_head *head)
  1212. {
  1213. struct sock *sk = container_of(head, struct sock, sk_rcu);
  1214. struct sk_filter *filter;
  1215. if (sk->sk_destruct)
  1216. sk->sk_destruct(sk);
  1217. filter = rcu_dereference_check(sk->sk_filter,
  1218. atomic_read(&sk->sk_wmem_alloc) == 0);
  1219. if (filter) {
  1220. sk_filter_uncharge(sk, filter);
  1221. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1222. }
  1223. if (rcu_access_pointer(sk->sk_reuseport_cb))
  1224. reuseport_detach_sock(sk);
  1225. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1226. if (atomic_read(&sk->sk_omem_alloc))
  1227. pr_debug("%s: optmem leakage (%d bytes) detected\n",
  1228. __func__, atomic_read(&sk->sk_omem_alloc));
  1229. if (sk->sk_frag.page) {
  1230. put_page(sk->sk_frag.page);
  1231. sk->sk_frag.page = NULL;
  1232. }
  1233. if (sk->sk_peer_cred)
  1234. put_cred(sk->sk_peer_cred);
  1235. put_pid(sk->sk_peer_pid);
  1236. if (likely(sk->sk_net_refcnt))
  1237. put_net(sock_net(sk));
  1238. sk_prot_free(sk->sk_prot_creator, sk);
  1239. }
  1240. void sk_destruct(struct sock *sk)
  1241. {
  1242. if (sock_flag(sk, SOCK_RCU_FREE))
  1243. call_rcu(&sk->sk_rcu, __sk_destruct);
  1244. else
  1245. __sk_destruct(&sk->sk_rcu);
  1246. }
  1247. static void __sk_free(struct sock *sk)
  1248. {
  1249. if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
  1250. sock_diag_broadcast_destroy(sk);
  1251. else
  1252. sk_destruct(sk);
  1253. }
  1254. void sk_free(struct sock *sk)
  1255. {
  1256. /*
  1257. * We subtract one from sk_wmem_alloc and can know if
  1258. * some packets are still in some tx queue.
  1259. * If not null, sock_wfree() will call __sk_free(sk) later
  1260. */
  1261. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1262. __sk_free(sk);
  1263. }
  1264. EXPORT_SYMBOL(sk_free);
  1265. /**
  1266. * sk_clone_lock - clone a socket, and lock its clone
  1267. * @sk: the socket to clone
  1268. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1269. *
  1270. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1271. */
  1272. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1273. {
  1274. struct sock *newsk;
  1275. bool is_charged = true;
  1276. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1277. if (newsk != NULL) {
  1278. struct sk_filter *filter;
  1279. sock_copy(newsk, sk);
  1280. newsk->sk_prot_creator = sk->sk_prot;
  1281. /* SANITY */
  1282. if (likely(newsk->sk_net_refcnt))
  1283. get_net(sock_net(newsk));
  1284. sk_node_init(&newsk->sk_node);
  1285. sock_lock_init(newsk);
  1286. bh_lock_sock(newsk);
  1287. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1288. newsk->sk_backlog.len = 0;
  1289. atomic_set(&newsk->sk_rmem_alloc, 0);
  1290. /*
  1291. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1292. */
  1293. atomic_set(&newsk->sk_wmem_alloc, 1);
  1294. atomic_set(&newsk->sk_omem_alloc, 0);
  1295. skb_queue_head_init(&newsk->sk_receive_queue);
  1296. skb_queue_head_init(&newsk->sk_write_queue);
  1297. rwlock_init(&newsk->sk_callback_lock);
  1298. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1299. af_callback_keys + newsk->sk_family,
  1300. af_family_clock_key_strings[newsk->sk_family]);
  1301. newsk->sk_dst_cache = NULL;
  1302. newsk->sk_wmem_queued = 0;
  1303. newsk->sk_forward_alloc = 0;
  1304. atomic_set(&newsk->sk_drops, 0);
  1305. newsk->sk_send_head = NULL;
  1306. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1307. sock_reset_flag(newsk, SOCK_DONE);
  1308. cgroup_sk_alloc(&newsk->sk_cgrp_data);
  1309. skb_queue_head_init(&newsk->sk_error_queue);
  1310. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1311. if (filter != NULL)
  1312. /* though it's an empty new sock, the charging may fail
  1313. * if sysctl_optmem_max was changed between creation of
  1314. * original socket and cloning
  1315. */
  1316. is_charged = sk_filter_charge(newsk, filter);
  1317. if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
  1318. /* We need to make sure that we don't uncharge the new
  1319. * socket if we couldn't charge it in the first place
  1320. * as otherwise we uncharge the parent's filter.
  1321. */
  1322. if (!is_charged)
  1323. RCU_INIT_POINTER(newsk->sk_filter, NULL);
  1324. /* It is still raw copy of parent, so invalidate
  1325. * destructor and make plain sk_free() */
  1326. newsk->sk_destruct = NULL;
  1327. bh_unlock_sock(newsk);
  1328. sk_free(newsk);
  1329. newsk = NULL;
  1330. goto out;
  1331. }
  1332. RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
  1333. newsk->sk_err = 0;
  1334. newsk->sk_err_soft = 0;
  1335. newsk->sk_priority = 0;
  1336. newsk->sk_incoming_cpu = raw_smp_processor_id();
  1337. atomic64_set(&newsk->sk_cookie, 0);
  1338. mem_cgroup_sk_alloc(newsk);
  1339. /*
  1340. * Before updating sk_refcnt, we must commit prior changes to memory
  1341. * (Documentation/RCU/rculist_nulls.txt for details)
  1342. */
  1343. smp_wmb();
  1344. atomic_set(&newsk->sk_refcnt, 2);
  1345. /*
  1346. * Increment the counter in the same struct proto as the master
  1347. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1348. * is the same as sk->sk_prot->socks, as this field was copied
  1349. * with memcpy).
  1350. *
  1351. * This _changes_ the previous behaviour, where
  1352. * tcp_create_openreq_child always was incrementing the
  1353. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1354. * to be taken into account in all callers. -acme
  1355. */
  1356. sk_refcnt_debug_inc(newsk);
  1357. sk_set_socket(newsk, NULL);
  1358. newsk->sk_wq = NULL;
  1359. if (newsk->sk_prot->sockets_allocated)
  1360. sk_sockets_allocated_inc(newsk);
  1361. if (sock_needs_netstamp(sk) &&
  1362. newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1363. net_enable_timestamp();
  1364. }
  1365. out:
  1366. return newsk;
  1367. }
  1368. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1369. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1370. {
  1371. u32 max_segs = 1;
  1372. sk_dst_set(sk, dst);
  1373. sk->sk_route_caps = dst->dev->features;
  1374. if (sk->sk_route_caps & NETIF_F_GSO)
  1375. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1376. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1377. if (sk_can_gso(sk)) {
  1378. if (dst->header_len) {
  1379. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1380. } else {
  1381. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1382. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1383. max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
  1384. }
  1385. }
  1386. sk->sk_gso_max_segs = max_segs;
  1387. }
  1388. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1389. /*
  1390. * Simple resource managers for sockets.
  1391. */
  1392. /*
  1393. * Write buffer destructor automatically called from kfree_skb.
  1394. */
  1395. void sock_wfree(struct sk_buff *skb)
  1396. {
  1397. struct sock *sk = skb->sk;
  1398. unsigned int len = skb->truesize;
  1399. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1400. /*
  1401. * Keep a reference on sk_wmem_alloc, this will be released
  1402. * after sk_write_space() call
  1403. */
  1404. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1405. sk->sk_write_space(sk);
  1406. len = 1;
  1407. }
  1408. /*
  1409. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1410. * could not do because of in-flight packets
  1411. */
  1412. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1413. __sk_free(sk);
  1414. }
  1415. EXPORT_SYMBOL(sock_wfree);
  1416. /* This variant of sock_wfree() is used by TCP,
  1417. * since it sets SOCK_USE_WRITE_QUEUE.
  1418. */
  1419. void __sock_wfree(struct sk_buff *skb)
  1420. {
  1421. struct sock *sk = skb->sk;
  1422. if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
  1423. __sk_free(sk);
  1424. }
  1425. void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
  1426. {
  1427. skb_orphan(skb);
  1428. skb->sk = sk;
  1429. #ifdef CONFIG_INET
  1430. if (unlikely(!sk_fullsock(sk))) {
  1431. skb->destructor = sock_edemux;
  1432. sock_hold(sk);
  1433. return;
  1434. }
  1435. #endif
  1436. skb->destructor = sock_wfree;
  1437. skb_set_hash_from_sk(skb, sk);
  1438. /*
  1439. * We used to take a refcount on sk, but following operation
  1440. * is enough to guarantee sk_free() wont free this sock until
  1441. * all in-flight packets are completed
  1442. */
  1443. atomic_add(skb->truesize, &sk->sk_wmem_alloc);
  1444. }
  1445. EXPORT_SYMBOL(skb_set_owner_w);
  1446. /* This helper is used by netem, as it can hold packets in its
  1447. * delay queue. We want to allow the owner socket to send more
  1448. * packets, as if they were already TX completed by a typical driver.
  1449. * But we also want to keep skb->sk set because some packet schedulers
  1450. * rely on it (sch_fq for example).
  1451. */
  1452. void skb_orphan_partial(struct sk_buff *skb)
  1453. {
  1454. if (skb_is_tcp_pure_ack(skb))
  1455. return;
  1456. if (skb->destructor == sock_wfree
  1457. #ifdef CONFIG_INET
  1458. || skb->destructor == tcp_wfree
  1459. #endif
  1460. ) {
  1461. struct sock *sk = skb->sk;
  1462. if (atomic_inc_not_zero(&sk->sk_refcnt)) {
  1463. atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
  1464. skb->destructor = sock_efree;
  1465. }
  1466. } else {
  1467. skb_orphan(skb);
  1468. }
  1469. }
  1470. EXPORT_SYMBOL(skb_orphan_partial);
  1471. /*
  1472. * Read buffer destructor automatically called from kfree_skb.
  1473. */
  1474. void sock_rfree(struct sk_buff *skb)
  1475. {
  1476. struct sock *sk = skb->sk;
  1477. unsigned int len = skb->truesize;
  1478. atomic_sub(len, &sk->sk_rmem_alloc);
  1479. sk_mem_uncharge(sk, len);
  1480. }
  1481. EXPORT_SYMBOL(sock_rfree);
  1482. /*
  1483. * Buffer destructor for skbs that are not used directly in read or write
  1484. * path, e.g. for error handler skbs. Automatically called from kfree_skb.
  1485. */
  1486. void sock_efree(struct sk_buff *skb)
  1487. {
  1488. sock_put(skb->sk);
  1489. }
  1490. EXPORT_SYMBOL(sock_efree);
  1491. kuid_t sock_i_uid(struct sock *sk)
  1492. {
  1493. kuid_t uid;
  1494. read_lock_bh(&sk->sk_callback_lock);
  1495. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
  1496. read_unlock_bh(&sk->sk_callback_lock);
  1497. return uid;
  1498. }
  1499. EXPORT_SYMBOL(sock_i_uid);
  1500. unsigned long sock_i_ino(struct sock *sk)
  1501. {
  1502. unsigned long ino;
  1503. read_lock_bh(&sk->sk_callback_lock);
  1504. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1505. read_unlock_bh(&sk->sk_callback_lock);
  1506. return ino;
  1507. }
  1508. EXPORT_SYMBOL(sock_i_ino);
  1509. /*
  1510. * Allocate a skb from the socket's send buffer.
  1511. */
  1512. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1513. gfp_t priority)
  1514. {
  1515. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1516. struct sk_buff *skb = alloc_skb(size, priority);
  1517. if (skb) {
  1518. skb_set_owner_w(skb, sk);
  1519. return skb;
  1520. }
  1521. }
  1522. return NULL;
  1523. }
  1524. EXPORT_SYMBOL(sock_wmalloc);
  1525. /*
  1526. * Allocate a memory block from the socket's option memory buffer.
  1527. */
  1528. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1529. {
  1530. if ((unsigned int)size <= sysctl_optmem_max &&
  1531. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1532. void *mem;
  1533. /* First do the add, to avoid the race if kmalloc
  1534. * might sleep.
  1535. */
  1536. atomic_add(size, &sk->sk_omem_alloc);
  1537. mem = kmalloc(size, priority);
  1538. if (mem)
  1539. return mem;
  1540. atomic_sub(size, &sk->sk_omem_alloc);
  1541. }
  1542. return NULL;
  1543. }
  1544. EXPORT_SYMBOL(sock_kmalloc);
  1545. /* Free an option memory block. Note, we actually want the inline
  1546. * here as this allows gcc to detect the nullify and fold away the
  1547. * condition entirely.
  1548. */
  1549. static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
  1550. const bool nullify)
  1551. {
  1552. if (WARN_ON_ONCE(!mem))
  1553. return;
  1554. if (nullify)
  1555. kzfree(mem);
  1556. else
  1557. kfree(mem);
  1558. atomic_sub(size, &sk->sk_omem_alloc);
  1559. }
  1560. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1561. {
  1562. __sock_kfree_s(sk, mem, size, false);
  1563. }
  1564. EXPORT_SYMBOL(sock_kfree_s);
  1565. void sock_kzfree_s(struct sock *sk, void *mem, int size)
  1566. {
  1567. __sock_kfree_s(sk, mem, size, true);
  1568. }
  1569. EXPORT_SYMBOL(sock_kzfree_s);
  1570. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1571. I think, these locks should be removed for datagram sockets.
  1572. */
  1573. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1574. {
  1575. DEFINE_WAIT(wait);
  1576. sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  1577. for (;;) {
  1578. if (!timeo)
  1579. break;
  1580. if (signal_pending(current))
  1581. break;
  1582. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1583. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1584. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1585. break;
  1586. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1587. break;
  1588. if (sk->sk_err)
  1589. break;
  1590. timeo = schedule_timeout(timeo);
  1591. }
  1592. finish_wait(sk_sleep(sk), &wait);
  1593. return timeo;
  1594. }
  1595. /*
  1596. * Generic send/receive buffer handlers
  1597. */
  1598. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1599. unsigned long data_len, int noblock,
  1600. int *errcode, int max_page_order)
  1601. {
  1602. struct sk_buff *skb;
  1603. long timeo;
  1604. int err;
  1605. timeo = sock_sndtimeo(sk, noblock);
  1606. for (;;) {
  1607. err = sock_error(sk);
  1608. if (err != 0)
  1609. goto failure;
  1610. err = -EPIPE;
  1611. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1612. goto failure;
  1613. if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
  1614. break;
  1615. sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  1616. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1617. err = -EAGAIN;
  1618. if (!timeo)
  1619. goto failure;
  1620. if (signal_pending(current))
  1621. goto interrupted;
  1622. timeo = sock_wait_for_wmem(sk, timeo);
  1623. }
  1624. skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
  1625. errcode, sk->sk_allocation);
  1626. if (skb)
  1627. skb_set_owner_w(skb, sk);
  1628. return skb;
  1629. interrupted:
  1630. err = sock_intr_errno(timeo);
  1631. failure:
  1632. *errcode = err;
  1633. return NULL;
  1634. }
  1635. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1636. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1637. int noblock, int *errcode)
  1638. {
  1639. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
  1640. }
  1641. EXPORT_SYMBOL(sock_alloc_send_skb);
  1642. int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
  1643. struct sockcm_cookie *sockc)
  1644. {
  1645. u32 tsflags;
  1646. switch (cmsg->cmsg_type) {
  1647. case SO_MARK:
  1648. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  1649. return -EPERM;
  1650. if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
  1651. return -EINVAL;
  1652. sockc->mark = *(u32 *)CMSG_DATA(cmsg);
  1653. break;
  1654. case SO_TIMESTAMPING:
  1655. if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
  1656. return -EINVAL;
  1657. tsflags = *(u32 *)CMSG_DATA(cmsg);
  1658. if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
  1659. return -EINVAL;
  1660. sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
  1661. sockc->tsflags |= tsflags;
  1662. break;
  1663. /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
  1664. case SCM_RIGHTS:
  1665. case SCM_CREDENTIALS:
  1666. break;
  1667. default:
  1668. return -EINVAL;
  1669. }
  1670. return 0;
  1671. }
  1672. EXPORT_SYMBOL(__sock_cmsg_send);
  1673. int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
  1674. struct sockcm_cookie *sockc)
  1675. {
  1676. struct cmsghdr *cmsg;
  1677. int ret;
  1678. for_each_cmsghdr(cmsg, msg) {
  1679. if (!CMSG_OK(msg, cmsg))
  1680. return -EINVAL;
  1681. if (cmsg->cmsg_level != SOL_SOCKET)
  1682. continue;
  1683. ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
  1684. if (ret)
  1685. return ret;
  1686. }
  1687. return 0;
  1688. }
  1689. EXPORT_SYMBOL(sock_cmsg_send);
  1690. /* On 32bit arches, an skb frag is limited to 2^15 */
  1691. #define SKB_FRAG_PAGE_ORDER get_order(32768)
  1692. /**
  1693. * skb_page_frag_refill - check that a page_frag contains enough room
  1694. * @sz: minimum size of the fragment we want to get
  1695. * @pfrag: pointer to page_frag
  1696. * @gfp: priority for memory allocation
  1697. *
  1698. * Note: While this allocator tries to use high order pages, there is
  1699. * no guarantee that allocations succeed. Therefore, @sz MUST be
  1700. * less or equal than PAGE_SIZE.
  1701. */
  1702. bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
  1703. {
  1704. if (pfrag->page) {
  1705. if (page_ref_count(pfrag->page) == 1) {
  1706. pfrag->offset = 0;
  1707. return true;
  1708. }
  1709. if (pfrag->offset + sz <= pfrag->size)
  1710. return true;
  1711. put_page(pfrag->page);
  1712. }
  1713. pfrag->offset = 0;
  1714. if (SKB_FRAG_PAGE_ORDER) {
  1715. /* Avoid direct reclaim but allow kswapd to wake */
  1716. pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
  1717. __GFP_COMP | __GFP_NOWARN |
  1718. __GFP_NORETRY,
  1719. SKB_FRAG_PAGE_ORDER);
  1720. if (likely(pfrag->page)) {
  1721. pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
  1722. return true;
  1723. }
  1724. }
  1725. pfrag->page = alloc_page(gfp);
  1726. if (likely(pfrag->page)) {
  1727. pfrag->size = PAGE_SIZE;
  1728. return true;
  1729. }
  1730. return false;
  1731. }
  1732. EXPORT_SYMBOL(skb_page_frag_refill);
  1733. bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
  1734. {
  1735. if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
  1736. return true;
  1737. sk_enter_memory_pressure(sk);
  1738. sk_stream_moderate_sndbuf(sk);
  1739. return false;
  1740. }
  1741. EXPORT_SYMBOL(sk_page_frag_refill);
  1742. static void __lock_sock(struct sock *sk)
  1743. __releases(&sk->sk_lock.slock)
  1744. __acquires(&sk->sk_lock.slock)
  1745. {
  1746. DEFINE_WAIT(wait);
  1747. for (;;) {
  1748. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1749. TASK_UNINTERRUPTIBLE);
  1750. spin_unlock_bh(&sk->sk_lock.slock);
  1751. schedule();
  1752. spin_lock_bh(&sk->sk_lock.slock);
  1753. if (!sock_owned_by_user(sk))
  1754. break;
  1755. }
  1756. finish_wait(&sk->sk_lock.wq, &wait);
  1757. }
  1758. static void __release_sock(struct sock *sk)
  1759. __releases(&sk->sk_lock.slock)
  1760. __acquires(&sk->sk_lock.slock)
  1761. {
  1762. struct sk_buff *skb, *next;
  1763. while ((skb = sk->sk_backlog.head) != NULL) {
  1764. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1765. spin_unlock_bh(&sk->sk_lock.slock);
  1766. do {
  1767. next = skb->next;
  1768. prefetch(next);
  1769. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1770. skb->next = NULL;
  1771. sk_backlog_rcv(sk, skb);
  1772. cond_resched();
  1773. skb = next;
  1774. } while (skb != NULL);
  1775. spin_lock_bh(&sk->sk_lock.slock);
  1776. }
  1777. /*
  1778. * Doing the zeroing here guarantee we can not loop forever
  1779. * while a wild producer attempts to flood us.
  1780. */
  1781. sk->sk_backlog.len = 0;
  1782. }
  1783. void __sk_flush_backlog(struct sock *sk)
  1784. {
  1785. spin_lock_bh(&sk->sk_lock.slock);
  1786. __release_sock(sk);
  1787. spin_unlock_bh(&sk->sk_lock.slock);
  1788. }
  1789. /**
  1790. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1791. * @sk: sock to wait on
  1792. * @timeo: for how long
  1793. * @skb: last skb seen on sk_receive_queue
  1794. *
  1795. * Now socket state including sk->sk_err is changed only under lock,
  1796. * hence we may omit checks after joining wait queue.
  1797. * We check receive queue before schedule() only as optimization;
  1798. * it is very likely that release_sock() added new data.
  1799. */
  1800. int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
  1801. {
  1802. int rc;
  1803. DEFINE_WAIT(wait);
  1804. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1805. sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  1806. rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
  1807. sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  1808. finish_wait(sk_sleep(sk), &wait);
  1809. return rc;
  1810. }
  1811. EXPORT_SYMBOL(sk_wait_data);
  1812. /**
  1813. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1814. * @sk: socket
  1815. * @size: memory size to allocate
  1816. * @kind: allocation type
  1817. *
  1818. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1819. * rmem allocation. This function assumes that protocols which have
  1820. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1821. */
  1822. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1823. {
  1824. struct proto *prot = sk->sk_prot;
  1825. int amt = sk_mem_pages(size);
  1826. long allocated;
  1827. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1828. allocated = sk_memory_allocated_add(sk, amt);
  1829. if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
  1830. !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
  1831. goto suppress_allocation;
  1832. /* Under limit. */
  1833. if (allocated <= sk_prot_mem_limits(sk, 0)) {
  1834. sk_leave_memory_pressure(sk);
  1835. return 1;
  1836. }
  1837. /* Under pressure. */
  1838. if (allocated > sk_prot_mem_limits(sk, 1))
  1839. sk_enter_memory_pressure(sk);
  1840. /* Over hard limit. */
  1841. if (allocated > sk_prot_mem_limits(sk, 2))
  1842. goto suppress_allocation;
  1843. /* guarantee minimum buffer size under pressure */
  1844. if (kind == SK_MEM_RECV) {
  1845. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1846. return 1;
  1847. } else { /* SK_MEM_SEND */
  1848. if (sk->sk_type == SOCK_STREAM) {
  1849. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1850. return 1;
  1851. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1852. prot->sysctl_wmem[0])
  1853. return 1;
  1854. }
  1855. if (sk_has_memory_pressure(sk)) {
  1856. int alloc;
  1857. if (!sk_under_memory_pressure(sk))
  1858. return 1;
  1859. alloc = sk_sockets_allocated_read_positive(sk);
  1860. if (sk_prot_mem_limits(sk, 2) > alloc *
  1861. sk_mem_pages(sk->sk_wmem_queued +
  1862. atomic_read(&sk->sk_rmem_alloc) +
  1863. sk->sk_forward_alloc))
  1864. return 1;
  1865. }
  1866. suppress_allocation:
  1867. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1868. sk_stream_moderate_sndbuf(sk);
  1869. /* Fail only if socket is _under_ its sndbuf.
  1870. * In this case we cannot block, so that we have to fail.
  1871. */
  1872. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1873. return 1;
  1874. }
  1875. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1876. /* Alas. Undo changes. */
  1877. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1878. sk_memory_allocated_sub(sk, amt);
  1879. if (mem_cgroup_sockets_enabled && sk->sk_memcg)
  1880. mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
  1881. return 0;
  1882. }
  1883. EXPORT_SYMBOL(__sk_mem_schedule);
  1884. /**
  1885. * __sk_mem_reclaim - reclaim memory_allocated
  1886. * @sk: socket
  1887. * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
  1888. */
  1889. void __sk_mem_reclaim(struct sock *sk, int amount)
  1890. {
  1891. amount >>= SK_MEM_QUANTUM_SHIFT;
  1892. sk_memory_allocated_sub(sk, amount);
  1893. sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
  1894. if (mem_cgroup_sockets_enabled && sk->sk_memcg)
  1895. mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
  1896. if (sk_under_memory_pressure(sk) &&
  1897. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1898. sk_leave_memory_pressure(sk);
  1899. }
  1900. EXPORT_SYMBOL(__sk_mem_reclaim);
  1901. int sk_set_peek_off(struct sock *sk, int val)
  1902. {
  1903. if (val < 0)
  1904. return -EINVAL;
  1905. sk->sk_peek_off = val;
  1906. return 0;
  1907. }
  1908. EXPORT_SYMBOL_GPL(sk_set_peek_off);
  1909. /*
  1910. * Set of default routines for initialising struct proto_ops when
  1911. * the protocol does not support a particular function. In certain
  1912. * cases where it makes no sense for a protocol to have a "do nothing"
  1913. * function, some default processing is provided.
  1914. */
  1915. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1916. {
  1917. return -EOPNOTSUPP;
  1918. }
  1919. EXPORT_SYMBOL(sock_no_bind);
  1920. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1921. int len, int flags)
  1922. {
  1923. return -EOPNOTSUPP;
  1924. }
  1925. EXPORT_SYMBOL(sock_no_connect);
  1926. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1927. {
  1928. return -EOPNOTSUPP;
  1929. }
  1930. EXPORT_SYMBOL(sock_no_socketpair);
  1931. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1932. {
  1933. return -EOPNOTSUPP;
  1934. }
  1935. EXPORT_SYMBOL(sock_no_accept);
  1936. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1937. int *len, int peer)
  1938. {
  1939. return -EOPNOTSUPP;
  1940. }
  1941. EXPORT_SYMBOL(sock_no_getname);
  1942. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1943. {
  1944. return 0;
  1945. }
  1946. EXPORT_SYMBOL(sock_no_poll);
  1947. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1948. {
  1949. return -EOPNOTSUPP;
  1950. }
  1951. EXPORT_SYMBOL(sock_no_ioctl);
  1952. int sock_no_listen(struct socket *sock, int backlog)
  1953. {
  1954. return -EOPNOTSUPP;
  1955. }
  1956. EXPORT_SYMBOL(sock_no_listen);
  1957. int sock_no_shutdown(struct socket *sock, int how)
  1958. {
  1959. return -EOPNOTSUPP;
  1960. }
  1961. EXPORT_SYMBOL(sock_no_shutdown);
  1962. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1963. char __user *optval, unsigned int optlen)
  1964. {
  1965. return -EOPNOTSUPP;
  1966. }
  1967. EXPORT_SYMBOL(sock_no_setsockopt);
  1968. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1969. char __user *optval, int __user *optlen)
  1970. {
  1971. return -EOPNOTSUPP;
  1972. }
  1973. EXPORT_SYMBOL(sock_no_getsockopt);
  1974. int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
  1975. {
  1976. return -EOPNOTSUPP;
  1977. }
  1978. EXPORT_SYMBOL(sock_no_sendmsg);
  1979. int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
  1980. int flags)
  1981. {
  1982. return -EOPNOTSUPP;
  1983. }
  1984. EXPORT_SYMBOL(sock_no_recvmsg);
  1985. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1986. {
  1987. /* Mirror missing mmap method error code */
  1988. return -ENODEV;
  1989. }
  1990. EXPORT_SYMBOL(sock_no_mmap);
  1991. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1992. {
  1993. ssize_t res;
  1994. struct msghdr msg = {.msg_flags = flags};
  1995. struct kvec iov;
  1996. char *kaddr = kmap(page);
  1997. iov.iov_base = kaddr + offset;
  1998. iov.iov_len = size;
  1999. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  2000. kunmap(page);
  2001. return res;
  2002. }
  2003. EXPORT_SYMBOL(sock_no_sendpage);
  2004. /*
  2005. * Default Socket Callbacks
  2006. */
  2007. static void sock_def_wakeup(struct sock *sk)
  2008. {
  2009. struct socket_wq *wq;
  2010. rcu_read_lock();
  2011. wq = rcu_dereference(sk->sk_wq);
  2012. if (skwq_has_sleeper(wq))
  2013. wake_up_interruptible_all(&wq->wait);
  2014. rcu_read_unlock();
  2015. }
  2016. static void sock_def_error_report(struct sock *sk)
  2017. {
  2018. struct socket_wq *wq;
  2019. rcu_read_lock();
  2020. wq = rcu_dereference(sk->sk_wq);
  2021. if (skwq_has_sleeper(wq))
  2022. wake_up_interruptible_poll(&wq->wait, POLLERR);
  2023. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  2024. rcu_read_unlock();
  2025. }
  2026. static void sock_def_readable(struct sock *sk)
  2027. {
  2028. struct socket_wq *wq;
  2029. rcu_read_lock();
  2030. wq = rcu_dereference(sk->sk_wq);
  2031. if (skwq_has_sleeper(wq))
  2032. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  2033. POLLRDNORM | POLLRDBAND);
  2034. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  2035. rcu_read_unlock();
  2036. }
  2037. static void sock_def_write_space(struct sock *sk)
  2038. {
  2039. struct socket_wq *wq;
  2040. rcu_read_lock();
  2041. /* Do not wake up a writer until he can make "significant"
  2042. * progress. --DaveM
  2043. */
  2044. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  2045. wq = rcu_dereference(sk->sk_wq);
  2046. if (skwq_has_sleeper(wq))
  2047. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  2048. POLLWRNORM | POLLWRBAND);
  2049. /* Should agree with poll, otherwise some programs break */
  2050. if (sock_writeable(sk))
  2051. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  2052. }
  2053. rcu_read_unlock();
  2054. }
  2055. static void sock_def_destruct(struct sock *sk)
  2056. {
  2057. }
  2058. void sk_send_sigurg(struct sock *sk)
  2059. {
  2060. if (sk->sk_socket && sk->sk_socket->file)
  2061. if (send_sigurg(&sk->sk_socket->file->f_owner))
  2062. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  2063. }
  2064. EXPORT_SYMBOL(sk_send_sigurg);
  2065. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  2066. unsigned long expires)
  2067. {
  2068. if (!mod_timer(timer, expires))
  2069. sock_hold(sk);
  2070. }
  2071. EXPORT_SYMBOL(sk_reset_timer);
  2072. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  2073. {
  2074. if (del_timer(timer))
  2075. __sock_put(sk);
  2076. }
  2077. EXPORT_SYMBOL(sk_stop_timer);
  2078. void sock_init_data(struct socket *sock, struct sock *sk)
  2079. {
  2080. skb_queue_head_init(&sk->sk_receive_queue);
  2081. skb_queue_head_init(&sk->sk_write_queue);
  2082. skb_queue_head_init(&sk->sk_error_queue);
  2083. sk->sk_send_head = NULL;
  2084. init_timer(&sk->sk_timer);
  2085. sk->sk_allocation = GFP_KERNEL;
  2086. sk->sk_rcvbuf = sysctl_rmem_default;
  2087. sk->sk_sndbuf = sysctl_wmem_default;
  2088. sk->sk_state = TCP_CLOSE;
  2089. sk_set_socket(sk, sock);
  2090. sock_set_flag(sk, SOCK_ZAPPED);
  2091. if (sock) {
  2092. sk->sk_type = sock->type;
  2093. sk->sk_wq = sock->wq;
  2094. sock->sk = sk;
  2095. } else
  2096. sk->sk_wq = NULL;
  2097. rwlock_init(&sk->sk_callback_lock);
  2098. lockdep_set_class_and_name(&sk->sk_callback_lock,
  2099. af_callback_keys + sk->sk_family,
  2100. af_family_clock_key_strings[sk->sk_family]);
  2101. sk->sk_state_change = sock_def_wakeup;
  2102. sk->sk_data_ready = sock_def_readable;
  2103. sk->sk_write_space = sock_def_write_space;
  2104. sk->sk_error_report = sock_def_error_report;
  2105. sk->sk_destruct = sock_def_destruct;
  2106. sk->sk_frag.page = NULL;
  2107. sk->sk_frag.offset = 0;
  2108. sk->sk_peek_off = -1;
  2109. sk->sk_peer_pid = NULL;
  2110. sk->sk_peer_cred = NULL;
  2111. sk->sk_write_pending = 0;
  2112. sk->sk_rcvlowat = 1;
  2113. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  2114. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  2115. sk->sk_stamp = ktime_set(-1L, 0);
  2116. #ifdef CONFIG_NET_RX_BUSY_POLL
  2117. sk->sk_napi_id = 0;
  2118. sk->sk_ll_usec = sysctl_net_busy_read;
  2119. #endif
  2120. sk->sk_max_pacing_rate = ~0U;
  2121. sk->sk_pacing_rate = ~0U;
  2122. sk->sk_incoming_cpu = -1;
  2123. /*
  2124. * Before updating sk_refcnt, we must commit prior changes to memory
  2125. * (Documentation/RCU/rculist_nulls.txt for details)
  2126. */
  2127. smp_wmb();
  2128. atomic_set(&sk->sk_refcnt, 1);
  2129. atomic_set(&sk->sk_drops, 0);
  2130. }
  2131. EXPORT_SYMBOL(sock_init_data);
  2132. void lock_sock_nested(struct sock *sk, int subclass)
  2133. {
  2134. might_sleep();
  2135. spin_lock_bh(&sk->sk_lock.slock);
  2136. if (sk->sk_lock.owned)
  2137. __lock_sock(sk);
  2138. sk->sk_lock.owned = 1;
  2139. spin_unlock(&sk->sk_lock.slock);
  2140. /*
  2141. * The sk_lock has mutex_lock() semantics here:
  2142. */
  2143. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  2144. local_bh_enable();
  2145. }
  2146. EXPORT_SYMBOL(lock_sock_nested);
  2147. void release_sock(struct sock *sk)
  2148. {
  2149. spin_lock_bh(&sk->sk_lock.slock);
  2150. if (sk->sk_backlog.tail)
  2151. __release_sock(sk);
  2152. /* Warning : release_cb() might need to release sk ownership,
  2153. * ie call sock_release_ownership(sk) before us.
  2154. */
  2155. if (sk->sk_prot->release_cb)
  2156. sk->sk_prot->release_cb(sk);
  2157. sock_release_ownership(sk);
  2158. if (waitqueue_active(&sk->sk_lock.wq))
  2159. wake_up(&sk->sk_lock.wq);
  2160. spin_unlock_bh(&sk->sk_lock.slock);
  2161. }
  2162. EXPORT_SYMBOL(release_sock);
  2163. /**
  2164. * lock_sock_fast - fast version of lock_sock
  2165. * @sk: socket
  2166. *
  2167. * This version should be used for very small section, where process wont block
  2168. * return false if fast path is taken
  2169. * sk_lock.slock locked, owned = 0, BH disabled
  2170. * return true if slow path is taken
  2171. * sk_lock.slock unlocked, owned = 1, BH enabled
  2172. */
  2173. bool lock_sock_fast(struct sock *sk)
  2174. {
  2175. might_sleep();
  2176. spin_lock_bh(&sk->sk_lock.slock);
  2177. if (!sk->sk_lock.owned)
  2178. /*
  2179. * Note : We must disable BH
  2180. */
  2181. return false;
  2182. __lock_sock(sk);
  2183. sk->sk_lock.owned = 1;
  2184. spin_unlock(&sk->sk_lock.slock);
  2185. /*
  2186. * The sk_lock has mutex_lock() semantics here:
  2187. */
  2188. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  2189. local_bh_enable();
  2190. return true;
  2191. }
  2192. EXPORT_SYMBOL(lock_sock_fast);
  2193. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  2194. {
  2195. struct timeval tv;
  2196. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2197. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2198. tv = ktime_to_timeval(sk->sk_stamp);
  2199. if (tv.tv_sec == -1)
  2200. return -ENOENT;
  2201. if (tv.tv_sec == 0) {
  2202. sk->sk_stamp = ktime_get_real();
  2203. tv = ktime_to_timeval(sk->sk_stamp);
  2204. }
  2205. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  2206. }
  2207. EXPORT_SYMBOL(sock_get_timestamp);
  2208. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  2209. {
  2210. struct timespec ts;
  2211. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2212. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2213. ts = ktime_to_timespec(sk->sk_stamp);
  2214. if (ts.tv_sec == -1)
  2215. return -ENOENT;
  2216. if (ts.tv_sec == 0) {
  2217. sk->sk_stamp = ktime_get_real();
  2218. ts = ktime_to_timespec(sk->sk_stamp);
  2219. }
  2220. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  2221. }
  2222. EXPORT_SYMBOL(sock_get_timestampns);
  2223. void sock_enable_timestamp(struct sock *sk, int flag)
  2224. {
  2225. if (!sock_flag(sk, flag)) {
  2226. unsigned long previous_flags = sk->sk_flags;
  2227. sock_set_flag(sk, flag);
  2228. /*
  2229. * we just set one of the two flags which require net
  2230. * time stamping, but time stamping might have been on
  2231. * already because of the other one
  2232. */
  2233. if (sock_needs_netstamp(sk) &&
  2234. !(previous_flags & SK_FLAGS_TIMESTAMP))
  2235. net_enable_timestamp();
  2236. }
  2237. }
  2238. int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
  2239. int level, int type)
  2240. {
  2241. struct sock_exterr_skb *serr;
  2242. struct sk_buff *skb;
  2243. int copied, err;
  2244. err = -EAGAIN;
  2245. skb = sock_dequeue_err_skb(sk);
  2246. if (skb == NULL)
  2247. goto out;
  2248. copied = skb->len;
  2249. if (copied > len) {
  2250. msg->msg_flags |= MSG_TRUNC;
  2251. copied = len;
  2252. }
  2253. err = skb_copy_datagram_msg(skb, 0, msg, copied);
  2254. if (err)
  2255. goto out_free_skb;
  2256. sock_recv_timestamp(msg, sk, skb);
  2257. serr = SKB_EXT_ERR(skb);
  2258. put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
  2259. msg->msg_flags |= MSG_ERRQUEUE;
  2260. err = copied;
  2261. out_free_skb:
  2262. kfree_skb(skb);
  2263. out:
  2264. return err;
  2265. }
  2266. EXPORT_SYMBOL(sock_recv_errqueue);
  2267. /*
  2268. * Get a socket option on an socket.
  2269. *
  2270. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  2271. * asynchronous errors should be reported by getsockopt. We assume
  2272. * this means if you specify SO_ERROR (otherwise whats the point of it).
  2273. */
  2274. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  2275. char __user *optval, int __user *optlen)
  2276. {
  2277. struct sock *sk = sock->sk;
  2278. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2279. }
  2280. EXPORT_SYMBOL(sock_common_getsockopt);
  2281. #ifdef CONFIG_COMPAT
  2282. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  2283. char __user *optval, int __user *optlen)
  2284. {
  2285. struct sock *sk = sock->sk;
  2286. if (sk->sk_prot->compat_getsockopt != NULL)
  2287. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  2288. optval, optlen);
  2289. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2290. }
  2291. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  2292. #endif
  2293. int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
  2294. int flags)
  2295. {
  2296. struct sock *sk = sock->sk;
  2297. int addr_len = 0;
  2298. int err;
  2299. err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
  2300. flags & ~MSG_DONTWAIT, &addr_len);
  2301. if (err >= 0)
  2302. msg->msg_namelen = addr_len;
  2303. return err;
  2304. }
  2305. EXPORT_SYMBOL(sock_common_recvmsg);
  2306. /*
  2307. * Set socket options on an inet socket.
  2308. */
  2309. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  2310. char __user *optval, unsigned int optlen)
  2311. {
  2312. struct sock *sk = sock->sk;
  2313. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2314. }
  2315. EXPORT_SYMBOL(sock_common_setsockopt);
  2316. #ifdef CONFIG_COMPAT
  2317. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  2318. char __user *optval, unsigned int optlen)
  2319. {
  2320. struct sock *sk = sock->sk;
  2321. if (sk->sk_prot->compat_setsockopt != NULL)
  2322. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  2323. optval, optlen);
  2324. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2325. }
  2326. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  2327. #endif
  2328. void sk_common_release(struct sock *sk)
  2329. {
  2330. if (sk->sk_prot->destroy)
  2331. sk->sk_prot->destroy(sk);
  2332. /*
  2333. * Observation: when sock_common_release is called, processes have
  2334. * no access to socket. But net still has.
  2335. * Step one, detach it from networking:
  2336. *
  2337. * A. Remove from hash tables.
  2338. */
  2339. sk->sk_prot->unhash(sk);
  2340. /*
  2341. * In this point socket cannot receive new packets, but it is possible
  2342. * that some packets are in flight because some CPU runs receiver and
  2343. * did hash table lookup before we unhashed socket. They will achieve
  2344. * receive queue and will be purged by socket destructor.
  2345. *
  2346. * Also we still have packets pending on receive queue and probably,
  2347. * our own packets waiting in device queues. sock_destroy will drain
  2348. * receive queue, but transmitted packets will delay socket destruction
  2349. * until the last reference will be released.
  2350. */
  2351. sock_orphan(sk);
  2352. xfrm_sk_free_policy(sk);
  2353. sk_refcnt_debug_release(sk);
  2354. sock_put(sk);
  2355. }
  2356. EXPORT_SYMBOL(sk_common_release);
  2357. #ifdef CONFIG_PROC_FS
  2358. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2359. struct prot_inuse {
  2360. int val[PROTO_INUSE_NR];
  2361. };
  2362. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2363. #ifdef CONFIG_NET_NS
  2364. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2365. {
  2366. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2367. }
  2368. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2369. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2370. {
  2371. int cpu, idx = prot->inuse_idx;
  2372. int res = 0;
  2373. for_each_possible_cpu(cpu)
  2374. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2375. return res >= 0 ? res : 0;
  2376. }
  2377. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2378. static int __net_init sock_inuse_init_net(struct net *net)
  2379. {
  2380. net->core.inuse = alloc_percpu(struct prot_inuse);
  2381. return net->core.inuse ? 0 : -ENOMEM;
  2382. }
  2383. static void __net_exit sock_inuse_exit_net(struct net *net)
  2384. {
  2385. free_percpu(net->core.inuse);
  2386. }
  2387. static struct pernet_operations net_inuse_ops = {
  2388. .init = sock_inuse_init_net,
  2389. .exit = sock_inuse_exit_net,
  2390. };
  2391. static __init int net_inuse_init(void)
  2392. {
  2393. if (register_pernet_subsys(&net_inuse_ops))
  2394. panic("Cannot initialize net inuse counters");
  2395. return 0;
  2396. }
  2397. core_initcall(net_inuse_init);
  2398. #else
  2399. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2400. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2401. {
  2402. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2403. }
  2404. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2405. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2406. {
  2407. int cpu, idx = prot->inuse_idx;
  2408. int res = 0;
  2409. for_each_possible_cpu(cpu)
  2410. res += per_cpu(prot_inuse, cpu).val[idx];
  2411. return res >= 0 ? res : 0;
  2412. }
  2413. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2414. #endif
  2415. static void assign_proto_idx(struct proto *prot)
  2416. {
  2417. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2418. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2419. pr_err("PROTO_INUSE_NR exhausted\n");
  2420. return;
  2421. }
  2422. set_bit(prot->inuse_idx, proto_inuse_idx);
  2423. }
  2424. static void release_proto_idx(struct proto *prot)
  2425. {
  2426. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2427. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2428. }
  2429. #else
  2430. static inline void assign_proto_idx(struct proto *prot)
  2431. {
  2432. }
  2433. static inline void release_proto_idx(struct proto *prot)
  2434. {
  2435. }
  2436. #endif
  2437. static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
  2438. {
  2439. if (!rsk_prot)
  2440. return;
  2441. kfree(rsk_prot->slab_name);
  2442. rsk_prot->slab_name = NULL;
  2443. kmem_cache_destroy(rsk_prot->slab);
  2444. rsk_prot->slab = NULL;
  2445. }
  2446. static int req_prot_init(const struct proto *prot)
  2447. {
  2448. struct request_sock_ops *rsk_prot = prot->rsk_prot;
  2449. if (!rsk_prot)
  2450. return 0;
  2451. rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
  2452. prot->name);
  2453. if (!rsk_prot->slab_name)
  2454. return -ENOMEM;
  2455. rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
  2456. rsk_prot->obj_size, 0,
  2457. prot->slab_flags, NULL);
  2458. if (!rsk_prot->slab) {
  2459. pr_crit("%s: Can't create request sock SLAB cache!\n",
  2460. prot->name);
  2461. return -ENOMEM;
  2462. }
  2463. return 0;
  2464. }
  2465. int proto_register(struct proto *prot, int alloc_slab)
  2466. {
  2467. if (alloc_slab) {
  2468. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2469. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2470. NULL);
  2471. if (prot->slab == NULL) {
  2472. pr_crit("%s: Can't create sock SLAB cache!\n",
  2473. prot->name);
  2474. goto out;
  2475. }
  2476. if (req_prot_init(prot))
  2477. goto out_free_request_sock_slab;
  2478. if (prot->twsk_prot != NULL) {
  2479. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2480. if (prot->twsk_prot->twsk_slab_name == NULL)
  2481. goto out_free_request_sock_slab;
  2482. prot->twsk_prot->twsk_slab =
  2483. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2484. prot->twsk_prot->twsk_obj_size,
  2485. 0,
  2486. prot->slab_flags,
  2487. NULL);
  2488. if (prot->twsk_prot->twsk_slab == NULL)
  2489. goto out_free_timewait_sock_slab_name;
  2490. }
  2491. }
  2492. mutex_lock(&proto_list_mutex);
  2493. list_add(&prot->node, &proto_list);
  2494. assign_proto_idx(prot);
  2495. mutex_unlock(&proto_list_mutex);
  2496. return 0;
  2497. out_free_timewait_sock_slab_name:
  2498. kfree(prot->twsk_prot->twsk_slab_name);
  2499. out_free_request_sock_slab:
  2500. req_prot_cleanup(prot->rsk_prot);
  2501. kmem_cache_destroy(prot->slab);
  2502. prot->slab = NULL;
  2503. out:
  2504. return -ENOBUFS;
  2505. }
  2506. EXPORT_SYMBOL(proto_register);
  2507. void proto_unregister(struct proto *prot)
  2508. {
  2509. mutex_lock(&proto_list_mutex);
  2510. release_proto_idx(prot);
  2511. list_del(&prot->node);
  2512. mutex_unlock(&proto_list_mutex);
  2513. kmem_cache_destroy(prot->slab);
  2514. prot->slab = NULL;
  2515. req_prot_cleanup(prot->rsk_prot);
  2516. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2517. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2518. kfree(prot->twsk_prot->twsk_slab_name);
  2519. prot->twsk_prot->twsk_slab = NULL;
  2520. }
  2521. }
  2522. EXPORT_SYMBOL(proto_unregister);
  2523. #ifdef CONFIG_PROC_FS
  2524. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2525. __acquires(proto_list_mutex)
  2526. {
  2527. mutex_lock(&proto_list_mutex);
  2528. return seq_list_start_head(&proto_list, *pos);
  2529. }
  2530. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2531. {
  2532. return seq_list_next(v, &proto_list, pos);
  2533. }
  2534. static void proto_seq_stop(struct seq_file *seq, void *v)
  2535. __releases(proto_list_mutex)
  2536. {
  2537. mutex_unlock(&proto_list_mutex);
  2538. }
  2539. static char proto_method_implemented(const void *method)
  2540. {
  2541. return method == NULL ? 'n' : 'y';
  2542. }
  2543. static long sock_prot_memory_allocated(struct proto *proto)
  2544. {
  2545. return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
  2546. }
  2547. static char *sock_prot_memory_pressure(struct proto *proto)
  2548. {
  2549. return proto->memory_pressure != NULL ?
  2550. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2551. }
  2552. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2553. {
  2554. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2555. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2556. proto->name,
  2557. proto->obj_size,
  2558. sock_prot_inuse_get(seq_file_net(seq), proto),
  2559. sock_prot_memory_allocated(proto),
  2560. sock_prot_memory_pressure(proto),
  2561. proto->max_header,
  2562. proto->slab == NULL ? "no" : "yes",
  2563. module_name(proto->owner),
  2564. proto_method_implemented(proto->close),
  2565. proto_method_implemented(proto->connect),
  2566. proto_method_implemented(proto->disconnect),
  2567. proto_method_implemented(proto->accept),
  2568. proto_method_implemented(proto->ioctl),
  2569. proto_method_implemented(proto->init),
  2570. proto_method_implemented(proto->destroy),
  2571. proto_method_implemented(proto->shutdown),
  2572. proto_method_implemented(proto->setsockopt),
  2573. proto_method_implemented(proto->getsockopt),
  2574. proto_method_implemented(proto->sendmsg),
  2575. proto_method_implemented(proto->recvmsg),
  2576. proto_method_implemented(proto->sendpage),
  2577. proto_method_implemented(proto->bind),
  2578. proto_method_implemented(proto->backlog_rcv),
  2579. proto_method_implemented(proto->hash),
  2580. proto_method_implemented(proto->unhash),
  2581. proto_method_implemented(proto->get_port),
  2582. proto_method_implemented(proto->enter_memory_pressure));
  2583. }
  2584. static int proto_seq_show(struct seq_file *seq, void *v)
  2585. {
  2586. if (v == &proto_list)
  2587. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2588. "protocol",
  2589. "size",
  2590. "sockets",
  2591. "memory",
  2592. "press",
  2593. "maxhdr",
  2594. "slab",
  2595. "module",
  2596. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2597. else
  2598. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2599. return 0;
  2600. }
  2601. static const struct seq_operations proto_seq_ops = {
  2602. .start = proto_seq_start,
  2603. .next = proto_seq_next,
  2604. .stop = proto_seq_stop,
  2605. .show = proto_seq_show,
  2606. };
  2607. static int proto_seq_open(struct inode *inode, struct file *file)
  2608. {
  2609. return seq_open_net(inode, file, &proto_seq_ops,
  2610. sizeof(struct seq_net_private));
  2611. }
  2612. static const struct file_operations proto_seq_fops = {
  2613. .owner = THIS_MODULE,
  2614. .open = proto_seq_open,
  2615. .read = seq_read,
  2616. .llseek = seq_lseek,
  2617. .release = seq_release_net,
  2618. };
  2619. static __net_init int proto_init_net(struct net *net)
  2620. {
  2621. if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
  2622. return -ENOMEM;
  2623. return 0;
  2624. }
  2625. static __net_exit void proto_exit_net(struct net *net)
  2626. {
  2627. remove_proc_entry("protocols", net->proc_net);
  2628. }
  2629. static __net_initdata struct pernet_operations proto_net_ops = {
  2630. .init = proto_init_net,
  2631. .exit = proto_exit_net,
  2632. };
  2633. static int __init proto_init(void)
  2634. {
  2635. return register_pernet_subsys(&proto_net_ops);
  2636. }
  2637. subsys_initcall(proto_init);
  2638. #endif /* PROC_FS */