123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309 |
- /*
- * sched_clock.c: Generic sched_clock() support, to extend low level
- * hardware time counters to full 64-bit ns values.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #include <linux/clocksource.h>
- #include <linux/init.h>
- #include <linux/jiffies.h>
- #include <linux/ktime.h>
- #include <linux/kernel.h>
- #include <linux/moduleparam.h>
- #include <linux/sched.h>
- #include <linux/syscore_ops.h>
- #include <linux/hrtimer.h>
- #include <linux/sched_clock.h>
- #include <linux/seqlock.h>
- #include <linux/bitops.h>
- /**
- * struct clock_read_data - data required to read from sched_clock()
- *
- * @epoch_ns: sched_clock() value at last update
- * @epoch_cyc: Clock cycle value at last update.
- * @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit
- * clocks.
- * @read_sched_clock: Current clock source (or dummy source when suspended).
- * @mult: Multipler for scaled math conversion.
- * @shift: Shift value for scaled math conversion.
- *
- * Care must be taken when updating this structure; it is read by
- * some very hot code paths. It occupies <=40 bytes and, when combined
- * with the seqcount used to synchronize access, comfortably fits into
- * a 64 byte cache line.
- */
- struct clock_read_data {
- u64 epoch_ns;
- u64 epoch_cyc;
- u64 sched_clock_mask;
- u64 (*read_sched_clock)(void);
- u32 mult;
- u32 shift;
- };
- /**
- * struct clock_data - all data needed for sched_clock() (including
- * registration of a new clock source)
- *
- * @seq: Sequence counter for protecting updates. The lowest
- * bit is the index for @read_data.
- * @read_data: Data required to read from sched_clock.
- * @wrap_kt: Duration for which clock can run before wrapping.
- * @rate: Tick rate of the registered clock.
- * @actual_read_sched_clock: Registered hardware level clock read function.
- *
- * The ordering of this structure has been chosen to optimize cache
- * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
- * into a single 64-byte cache line.
- */
- struct clock_data {
- seqcount_t seq;
- struct clock_read_data read_data[2];
- ktime_t wrap_kt;
- unsigned long rate;
- u64 (*actual_read_sched_clock)(void);
- };
- static struct hrtimer sched_clock_timer;
- static int irqtime = -1;
- core_param(irqtime, irqtime, int, 0400);
- static u64 notrace jiffy_sched_clock_read(void)
- {
- /*
- * We don't need to use get_jiffies_64 on 32-bit arches here
- * because we register with BITS_PER_LONG
- */
- return (u64)(jiffies - INITIAL_JIFFIES);
- }
- static struct clock_data cd ____cacheline_aligned = {
- .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
- .read_sched_clock = jiffy_sched_clock_read, },
- .actual_read_sched_clock = jiffy_sched_clock_read,
- };
- static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
- {
- return (cyc * mult) >> shift;
- }
- unsigned long long notrace sched_clock(void)
- {
- u64 cyc, res;
- unsigned long seq;
- struct clock_read_data *rd;
- do {
- seq = raw_read_seqcount(&cd.seq);
- rd = cd.read_data + (seq & 1);
- cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
- rd->sched_clock_mask;
- res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
- } while (read_seqcount_retry(&cd.seq, seq));
- return res;
- }
- /*
- * Updating the data required to read the clock.
- *
- * sched_clock() will never observe mis-matched data even if called from
- * an NMI. We do this by maintaining an odd/even copy of the data and
- * steering sched_clock() to one or the other using a sequence counter.
- * In order to preserve the data cache profile of sched_clock() as much
- * as possible the system reverts back to the even copy when the update
- * completes; the odd copy is used *only* during an update.
- */
- static void update_clock_read_data(struct clock_read_data *rd)
- {
- /* update the backup (odd) copy with the new data */
- cd.read_data[1] = *rd;
- /* steer readers towards the odd copy */
- raw_write_seqcount_latch(&cd.seq);
- /* now its safe for us to update the normal (even) copy */
- cd.read_data[0] = *rd;
- /* switch readers back to the even copy */
- raw_write_seqcount_latch(&cd.seq);
- }
- /*
- * Atomically update the sched_clock() epoch.
- */
- static void update_sched_clock(void)
- {
- u64 cyc;
- u64 ns;
- struct clock_read_data rd;
- rd = cd.read_data[0];
- cyc = cd.actual_read_sched_clock();
- ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
- rd.epoch_ns = ns;
- rd.epoch_cyc = cyc;
- update_clock_read_data(&rd);
- }
- static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
- {
- update_sched_clock();
- hrtimer_forward_now(hrt, cd.wrap_kt);
- return HRTIMER_RESTART;
- }
- void __init
- sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
- {
- u64 res, wrap, new_mask, new_epoch, cyc, ns;
- u32 new_mult, new_shift;
- unsigned long r;
- char r_unit;
- struct clock_read_data rd;
- if (cd.rate > rate)
- return;
- WARN_ON(!irqs_disabled());
- /* Calculate the mult/shift to convert counter ticks to ns. */
- clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
- new_mask = CLOCKSOURCE_MASK(bits);
- cd.rate = rate;
- /* Calculate how many nanosecs until we risk wrapping */
- wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
- cd.wrap_kt = ns_to_ktime(wrap);
- rd = cd.read_data[0];
- /* Update epoch for new counter and update 'epoch_ns' from old counter*/
- new_epoch = read();
- cyc = cd.actual_read_sched_clock();
- ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
- cd.actual_read_sched_clock = read;
- rd.read_sched_clock = read;
- rd.sched_clock_mask = new_mask;
- rd.mult = new_mult;
- rd.shift = new_shift;
- rd.epoch_cyc = new_epoch;
- rd.epoch_ns = ns;
- update_clock_read_data(&rd);
- if (sched_clock_timer.function != NULL) {
- /* update timeout for clock wrap */
- hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
- }
- r = rate;
- if (r >= 4000000) {
- r /= 1000000;
- r_unit = 'M';
- } else {
- if (r >= 1000) {
- r /= 1000;
- r_unit = 'k';
- } else {
- r_unit = ' ';
- }
- }
- /* Calculate the ns resolution of this counter */
- res = cyc_to_ns(1ULL, new_mult, new_shift);
- pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
- bits, r, r_unit, res, wrap);
- /* Enable IRQ time accounting if we have a fast enough sched_clock() */
- if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
- enable_sched_clock_irqtime();
- pr_debug("Registered %pF as sched_clock source\n", read);
- }
- void __init sched_clock_postinit(void)
- {
- /*
- * If no sched_clock() function has been provided at that point,
- * make it the final one one.
- */
- if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
- sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
- update_sched_clock();
- /*
- * Start the timer to keep sched_clock() properly updated and
- * sets the initial epoch.
- */
- hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- sched_clock_timer.function = sched_clock_poll;
- hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
- }
- /*
- * Clock read function for use when the clock is suspended.
- *
- * This function makes it appear to sched_clock() as if the clock
- * stopped counting at its last update.
- *
- * This function must only be called from the critical
- * section in sched_clock(). It relies on the read_seqcount_retry()
- * at the end of the critical section to be sure we observe the
- * correct copy of 'epoch_cyc'.
- */
- static u64 notrace suspended_sched_clock_read(void)
- {
- unsigned long seq = raw_read_seqcount(&cd.seq);
- return cd.read_data[seq & 1].epoch_cyc;
- }
- static int sched_clock_suspend(void)
- {
- struct clock_read_data *rd = &cd.read_data[0];
- update_sched_clock();
- hrtimer_cancel(&sched_clock_timer);
- rd->read_sched_clock = suspended_sched_clock_read;
- return 0;
- }
- static void sched_clock_resume(void)
- {
- struct clock_read_data *rd = &cd.read_data[0];
- rd->epoch_cyc = cd.actual_read_sched_clock();
- hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
- rd->read_sched_clock = cd.actual_read_sched_clock;
- }
- static struct syscore_ops sched_clock_ops = {
- .suspend = sched_clock_suspend,
- .resume = sched_clock_resume,
- };
- static int __init sched_clock_syscore_init(void)
- {
- register_syscore_ops(&sched_clock_ops);
- return 0;
- }
- device_initcall(sched_clock_syscore_init);
|