1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875 |
- /*
- * kernel/sched/core.c
- *
- * Kernel scheduler and related syscalls
- *
- * Copyright (C) 1991-2002 Linus Torvalds
- *
- * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
- * make semaphores SMP safe
- * 1998-11-19 Implemented schedule_timeout() and related stuff
- * by Andrea Arcangeli
- * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
- * hybrid priority-list and round-robin design with
- * an array-switch method of distributing timeslices
- * and per-CPU runqueues. Cleanups and useful suggestions
- * by Davide Libenzi, preemptible kernel bits by Robert Love.
- * 2003-09-03 Interactivity tuning by Con Kolivas.
- * 2004-04-02 Scheduler domains code by Nick Piggin
- * 2007-04-15 Work begun on replacing all interactivity tuning with a
- * fair scheduling design by Con Kolivas.
- * 2007-05-05 Load balancing (smp-nice) and other improvements
- * by Peter Williams
- * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
- * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
- * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
- * Thomas Gleixner, Mike Kravetz
- */
- #include <linux/kasan.h>
- #include <linux/mm.h>
- #include <linux/module.h>
- #include <linux/nmi.h>
- #include <linux/init.h>
- #include <linux/uaccess.h>
- #include <linux/highmem.h>
- #include <linux/mmu_context.h>
- #include <linux/interrupt.h>
- #include <linux/capability.h>
- #include <linux/completion.h>
- #include <linux/kernel_stat.h>
- #include <linux/debug_locks.h>
- #include <linux/perf_event.h>
- #include <linux/security.h>
- #include <linux/notifier.h>
- #include <linux/profile.h>
- #include <linux/freezer.h>
- #include <linux/vmalloc.h>
- #include <linux/blkdev.h>
- #include <linux/delay.h>
- #include <linux/pid_namespace.h>
- #include <linux/smp.h>
- #include <linux/threads.h>
- #include <linux/timer.h>
- #include <linux/rcupdate.h>
- #include <linux/cpu.h>
- #include <linux/cpuset.h>
- #include <linux/percpu.h>
- #include <linux/proc_fs.h>
- #include <linux/seq_file.h>
- #include <linux/sysctl.h>
- #include <linux/syscalls.h>
- #include <linux/times.h>
- #include <linux/tsacct_kern.h>
- #include <linux/kprobes.h>
- #include <linux/delayacct.h>
- #include <linux/unistd.h>
- #include <linux/pagemap.h>
- #include <linux/hrtimer.h>
- #include <linux/tick.h>
- #include <linux/ctype.h>
- #include <linux/ftrace.h>
- #include <linux/slab.h>
- #include <linux/init_task.h>
- #include <linux/context_tracking.h>
- #include <linux/compiler.h>
- #include <linux/frame.h>
- #include <linux/prefetch.h>
- #include <asm/switch_to.h>
- #include <asm/tlb.h>
- #include <asm/irq_regs.h>
- #include <asm/mutex.h>
- #ifdef CONFIG_PARAVIRT
- #include <asm/paravirt.h>
- #endif
- #include "sched.h"
- #include "../workqueue_internal.h"
- #include "../smpboot.h"
- #define CREATE_TRACE_POINTS
- #include <trace/events/sched.h>
- DEFINE_MUTEX(sched_domains_mutex);
- DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
- static void update_rq_clock_task(struct rq *rq, s64 delta);
- void update_rq_clock(struct rq *rq)
- {
- s64 delta;
- lockdep_assert_held(&rq->lock);
- if (rq->clock_skip_update & RQCF_ACT_SKIP)
- return;
- delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
- if (delta < 0)
- return;
- rq->clock += delta;
- update_rq_clock_task(rq, delta);
- }
- /*
- * Debugging: various feature bits
- */
- #define SCHED_FEAT(name, enabled) \
- (1UL << __SCHED_FEAT_##name) * enabled |
- const_debug unsigned int sysctl_sched_features =
- #include "features.h"
- 0;
- #undef SCHED_FEAT
- /*
- * Number of tasks to iterate in a single balance run.
- * Limited because this is done with IRQs disabled.
- */
- const_debug unsigned int sysctl_sched_nr_migrate = 32;
- /*
- * period over which we average the RT time consumption, measured
- * in ms.
- *
- * default: 1s
- */
- const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
- /*
- * period over which we measure -rt task cpu usage in us.
- * default: 1s
- */
- unsigned int sysctl_sched_rt_period = 1000000;
- __read_mostly int scheduler_running;
- /*
- * part of the period that we allow rt tasks to run in us.
- * default: 0.95s
- */
- int sysctl_sched_rt_runtime = 950000;
- /* cpus with isolated domains */
- cpumask_var_t cpu_isolated_map;
- /*
- * this_rq_lock - lock this runqueue and disable interrupts.
- */
- static struct rq *this_rq_lock(void)
- __acquires(rq->lock)
- {
- struct rq *rq;
- local_irq_disable();
- rq = this_rq();
- raw_spin_lock(&rq->lock);
- return rq;
- }
- /*
- * __task_rq_lock - lock the rq @p resides on.
- */
- struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
- __acquires(rq->lock)
- {
- struct rq *rq;
- lockdep_assert_held(&p->pi_lock);
- for (;;) {
- rq = task_rq(p);
- raw_spin_lock(&rq->lock);
- if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
- rf->cookie = lockdep_pin_lock(&rq->lock);
- return rq;
- }
- raw_spin_unlock(&rq->lock);
- while (unlikely(task_on_rq_migrating(p)))
- cpu_relax();
- }
- }
- /*
- * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
- */
- struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
- __acquires(p->pi_lock)
- __acquires(rq->lock)
- {
- struct rq *rq;
- for (;;) {
- raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
- rq = task_rq(p);
- raw_spin_lock(&rq->lock);
- /*
- * move_queued_task() task_rq_lock()
- *
- * ACQUIRE (rq->lock)
- * [S] ->on_rq = MIGRATING [L] rq = task_rq()
- * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
- * [S] ->cpu = new_cpu [L] task_rq()
- * [L] ->on_rq
- * RELEASE (rq->lock)
- *
- * If we observe the old cpu in task_rq_lock, the acquire of
- * the old rq->lock will fully serialize against the stores.
- *
- * If we observe the new cpu in task_rq_lock, the acquire will
- * pair with the WMB to ensure we must then also see migrating.
- */
- if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
- rf->cookie = lockdep_pin_lock(&rq->lock);
- return rq;
- }
- raw_spin_unlock(&rq->lock);
- raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
- while (unlikely(task_on_rq_migrating(p)))
- cpu_relax();
- }
- }
- #ifdef CONFIG_SCHED_HRTICK
- /*
- * Use HR-timers to deliver accurate preemption points.
- */
- static void hrtick_clear(struct rq *rq)
- {
- if (hrtimer_active(&rq->hrtick_timer))
- hrtimer_cancel(&rq->hrtick_timer);
- }
- /*
- * High-resolution timer tick.
- * Runs from hardirq context with interrupts disabled.
- */
- static enum hrtimer_restart hrtick(struct hrtimer *timer)
- {
- struct rq *rq = container_of(timer, struct rq, hrtick_timer);
- WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
- raw_spin_lock(&rq->lock);
- update_rq_clock(rq);
- rq->curr->sched_class->task_tick(rq, rq->curr, 1);
- raw_spin_unlock(&rq->lock);
- return HRTIMER_NORESTART;
- }
- #ifdef CONFIG_SMP
- static void __hrtick_restart(struct rq *rq)
- {
- struct hrtimer *timer = &rq->hrtick_timer;
- hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
- }
- /*
- * called from hardirq (IPI) context
- */
- static void __hrtick_start(void *arg)
- {
- struct rq *rq = arg;
- raw_spin_lock(&rq->lock);
- __hrtick_restart(rq);
- rq->hrtick_csd_pending = 0;
- raw_spin_unlock(&rq->lock);
- }
- /*
- * Called to set the hrtick timer state.
- *
- * called with rq->lock held and irqs disabled
- */
- void hrtick_start(struct rq *rq, u64 delay)
- {
- struct hrtimer *timer = &rq->hrtick_timer;
- ktime_t time;
- s64 delta;
- /*
- * Don't schedule slices shorter than 10000ns, that just
- * doesn't make sense and can cause timer DoS.
- */
- delta = max_t(s64, delay, 10000LL);
- time = ktime_add_ns(timer->base->get_time(), delta);
- hrtimer_set_expires(timer, time);
- if (rq == this_rq()) {
- __hrtick_restart(rq);
- } else if (!rq->hrtick_csd_pending) {
- smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
- rq->hrtick_csd_pending = 1;
- }
- }
- #else
- /*
- * Called to set the hrtick timer state.
- *
- * called with rq->lock held and irqs disabled
- */
- void hrtick_start(struct rq *rq, u64 delay)
- {
- /*
- * Don't schedule slices shorter than 10000ns, that just
- * doesn't make sense. Rely on vruntime for fairness.
- */
- delay = max_t(u64, delay, 10000LL);
- hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
- HRTIMER_MODE_REL_PINNED);
- }
- #endif /* CONFIG_SMP */
- static void init_rq_hrtick(struct rq *rq)
- {
- #ifdef CONFIG_SMP
- rq->hrtick_csd_pending = 0;
- rq->hrtick_csd.flags = 0;
- rq->hrtick_csd.func = __hrtick_start;
- rq->hrtick_csd.info = rq;
- #endif
- hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- rq->hrtick_timer.function = hrtick;
- }
- #else /* CONFIG_SCHED_HRTICK */
- static inline void hrtick_clear(struct rq *rq)
- {
- }
- static inline void init_rq_hrtick(struct rq *rq)
- {
- }
- #endif /* CONFIG_SCHED_HRTICK */
- /*
- * cmpxchg based fetch_or, macro so it works for different integer types
- */
- #define fetch_or(ptr, mask) \
- ({ \
- typeof(ptr) _ptr = (ptr); \
- typeof(mask) _mask = (mask); \
- typeof(*_ptr) _old, _val = *_ptr; \
- \
- for (;;) { \
- _old = cmpxchg(_ptr, _val, _val | _mask); \
- if (_old == _val) \
- break; \
- _val = _old; \
- } \
- _old; \
- })
- #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
- /*
- * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
- * this avoids any races wrt polling state changes and thereby avoids
- * spurious IPIs.
- */
- static bool set_nr_and_not_polling(struct task_struct *p)
- {
- struct thread_info *ti = task_thread_info(p);
- return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
- }
- /*
- * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
- *
- * If this returns true, then the idle task promises to call
- * sched_ttwu_pending() and reschedule soon.
- */
- static bool set_nr_if_polling(struct task_struct *p)
- {
- struct thread_info *ti = task_thread_info(p);
- typeof(ti->flags) old, val = READ_ONCE(ti->flags);
- for (;;) {
- if (!(val & _TIF_POLLING_NRFLAG))
- return false;
- if (val & _TIF_NEED_RESCHED)
- return true;
- old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
- if (old == val)
- break;
- val = old;
- }
- return true;
- }
- #else
- static bool set_nr_and_not_polling(struct task_struct *p)
- {
- set_tsk_need_resched(p);
- return true;
- }
- #ifdef CONFIG_SMP
- static bool set_nr_if_polling(struct task_struct *p)
- {
- return false;
- }
- #endif
- #endif
- void wake_q_add(struct wake_q_head *head, struct task_struct *task)
- {
- struct wake_q_node *node = &task->wake_q;
- /*
- * Atomically grab the task, if ->wake_q is !nil already it means
- * its already queued (either by us or someone else) and will get the
- * wakeup due to that.
- *
- * This cmpxchg() implies a full barrier, which pairs with the write
- * barrier implied by the wakeup in wake_up_q().
- */
- if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
- return;
- get_task_struct(task);
- /*
- * The head is context local, there can be no concurrency.
- */
- *head->lastp = node;
- head->lastp = &node->next;
- }
- void wake_up_q(struct wake_q_head *head)
- {
- struct wake_q_node *node = head->first;
- while (node != WAKE_Q_TAIL) {
- struct task_struct *task;
- task = container_of(node, struct task_struct, wake_q);
- BUG_ON(!task);
- /* task can safely be re-inserted now */
- node = node->next;
- task->wake_q.next = NULL;
- /*
- * wake_up_process() implies a wmb() to pair with the queueing
- * in wake_q_add() so as not to miss wakeups.
- */
- wake_up_process(task);
- put_task_struct(task);
- }
- }
- /*
- * resched_curr - mark rq's current task 'to be rescheduled now'.
- *
- * On UP this means the setting of the need_resched flag, on SMP it
- * might also involve a cross-CPU call to trigger the scheduler on
- * the target CPU.
- */
- void resched_curr(struct rq *rq)
- {
- struct task_struct *curr = rq->curr;
- int cpu;
- lockdep_assert_held(&rq->lock);
- if (test_tsk_need_resched(curr))
- return;
- cpu = cpu_of(rq);
- if (cpu == smp_processor_id()) {
- set_tsk_need_resched(curr);
- set_preempt_need_resched();
- return;
- }
- if (set_nr_and_not_polling(curr))
- smp_send_reschedule(cpu);
- else
- trace_sched_wake_idle_without_ipi(cpu);
- }
- void resched_cpu(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
- raw_spin_lock_irqsave(&rq->lock, flags);
- if (cpu_online(cpu) || cpu == smp_processor_id())
- resched_curr(rq);
- raw_spin_unlock_irqrestore(&rq->lock, flags);
- }
- #ifdef CONFIG_SMP
- #ifdef CONFIG_NO_HZ_COMMON
- /*
- * In the semi idle case, use the nearest busy cpu for migrating timers
- * from an idle cpu. This is good for power-savings.
- *
- * We don't do similar optimization for completely idle system, as
- * selecting an idle cpu will add more delays to the timers than intended
- * (as that cpu's timer base may not be uptodate wrt jiffies etc).
- */
- int get_nohz_timer_target(void)
- {
- int i, cpu = smp_processor_id();
- struct sched_domain *sd;
- if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
- return cpu;
- rcu_read_lock();
- for_each_domain(cpu, sd) {
- for_each_cpu(i, sched_domain_span(sd)) {
- if (cpu == i)
- continue;
- if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
- cpu = i;
- goto unlock;
- }
- }
- }
- if (!is_housekeeping_cpu(cpu))
- cpu = housekeeping_any_cpu();
- unlock:
- rcu_read_unlock();
- return cpu;
- }
- /*
- * When add_timer_on() enqueues a timer into the timer wheel of an
- * idle CPU then this timer might expire before the next timer event
- * which is scheduled to wake up that CPU. In case of a completely
- * idle system the next event might even be infinite time into the
- * future. wake_up_idle_cpu() ensures that the CPU is woken up and
- * leaves the inner idle loop so the newly added timer is taken into
- * account when the CPU goes back to idle and evaluates the timer
- * wheel for the next timer event.
- */
- static void wake_up_idle_cpu(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- if (cpu == smp_processor_id())
- return;
- if (set_nr_and_not_polling(rq->idle))
- smp_send_reschedule(cpu);
- else
- trace_sched_wake_idle_without_ipi(cpu);
- }
- static bool wake_up_full_nohz_cpu(int cpu)
- {
- /*
- * We just need the target to call irq_exit() and re-evaluate
- * the next tick. The nohz full kick at least implies that.
- * If needed we can still optimize that later with an
- * empty IRQ.
- */
- if (cpu_is_offline(cpu))
- return true; /* Don't try to wake offline CPUs. */
- if (tick_nohz_full_cpu(cpu)) {
- if (cpu != smp_processor_id() ||
- tick_nohz_tick_stopped())
- tick_nohz_full_kick_cpu(cpu);
- return true;
- }
- return false;
- }
- /*
- * Wake up the specified CPU. If the CPU is going offline, it is the
- * caller's responsibility to deal with the lost wakeup, for example,
- * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
- */
- void wake_up_nohz_cpu(int cpu)
- {
- if (!wake_up_full_nohz_cpu(cpu))
- wake_up_idle_cpu(cpu);
- }
- static inline bool got_nohz_idle_kick(void)
- {
- int cpu = smp_processor_id();
- if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
- return false;
- if (idle_cpu(cpu) && !need_resched())
- return true;
- /*
- * We can't run Idle Load Balance on this CPU for this time so we
- * cancel it and clear NOHZ_BALANCE_KICK
- */
- clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
- return false;
- }
- #else /* CONFIG_NO_HZ_COMMON */
- static inline bool got_nohz_idle_kick(void)
- {
- return false;
- }
- #endif /* CONFIG_NO_HZ_COMMON */
- #ifdef CONFIG_NO_HZ_FULL
- bool sched_can_stop_tick(struct rq *rq)
- {
- int fifo_nr_running;
- /* Deadline tasks, even if single, need the tick */
- if (rq->dl.dl_nr_running)
- return false;
- /*
- * If there are more than one RR tasks, we need the tick to effect the
- * actual RR behaviour.
- */
- if (rq->rt.rr_nr_running) {
- if (rq->rt.rr_nr_running == 1)
- return true;
- else
- return false;
- }
- /*
- * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
- * forced preemption between FIFO tasks.
- */
- fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
- if (fifo_nr_running)
- return true;
- /*
- * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
- * if there's more than one we need the tick for involuntary
- * preemption.
- */
- if (rq->nr_running > 1)
- return false;
- return true;
- }
- #endif /* CONFIG_NO_HZ_FULL */
- void sched_avg_update(struct rq *rq)
- {
- s64 period = sched_avg_period();
- while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
- /*
- * Inline assembly required to prevent the compiler
- * optimising this loop into a divmod call.
- * See __iter_div_u64_rem() for another example of this.
- */
- asm("" : "+rm" (rq->age_stamp));
- rq->age_stamp += period;
- rq->rt_avg /= 2;
- }
- }
- #endif /* CONFIG_SMP */
- #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
- (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
- /*
- * Iterate task_group tree rooted at *from, calling @down when first entering a
- * node and @up when leaving it for the final time.
- *
- * Caller must hold rcu_lock or sufficient equivalent.
- */
- int walk_tg_tree_from(struct task_group *from,
- tg_visitor down, tg_visitor up, void *data)
- {
- struct task_group *parent, *child;
- int ret;
- parent = from;
- down:
- ret = (*down)(parent, data);
- if (ret)
- goto out;
- list_for_each_entry_rcu(child, &parent->children, siblings) {
- parent = child;
- goto down;
- up:
- continue;
- }
- ret = (*up)(parent, data);
- if (ret || parent == from)
- goto out;
- child = parent;
- parent = parent->parent;
- if (parent)
- goto up;
- out:
- return ret;
- }
- int tg_nop(struct task_group *tg, void *data)
- {
- return 0;
- }
- #endif
- static void set_load_weight(struct task_struct *p)
- {
- int prio = p->static_prio - MAX_RT_PRIO;
- struct load_weight *load = &p->se.load;
- /*
- * SCHED_IDLE tasks get minimal weight:
- */
- if (idle_policy(p->policy)) {
- load->weight = scale_load(WEIGHT_IDLEPRIO);
- load->inv_weight = WMULT_IDLEPRIO;
- return;
- }
- load->weight = scale_load(sched_prio_to_weight[prio]);
- load->inv_weight = sched_prio_to_wmult[prio];
- }
- static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
- {
- update_rq_clock(rq);
- if (!(flags & ENQUEUE_RESTORE))
- sched_info_queued(rq, p);
- p->sched_class->enqueue_task(rq, p, flags);
- }
- static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
- {
- update_rq_clock(rq);
- if (!(flags & DEQUEUE_SAVE))
- sched_info_dequeued(rq, p);
- p->sched_class->dequeue_task(rq, p, flags);
- }
- void activate_task(struct rq *rq, struct task_struct *p, int flags)
- {
- if (task_contributes_to_load(p))
- rq->nr_uninterruptible--;
- enqueue_task(rq, p, flags);
- }
- void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
- {
- if (task_contributes_to_load(p))
- rq->nr_uninterruptible++;
- dequeue_task(rq, p, flags);
- }
- static void update_rq_clock_task(struct rq *rq, s64 delta)
- {
- /*
- * In theory, the compile should just see 0 here, and optimize out the call
- * to sched_rt_avg_update. But I don't trust it...
- */
- #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
- s64 steal = 0, irq_delta = 0;
- #endif
- #ifdef CONFIG_IRQ_TIME_ACCOUNTING
- irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
- /*
- * Since irq_time is only updated on {soft,}irq_exit, we might run into
- * this case when a previous update_rq_clock() happened inside a
- * {soft,}irq region.
- *
- * When this happens, we stop ->clock_task and only update the
- * prev_irq_time stamp to account for the part that fit, so that a next
- * update will consume the rest. This ensures ->clock_task is
- * monotonic.
- *
- * It does however cause some slight miss-attribution of {soft,}irq
- * time, a more accurate solution would be to update the irq_time using
- * the current rq->clock timestamp, except that would require using
- * atomic ops.
- */
- if (irq_delta > delta)
- irq_delta = delta;
- rq->prev_irq_time += irq_delta;
- delta -= irq_delta;
- #endif
- #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
- if (static_key_false((¶virt_steal_rq_enabled))) {
- steal = paravirt_steal_clock(cpu_of(rq));
- steal -= rq->prev_steal_time_rq;
- if (unlikely(steal > delta))
- steal = delta;
- rq->prev_steal_time_rq += steal;
- delta -= steal;
- }
- #endif
- rq->clock_task += delta;
- #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
- if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
- sched_rt_avg_update(rq, irq_delta + steal);
- #endif
- }
- void sched_set_stop_task(int cpu, struct task_struct *stop)
- {
- struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
- struct task_struct *old_stop = cpu_rq(cpu)->stop;
- if (stop) {
- /*
- * Make it appear like a SCHED_FIFO task, its something
- * userspace knows about and won't get confused about.
- *
- * Also, it will make PI more or less work without too
- * much confusion -- but then, stop work should not
- * rely on PI working anyway.
- */
- sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
- stop->sched_class = &stop_sched_class;
- }
- cpu_rq(cpu)->stop = stop;
- if (old_stop) {
- /*
- * Reset it back to a normal scheduling class so that
- * it can die in pieces.
- */
- old_stop->sched_class = &rt_sched_class;
- }
- }
- /*
- * __normal_prio - return the priority that is based on the static prio
- */
- static inline int __normal_prio(struct task_struct *p)
- {
- return p->static_prio;
- }
- /*
- * Calculate the expected normal priority: i.e. priority
- * without taking RT-inheritance into account. Might be
- * boosted by interactivity modifiers. Changes upon fork,
- * setprio syscalls, and whenever the interactivity
- * estimator recalculates.
- */
- static inline int normal_prio(struct task_struct *p)
- {
- int prio;
- if (task_has_dl_policy(p))
- prio = MAX_DL_PRIO-1;
- else if (task_has_rt_policy(p))
- prio = MAX_RT_PRIO-1 - p->rt_priority;
- else
- prio = __normal_prio(p);
- return prio;
- }
- /*
- * Calculate the current priority, i.e. the priority
- * taken into account by the scheduler. This value might
- * be boosted by RT tasks, or might be boosted by
- * interactivity modifiers. Will be RT if the task got
- * RT-boosted. If not then it returns p->normal_prio.
- */
- static int effective_prio(struct task_struct *p)
- {
- p->normal_prio = normal_prio(p);
- /*
- * If we are RT tasks or we were boosted to RT priority,
- * keep the priority unchanged. Otherwise, update priority
- * to the normal priority:
- */
- if (!rt_prio(p->prio))
- return p->normal_prio;
- return p->prio;
- }
- /**
- * task_curr - is this task currently executing on a CPU?
- * @p: the task in question.
- *
- * Return: 1 if the task is currently executing. 0 otherwise.
- */
- inline int task_curr(const struct task_struct *p)
- {
- return cpu_curr(task_cpu(p)) == p;
- }
- /*
- * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
- * use the balance_callback list if you want balancing.
- *
- * this means any call to check_class_changed() must be followed by a call to
- * balance_callback().
- */
- static inline void check_class_changed(struct rq *rq, struct task_struct *p,
- const struct sched_class *prev_class,
- int oldprio)
- {
- if (prev_class != p->sched_class) {
- if (prev_class->switched_from)
- prev_class->switched_from(rq, p);
- p->sched_class->switched_to(rq, p);
- } else if (oldprio != p->prio || dl_task(p))
- p->sched_class->prio_changed(rq, p, oldprio);
- }
- void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
- {
- const struct sched_class *class;
- if (p->sched_class == rq->curr->sched_class) {
- rq->curr->sched_class->check_preempt_curr(rq, p, flags);
- } else {
- for_each_class(class) {
- if (class == rq->curr->sched_class)
- break;
- if (class == p->sched_class) {
- resched_curr(rq);
- break;
- }
- }
- }
- /*
- * A queue event has occurred, and we're going to schedule. In
- * this case, we can save a useless back to back clock update.
- */
- if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
- rq_clock_skip_update(rq, true);
- }
- #ifdef CONFIG_SMP
- /*
- * This is how migration works:
- *
- * 1) we invoke migration_cpu_stop() on the target CPU using
- * stop_one_cpu().
- * 2) stopper starts to run (implicitly forcing the migrated thread
- * off the CPU)
- * 3) it checks whether the migrated task is still in the wrong runqueue.
- * 4) if it's in the wrong runqueue then the migration thread removes
- * it and puts it into the right queue.
- * 5) stopper completes and stop_one_cpu() returns and the migration
- * is done.
- */
- /*
- * move_queued_task - move a queued task to new rq.
- *
- * Returns (locked) new rq. Old rq's lock is released.
- */
- static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
- {
- lockdep_assert_held(&rq->lock);
- p->on_rq = TASK_ON_RQ_MIGRATING;
- dequeue_task(rq, p, 0);
- set_task_cpu(p, new_cpu);
- raw_spin_unlock(&rq->lock);
- rq = cpu_rq(new_cpu);
- raw_spin_lock(&rq->lock);
- BUG_ON(task_cpu(p) != new_cpu);
- enqueue_task(rq, p, 0);
- p->on_rq = TASK_ON_RQ_QUEUED;
- check_preempt_curr(rq, p, 0);
- return rq;
- }
- struct migration_arg {
- struct task_struct *task;
- int dest_cpu;
- };
- /*
- * Move (not current) task off this cpu, onto dest cpu. We're doing
- * this because either it can't run here any more (set_cpus_allowed()
- * away from this CPU, or CPU going down), or because we're
- * attempting to rebalance this task on exec (sched_exec).
- *
- * So we race with normal scheduler movements, but that's OK, as long
- * as the task is no longer on this CPU.
- */
- static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
- {
- if (unlikely(!cpu_active(dest_cpu)))
- return rq;
- /* Affinity changed (again). */
- if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
- return rq;
- rq = move_queued_task(rq, p, dest_cpu);
- return rq;
- }
- /*
- * migration_cpu_stop - this will be executed by a highprio stopper thread
- * and performs thread migration by bumping thread off CPU then
- * 'pushing' onto another runqueue.
- */
- static int migration_cpu_stop(void *data)
- {
- struct migration_arg *arg = data;
- struct task_struct *p = arg->task;
- struct rq *rq = this_rq();
- /*
- * The original target cpu might have gone down and we might
- * be on another cpu but it doesn't matter.
- */
- local_irq_disable();
- /*
- * We need to explicitly wake pending tasks before running
- * __migrate_task() such that we will not miss enforcing cpus_allowed
- * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
- */
- sched_ttwu_pending();
- raw_spin_lock(&p->pi_lock);
- raw_spin_lock(&rq->lock);
- /*
- * If task_rq(p) != rq, it cannot be migrated here, because we're
- * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
- * we're holding p->pi_lock.
- */
- if (task_rq(p) == rq) {
- if (task_on_rq_queued(p))
- rq = __migrate_task(rq, p, arg->dest_cpu);
- else
- p->wake_cpu = arg->dest_cpu;
- }
- raw_spin_unlock(&rq->lock);
- raw_spin_unlock(&p->pi_lock);
- local_irq_enable();
- return 0;
- }
- /*
- * sched_class::set_cpus_allowed must do the below, but is not required to
- * actually call this function.
- */
- void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
- {
- cpumask_copy(&p->cpus_allowed, new_mask);
- p->nr_cpus_allowed = cpumask_weight(new_mask);
- }
- void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
- {
- struct rq *rq = task_rq(p);
- bool queued, running;
- lockdep_assert_held(&p->pi_lock);
- queued = task_on_rq_queued(p);
- running = task_current(rq, p);
- if (queued) {
- /*
- * Because __kthread_bind() calls this on blocked tasks without
- * holding rq->lock.
- */
- lockdep_assert_held(&rq->lock);
- dequeue_task(rq, p, DEQUEUE_SAVE);
- }
- if (running)
- put_prev_task(rq, p);
- p->sched_class->set_cpus_allowed(p, new_mask);
- if (queued)
- enqueue_task(rq, p, ENQUEUE_RESTORE);
- if (running)
- set_curr_task(rq, p);
- }
- /*
- * Change a given task's CPU affinity. Migrate the thread to a
- * proper CPU and schedule it away if the CPU it's executing on
- * is removed from the allowed bitmask.
- *
- * NOTE: the caller must have a valid reference to the task, the
- * task must not exit() & deallocate itself prematurely. The
- * call is not atomic; no spinlocks may be held.
- */
- static int __set_cpus_allowed_ptr(struct task_struct *p,
- const struct cpumask *new_mask, bool check)
- {
- const struct cpumask *cpu_valid_mask = cpu_active_mask;
- unsigned int dest_cpu;
- struct rq_flags rf;
- struct rq *rq;
- int ret = 0;
- rq = task_rq_lock(p, &rf);
- update_rq_clock(rq);
- if (p->flags & PF_KTHREAD) {
- /*
- * Kernel threads are allowed on online && !active CPUs
- */
- cpu_valid_mask = cpu_online_mask;
- }
- /*
- * Must re-check here, to close a race against __kthread_bind(),
- * sched_setaffinity() is not guaranteed to observe the flag.
- */
- if (check && (p->flags & PF_NO_SETAFFINITY)) {
- ret = -EINVAL;
- goto out;
- }
- if (cpumask_equal(&p->cpus_allowed, new_mask))
- goto out;
- if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
- ret = -EINVAL;
- goto out;
- }
- do_set_cpus_allowed(p, new_mask);
- if (p->flags & PF_KTHREAD) {
- /*
- * For kernel threads that do indeed end up on online &&
- * !active we want to ensure they are strict per-cpu threads.
- */
- WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
- !cpumask_intersects(new_mask, cpu_active_mask) &&
- p->nr_cpus_allowed != 1);
- }
- /* Can the task run on the task's current CPU? If so, we're done */
- if (cpumask_test_cpu(task_cpu(p), new_mask))
- goto out;
- dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
- if (task_running(rq, p) || p->state == TASK_WAKING) {
- struct migration_arg arg = { p, dest_cpu };
- /* Need help from migration thread: drop lock and wait. */
- task_rq_unlock(rq, p, &rf);
- stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
- tlb_migrate_finish(p->mm);
- return 0;
- } else if (task_on_rq_queued(p)) {
- /*
- * OK, since we're going to drop the lock immediately
- * afterwards anyway.
- */
- lockdep_unpin_lock(&rq->lock, rf.cookie);
- rq = move_queued_task(rq, p, dest_cpu);
- lockdep_repin_lock(&rq->lock, rf.cookie);
- }
- out:
- task_rq_unlock(rq, p, &rf);
- return ret;
- }
- int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
- {
- return __set_cpus_allowed_ptr(p, new_mask, false);
- }
- EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
- void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
- {
- #ifdef CONFIG_SCHED_DEBUG
- /*
- * We should never call set_task_cpu() on a blocked task,
- * ttwu() will sort out the placement.
- */
- WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
- !p->on_rq);
- /*
- * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
- * because schedstat_wait_{start,end} rebase migrating task's wait_start
- * time relying on p->on_rq.
- */
- WARN_ON_ONCE(p->state == TASK_RUNNING &&
- p->sched_class == &fair_sched_class &&
- (p->on_rq && !task_on_rq_migrating(p)));
- #ifdef CONFIG_LOCKDEP
- /*
- * The caller should hold either p->pi_lock or rq->lock, when changing
- * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
- *
- * sched_move_task() holds both and thus holding either pins the cgroup,
- * see task_group().
- *
- * Furthermore, all task_rq users should acquire both locks, see
- * task_rq_lock().
- */
- WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
- lockdep_is_held(&task_rq(p)->lock)));
- #endif
- #endif
- trace_sched_migrate_task(p, new_cpu);
- if (task_cpu(p) != new_cpu) {
- if (p->sched_class->migrate_task_rq)
- p->sched_class->migrate_task_rq(p);
- p->se.nr_migrations++;
- perf_event_task_migrate(p);
- }
- __set_task_cpu(p, new_cpu);
- }
- static void __migrate_swap_task(struct task_struct *p, int cpu)
- {
- if (task_on_rq_queued(p)) {
- struct rq *src_rq, *dst_rq;
- src_rq = task_rq(p);
- dst_rq = cpu_rq(cpu);
- p->on_rq = TASK_ON_RQ_MIGRATING;
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, cpu);
- activate_task(dst_rq, p, 0);
- p->on_rq = TASK_ON_RQ_QUEUED;
- check_preempt_curr(dst_rq, p, 0);
- } else {
- /*
- * Task isn't running anymore; make it appear like we migrated
- * it before it went to sleep. This means on wakeup we make the
- * previous cpu our target instead of where it really is.
- */
- p->wake_cpu = cpu;
- }
- }
- struct migration_swap_arg {
- struct task_struct *src_task, *dst_task;
- int src_cpu, dst_cpu;
- };
- static int migrate_swap_stop(void *data)
- {
- struct migration_swap_arg *arg = data;
- struct rq *src_rq, *dst_rq;
- int ret = -EAGAIN;
- if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
- return -EAGAIN;
- src_rq = cpu_rq(arg->src_cpu);
- dst_rq = cpu_rq(arg->dst_cpu);
- double_raw_lock(&arg->src_task->pi_lock,
- &arg->dst_task->pi_lock);
- double_rq_lock(src_rq, dst_rq);
- if (task_cpu(arg->dst_task) != arg->dst_cpu)
- goto unlock;
- if (task_cpu(arg->src_task) != arg->src_cpu)
- goto unlock;
- if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
- goto unlock;
- if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
- goto unlock;
- __migrate_swap_task(arg->src_task, arg->dst_cpu);
- __migrate_swap_task(arg->dst_task, arg->src_cpu);
- ret = 0;
- unlock:
- double_rq_unlock(src_rq, dst_rq);
- raw_spin_unlock(&arg->dst_task->pi_lock);
- raw_spin_unlock(&arg->src_task->pi_lock);
- return ret;
- }
- /*
- * Cross migrate two tasks
- */
- int migrate_swap(struct task_struct *cur, struct task_struct *p)
- {
- struct migration_swap_arg arg;
- int ret = -EINVAL;
- arg = (struct migration_swap_arg){
- .src_task = cur,
- .src_cpu = task_cpu(cur),
- .dst_task = p,
- .dst_cpu = task_cpu(p),
- };
- if (arg.src_cpu == arg.dst_cpu)
- goto out;
- /*
- * These three tests are all lockless; this is OK since all of them
- * will be re-checked with proper locks held further down the line.
- */
- if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
- goto out;
- if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
- goto out;
- if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
- goto out;
- trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
- ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
- out:
- return ret;
- }
- /*
- * wait_task_inactive - wait for a thread to unschedule.
- *
- * If @match_state is nonzero, it's the @p->state value just checked and
- * not expected to change. If it changes, i.e. @p might have woken up,
- * then return zero. When we succeed in waiting for @p to be off its CPU,
- * we return a positive number (its total switch count). If a second call
- * a short while later returns the same number, the caller can be sure that
- * @p has remained unscheduled the whole time.
- *
- * The caller must ensure that the task *will* unschedule sometime soon,
- * else this function might spin for a *long* time. This function can't
- * be called with interrupts off, or it may introduce deadlock with
- * smp_call_function() if an IPI is sent by the same process we are
- * waiting to become inactive.
- */
- unsigned long wait_task_inactive(struct task_struct *p, long match_state)
- {
- int running, queued;
- struct rq_flags rf;
- unsigned long ncsw;
- struct rq *rq;
- for (;;) {
- /*
- * We do the initial early heuristics without holding
- * any task-queue locks at all. We'll only try to get
- * the runqueue lock when things look like they will
- * work out!
- */
- rq = task_rq(p);
- /*
- * If the task is actively running on another CPU
- * still, just relax and busy-wait without holding
- * any locks.
- *
- * NOTE! Since we don't hold any locks, it's not
- * even sure that "rq" stays as the right runqueue!
- * But we don't care, since "task_running()" will
- * return false if the runqueue has changed and p
- * is actually now running somewhere else!
- */
- while (task_running(rq, p)) {
- if (match_state && unlikely(p->state != match_state))
- return 0;
- cpu_relax();
- }
- /*
- * Ok, time to look more closely! We need the rq
- * lock now, to be *sure*. If we're wrong, we'll
- * just go back and repeat.
- */
- rq = task_rq_lock(p, &rf);
- trace_sched_wait_task(p);
- running = task_running(rq, p);
- queued = task_on_rq_queued(p);
- ncsw = 0;
- if (!match_state || p->state == match_state)
- ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
- task_rq_unlock(rq, p, &rf);
- /*
- * If it changed from the expected state, bail out now.
- */
- if (unlikely(!ncsw))
- break;
- /*
- * Was it really running after all now that we
- * checked with the proper locks actually held?
- *
- * Oops. Go back and try again..
- */
- if (unlikely(running)) {
- cpu_relax();
- continue;
- }
- /*
- * It's not enough that it's not actively running,
- * it must be off the runqueue _entirely_, and not
- * preempted!
- *
- * So if it was still runnable (but just not actively
- * running right now), it's preempted, and we should
- * yield - it could be a while.
- */
- if (unlikely(queued)) {
- ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
- set_current_state(TASK_UNINTERRUPTIBLE);
- schedule_hrtimeout(&to, HRTIMER_MODE_REL);
- continue;
- }
- /*
- * Ahh, all good. It wasn't running, and it wasn't
- * runnable, which means that it will never become
- * running in the future either. We're all done!
- */
- break;
- }
- return ncsw;
- }
- /***
- * kick_process - kick a running thread to enter/exit the kernel
- * @p: the to-be-kicked thread
- *
- * Cause a process which is running on another CPU to enter
- * kernel-mode, without any delay. (to get signals handled.)
- *
- * NOTE: this function doesn't have to take the runqueue lock,
- * because all it wants to ensure is that the remote task enters
- * the kernel. If the IPI races and the task has been migrated
- * to another CPU then no harm is done and the purpose has been
- * achieved as well.
- */
- void kick_process(struct task_struct *p)
- {
- int cpu;
- preempt_disable();
- cpu = task_cpu(p);
- if ((cpu != smp_processor_id()) && task_curr(p))
- smp_send_reschedule(cpu);
- preempt_enable();
- }
- EXPORT_SYMBOL_GPL(kick_process);
- /*
- * ->cpus_allowed is protected by both rq->lock and p->pi_lock
- *
- * A few notes on cpu_active vs cpu_online:
- *
- * - cpu_active must be a subset of cpu_online
- *
- * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
- * see __set_cpus_allowed_ptr(). At this point the newly online
- * cpu isn't yet part of the sched domains, and balancing will not
- * see it.
- *
- * - on cpu-down we clear cpu_active() to mask the sched domains and
- * avoid the load balancer to place new tasks on the to be removed
- * cpu. Existing tasks will remain running there and will be taken
- * off.
- *
- * This means that fallback selection must not select !active CPUs.
- * And can assume that any active CPU must be online. Conversely
- * select_task_rq() below may allow selection of !active CPUs in order
- * to satisfy the above rules.
- */
- static int select_fallback_rq(int cpu, struct task_struct *p)
- {
- int nid = cpu_to_node(cpu);
- const struct cpumask *nodemask = NULL;
- enum { cpuset, possible, fail } state = cpuset;
- int dest_cpu;
- /*
- * If the node that the cpu is on has been offlined, cpu_to_node()
- * will return -1. There is no cpu on the node, and we should
- * select the cpu on the other node.
- */
- if (nid != -1) {
- nodemask = cpumask_of_node(nid);
- /* Look for allowed, online CPU in same node. */
- for_each_cpu(dest_cpu, nodemask) {
- if (!cpu_active(dest_cpu))
- continue;
- if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
- return dest_cpu;
- }
- }
- for (;;) {
- /* Any allowed, online CPU? */
- for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
- if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
- continue;
- if (!cpu_online(dest_cpu))
- continue;
- goto out;
- }
- /* No more Mr. Nice Guy. */
- switch (state) {
- case cpuset:
- if (IS_ENABLED(CONFIG_CPUSETS)) {
- cpuset_cpus_allowed_fallback(p);
- state = possible;
- break;
- }
- /* fall-through */
- case possible:
- do_set_cpus_allowed(p, cpu_possible_mask);
- state = fail;
- break;
- case fail:
- BUG();
- break;
- }
- }
- out:
- if (state != cpuset) {
- /*
- * Don't tell them about moving exiting tasks or
- * kernel threads (both mm NULL), since they never
- * leave kernel.
- */
- if (p->mm && printk_ratelimit()) {
- printk_deferred("process %d (%s) no longer affine to cpu%d\n",
- task_pid_nr(p), p->comm, cpu);
- }
- }
- return dest_cpu;
- }
- /*
- * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
- */
- static inline
- int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
- {
- lockdep_assert_held(&p->pi_lock);
- if (tsk_nr_cpus_allowed(p) > 1)
- cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
- else
- cpu = cpumask_any(tsk_cpus_allowed(p));
- /*
- * In order not to call set_task_cpu() on a blocking task we need
- * to rely on ttwu() to place the task on a valid ->cpus_allowed
- * cpu.
- *
- * Since this is common to all placement strategies, this lives here.
- *
- * [ this allows ->select_task() to simply return task_cpu(p) and
- * not worry about this generic constraint ]
- */
- if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
- !cpu_online(cpu)))
- cpu = select_fallback_rq(task_cpu(p), p);
- return cpu;
- }
- static void update_avg(u64 *avg, u64 sample)
- {
- s64 diff = sample - *avg;
- *avg += diff >> 3;
- }
- #else
- static inline int __set_cpus_allowed_ptr(struct task_struct *p,
- const struct cpumask *new_mask, bool check)
- {
- return set_cpus_allowed_ptr(p, new_mask);
- }
- #endif /* CONFIG_SMP */
- static void
- ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
- {
- struct rq *rq;
- if (!schedstat_enabled())
- return;
- rq = this_rq();
- #ifdef CONFIG_SMP
- if (cpu == rq->cpu) {
- schedstat_inc(rq->ttwu_local);
- schedstat_inc(p->se.statistics.nr_wakeups_local);
- } else {
- struct sched_domain *sd;
- schedstat_inc(p->se.statistics.nr_wakeups_remote);
- rcu_read_lock();
- for_each_domain(rq->cpu, sd) {
- if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
- schedstat_inc(sd->ttwu_wake_remote);
- break;
- }
- }
- rcu_read_unlock();
- }
- if (wake_flags & WF_MIGRATED)
- schedstat_inc(p->se.statistics.nr_wakeups_migrate);
- #endif /* CONFIG_SMP */
- schedstat_inc(rq->ttwu_count);
- schedstat_inc(p->se.statistics.nr_wakeups);
- if (wake_flags & WF_SYNC)
- schedstat_inc(p->se.statistics.nr_wakeups_sync);
- }
- static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
- {
- activate_task(rq, p, en_flags);
- p->on_rq = TASK_ON_RQ_QUEUED;
- /* if a worker is waking up, notify workqueue */
- if (p->flags & PF_WQ_WORKER)
- wq_worker_waking_up(p, cpu_of(rq));
- }
- /*
- * Mark the task runnable and perform wakeup-preemption.
- */
- static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
- struct pin_cookie cookie)
- {
- check_preempt_curr(rq, p, wake_flags);
- p->state = TASK_RUNNING;
- trace_sched_wakeup(p);
- #ifdef CONFIG_SMP
- if (p->sched_class->task_woken) {
- /*
- * Our task @p is fully woken up and running; so its safe to
- * drop the rq->lock, hereafter rq is only used for statistics.
- */
- lockdep_unpin_lock(&rq->lock, cookie);
- p->sched_class->task_woken(rq, p);
- lockdep_repin_lock(&rq->lock, cookie);
- }
- if (rq->idle_stamp) {
- u64 delta = rq_clock(rq) - rq->idle_stamp;
- u64 max = 2*rq->max_idle_balance_cost;
- update_avg(&rq->avg_idle, delta);
- if (rq->avg_idle > max)
- rq->avg_idle = max;
- rq->idle_stamp = 0;
- }
- #endif
- }
- static void
- ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
- struct pin_cookie cookie)
- {
- int en_flags = ENQUEUE_WAKEUP;
- lockdep_assert_held(&rq->lock);
- #ifdef CONFIG_SMP
- if (p->sched_contributes_to_load)
- rq->nr_uninterruptible--;
- if (wake_flags & WF_MIGRATED)
- en_flags |= ENQUEUE_MIGRATED;
- #endif
- ttwu_activate(rq, p, en_flags);
- ttwu_do_wakeup(rq, p, wake_flags, cookie);
- }
- /*
- * Called in case the task @p isn't fully descheduled from its runqueue,
- * in this case we must do a remote wakeup. Its a 'light' wakeup though,
- * since all we need to do is flip p->state to TASK_RUNNING, since
- * the task is still ->on_rq.
- */
- static int ttwu_remote(struct task_struct *p, int wake_flags)
- {
- struct rq_flags rf;
- struct rq *rq;
- int ret = 0;
- rq = __task_rq_lock(p, &rf);
- if (task_on_rq_queued(p)) {
- /* check_preempt_curr() may use rq clock */
- update_rq_clock(rq);
- ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
- ret = 1;
- }
- __task_rq_unlock(rq, &rf);
- return ret;
- }
- #ifdef CONFIG_SMP
- void sched_ttwu_pending(void)
- {
- struct rq *rq = this_rq();
- struct llist_node *llist = llist_del_all(&rq->wake_list);
- struct pin_cookie cookie;
- struct task_struct *p;
- unsigned long flags;
- if (!llist)
- return;
- raw_spin_lock_irqsave(&rq->lock, flags);
- cookie = lockdep_pin_lock(&rq->lock);
- while (llist) {
- int wake_flags = 0;
- p = llist_entry(llist, struct task_struct, wake_entry);
- llist = llist_next(llist);
- if (p->sched_remote_wakeup)
- wake_flags = WF_MIGRATED;
- ttwu_do_activate(rq, p, wake_flags, cookie);
- }
- lockdep_unpin_lock(&rq->lock, cookie);
- raw_spin_unlock_irqrestore(&rq->lock, flags);
- }
- void scheduler_ipi(void)
- {
- /*
- * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
- * TIF_NEED_RESCHED remotely (for the first time) will also send
- * this IPI.
- */
- preempt_fold_need_resched();
- if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
- return;
- /*
- * Not all reschedule IPI handlers call irq_enter/irq_exit, since
- * traditionally all their work was done from the interrupt return
- * path. Now that we actually do some work, we need to make sure
- * we do call them.
- *
- * Some archs already do call them, luckily irq_enter/exit nest
- * properly.
- *
- * Arguably we should visit all archs and update all handlers,
- * however a fair share of IPIs are still resched only so this would
- * somewhat pessimize the simple resched case.
- */
- irq_enter();
- sched_ttwu_pending();
- /*
- * Check if someone kicked us for doing the nohz idle load balance.
- */
- if (unlikely(got_nohz_idle_kick())) {
- this_rq()->idle_balance = 1;
- raise_softirq_irqoff(SCHED_SOFTIRQ);
- }
- irq_exit();
- }
- static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
- {
- struct rq *rq = cpu_rq(cpu);
- p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
- if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
- if (!set_nr_if_polling(rq->idle))
- smp_send_reschedule(cpu);
- else
- trace_sched_wake_idle_without_ipi(cpu);
- }
- }
- void wake_up_if_idle(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
- rcu_read_lock();
- if (!is_idle_task(rcu_dereference(rq->curr)))
- goto out;
- if (set_nr_if_polling(rq->idle)) {
- trace_sched_wake_idle_without_ipi(cpu);
- } else {
- raw_spin_lock_irqsave(&rq->lock, flags);
- if (is_idle_task(rq->curr))
- smp_send_reschedule(cpu);
- /* Else cpu is not in idle, do nothing here */
- raw_spin_unlock_irqrestore(&rq->lock, flags);
- }
- out:
- rcu_read_unlock();
- }
- bool cpus_share_cache(int this_cpu, int that_cpu)
- {
- return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
- }
- #endif /* CONFIG_SMP */
- static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
- {
- struct rq *rq = cpu_rq(cpu);
- struct pin_cookie cookie;
- #if defined(CONFIG_SMP)
- if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
- sched_clock_cpu(cpu); /* sync clocks x-cpu */
- ttwu_queue_remote(p, cpu, wake_flags);
- return;
- }
- #endif
- raw_spin_lock(&rq->lock);
- cookie = lockdep_pin_lock(&rq->lock);
- ttwu_do_activate(rq, p, wake_flags, cookie);
- lockdep_unpin_lock(&rq->lock, cookie);
- raw_spin_unlock(&rq->lock);
- }
- /*
- * Notes on Program-Order guarantees on SMP systems.
- *
- * MIGRATION
- *
- * The basic program-order guarantee on SMP systems is that when a task [t]
- * migrates, all its activity on its old cpu [c0] happens-before any subsequent
- * execution on its new cpu [c1].
- *
- * For migration (of runnable tasks) this is provided by the following means:
- *
- * A) UNLOCK of the rq(c0)->lock scheduling out task t
- * B) migration for t is required to synchronize *both* rq(c0)->lock and
- * rq(c1)->lock (if not at the same time, then in that order).
- * C) LOCK of the rq(c1)->lock scheduling in task
- *
- * Transitivity guarantees that B happens after A and C after B.
- * Note: we only require RCpc transitivity.
- * Note: the cpu doing B need not be c0 or c1
- *
- * Example:
- *
- * CPU0 CPU1 CPU2
- *
- * LOCK rq(0)->lock
- * sched-out X
- * sched-in Y
- * UNLOCK rq(0)->lock
- *
- * LOCK rq(0)->lock // orders against CPU0
- * dequeue X
- * UNLOCK rq(0)->lock
- *
- * LOCK rq(1)->lock
- * enqueue X
- * UNLOCK rq(1)->lock
- *
- * LOCK rq(1)->lock // orders against CPU2
- * sched-out Z
- * sched-in X
- * UNLOCK rq(1)->lock
- *
- *
- * BLOCKING -- aka. SLEEP + WAKEUP
- *
- * For blocking we (obviously) need to provide the same guarantee as for
- * migration. However the means are completely different as there is no lock
- * chain to provide order. Instead we do:
- *
- * 1) smp_store_release(X->on_cpu, 0)
- * 2) smp_cond_load_acquire(!X->on_cpu)
- *
- * Example:
- *
- * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
- *
- * LOCK rq(0)->lock LOCK X->pi_lock
- * dequeue X
- * sched-out X
- * smp_store_release(X->on_cpu, 0);
- *
- * smp_cond_load_acquire(&X->on_cpu, !VAL);
- * X->state = WAKING
- * set_task_cpu(X,2)
- *
- * LOCK rq(2)->lock
- * enqueue X
- * X->state = RUNNING
- * UNLOCK rq(2)->lock
- *
- * LOCK rq(2)->lock // orders against CPU1
- * sched-out Z
- * sched-in X
- * UNLOCK rq(2)->lock
- *
- * UNLOCK X->pi_lock
- * UNLOCK rq(0)->lock
- *
- *
- * However; for wakeups there is a second guarantee we must provide, namely we
- * must observe the state that lead to our wakeup. That is, not only must our
- * task observe its own prior state, it must also observe the stores prior to
- * its wakeup.
- *
- * This means that any means of doing remote wakeups must order the CPU doing
- * the wakeup against the CPU the task is going to end up running on. This,
- * however, is already required for the regular Program-Order guarantee above,
- * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
- *
- */
- /**
- * try_to_wake_up - wake up a thread
- * @p: the thread to be awakened
- * @state: the mask of task states that can be woken
- * @wake_flags: wake modifier flags (WF_*)
- *
- * Put it on the run-queue if it's not already there. The "current"
- * thread is always on the run-queue (except when the actual
- * re-schedule is in progress), and as such you're allowed to do
- * the simpler "current->state = TASK_RUNNING" to mark yourself
- * runnable without the overhead of this.
- *
- * Return: %true if @p was woken up, %false if it was already running.
- * or @state didn't match @p's state.
- */
- static int
- try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
- {
- unsigned long flags;
- int cpu, success = 0;
- /*
- * If we are going to wake up a thread waiting for CONDITION we
- * need to ensure that CONDITION=1 done by the caller can not be
- * reordered with p->state check below. This pairs with mb() in
- * set_current_state() the waiting thread does.
- */
- smp_mb__before_spinlock();
- raw_spin_lock_irqsave(&p->pi_lock, flags);
- if (!(p->state & state))
- goto out;
- trace_sched_waking(p);
- success = 1; /* we're going to change ->state */
- cpu = task_cpu(p);
- /*
- * Ensure we load p->on_rq _after_ p->state, otherwise it would
- * be possible to, falsely, observe p->on_rq == 0 and get stuck
- * in smp_cond_load_acquire() below.
- *
- * sched_ttwu_pending() try_to_wake_up()
- * [S] p->on_rq = 1; [L] P->state
- * UNLOCK rq->lock -----.
- * \
- * +--- RMB
- * schedule() /
- * LOCK rq->lock -----'
- * UNLOCK rq->lock
- *
- * [task p]
- * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
- *
- * Pairs with the UNLOCK+LOCK on rq->lock from the
- * last wakeup of our task and the schedule that got our task
- * current.
- */
- smp_rmb();
- if (p->on_rq && ttwu_remote(p, wake_flags))
- goto stat;
- #ifdef CONFIG_SMP
- /*
- * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
- * possible to, falsely, observe p->on_cpu == 0.
- *
- * One must be running (->on_cpu == 1) in order to remove oneself
- * from the runqueue.
- *
- * [S] ->on_cpu = 1; [L] ->on_rq
- * UNLOCK rq->lock
- * RMB
- * LOCK rq->lock
- * [S] ->on_rq = 0; [L] ->on_cpu
- *
- * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
- * from the consecutive calls to schedule(); the first switching to our
- * task, the second putting it to sleep.
- */
- smp_rmb();
- /*
- * If the owning (remote) cpu is still in the middle of schedule() with
- * this task as prev, wait until its done referencing the task.
- *
- * Pairs with the smp_store_release() in finish_lock_switch().
- *
- * This ensures that tasks getting woken will be fully ordered against
- * their previous state and preserve Program Order.
- */
- smp_cond_load_acquire(&p->on_cpu, !VAL);
- p->sched_contributes_to_load = !!task_contributes_to_load(p);
- p->state = TASK_WAKING;
- cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
- if (task_cpu(p) != cpu) {
- wake_flags |= WF_MIGRATED;
- set_task_cpu(p, cpu);
- }
- #endif /* CONFIG_SMP */
- ttwu_queue(p, cpu, wake_flags);
- stat:
- ttwu_stat(p, cpu, wake_flags);
- out:
- raw_spin_unlock_irqrestore(&p->pi_lock, flags);
- return success;
- }
- /**
- * try_to_wake_up_local - try to wake up a local task with rq lock held
- * @p: the thread to be awakened
- * @cookie: context's cookie for pinning
- *
- * Put @p on the run-queue if it's not already there. The caller must
- * ensure that this_rq() is locked, @p is bound to this_rq() and not
- * the current task.
- */
- static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
- {
- struct rq *rq = task_rq(p);
- if (WARN_ON_ONCE(rq != this_rq()) ||
- WARN_ON_ONCE(p == current))
- return;
- lockdep_assert_held(&rq->lock);
- if (!raw_spin_trylock(&p->pi_lock)) {
- /*
- * This is OK, because current is on_cpu, which avoids it being
- * picked for load-balance and preemption/IRQs are still
- * disabled avoiding further scheduler activity on it and we've
- * not yet picked a replacement task.
- */
- lockdep_unpin_lock(&rq->lock, cookie);
- raw_spin_unlock(&rq->lock);
- raw_spin_lock(&p->pi_lock);
- raw_spin_lock(&rq->lock);
- lockdep_repin_lock(&rq->lock, cookie);
- }
- if (!(p->state & TASK_NORMAL))
- goto out;
- trace_sched_waking(p);
- if (!task_on_rq_queued(p))
- ttwu_activate(rq, p, ENQUEUE_WAKEUP);
- ttwu_do_wakeup(rq, p, 0, cookie);
- ttwu_stat(p, smp_processor_id(), 0);
- out:
- raw_spin_unlock(&p->pi_lock);
- }
- /**
- * wake_up_process - Wake up a specific process
- * @p: The process to be woken up.
- *
- * Attempt to wake up the nominated process and move it to the set of runnable
- * processes.
- *
- * Return: 1 if the process was woken up, 0 if it was already running.
- *
- * It may be assumed that this function implies a write memory barrier before
- * changing the task state if and only if any tasks are woken up.
- */
- int wake_up_process(struct task_struct *p)
- {
- return try_to_wake_up(p, TASK_NORMAL, 0);
- }
- EXPORT_SYMBOL(wake_up_process);
- int wake_up_state(struct task_struct *p, unsigned int state)
- {
- return try_to_wake_up(p, state, 0);
- }
- /*
- * This function clears the sched_dl_entity static params.
- */
- void __dl_clear_params(struct task_struct *p)
- {
- struct sched_dl_entity *dl_se = &p->dl;
- dl_se->dl_runtime = 0;
- dl_se->dl_deadline = 0;
- dl_se->dl_period = 0;
- dl_se->flags = 0;
- dl_se->dl_bw = 0;
- dl_se->dl_density = 0;
- dl_se->dl_throttled = 0;
- dl_se->dl_yielded = 0;
- }
- /*
- * Perform scheduler related setup for a newly forked process p.
- * p is forked by current.
- *
- * __sched_fork() is basic setup used by init_idle() too:
- */
- static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
- {
- p->on_rq = 0;
- p->se.on_rq = 0;
- p->se.exec_start = 0;
- p->se.sum_exec_runtime = 0;
- p->se.prev_sum_exec_runtime = 0;
- p->se.nr_migrations = 0;
- p->se.vruntime = 0;
- INIT_LIST_HEAD(&p->se.group_node);
- #ifdef CONFIG_FAIR_GROUP_SCHED
- p->se.cfs_rq = NULL;
- #endif
- #ifdef CONFIG_SCHEDSTATS
- /* Even if schedstat is disabled, there should not be garbage */
- memset(&p->se.statistics, 0, sizeof(p->se.statistics));
- #endif
- RB_CLEAR_NODE(&p->dl.rb_node);
- init_dl_task_timer(&p->dl);
- __dl_clear_params(p);
- INIT_LIST_HEAD(&p->rt.run_list);
- p->rt.timeout = 0;
- p->rt.time_slice = sched_rr_timeslice;
- p->rt.on_rq = 0;
- p->rt.on_list = 0;
- #ifdef CONFIG_PREEMPT_NOTIFIERS
- INIT_HLIST_HEAD(&p->preempt_notifiers);
- #endif
- #ifdef CONFIG_NUMA_BALANCING
- if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
- p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
- p->mm->numa_scan_seq = 0;
- }
- if (clone_flags & CLONE_VM)
- p->numa_preferred_nid = current->numa_preferred_nid;
- else
- p->numa_preferred_nid = -1;
- p->node_stamp = 0ULL;
- p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
- p->numa_scan_period = sysctl_numa_balancing_scan_delay;
- p->numa_work.next = &p->numa_work;
- p->numa_faults = NULL;
- p->last_task_numa_placement = 0;
- p->last_sum_exec_runtime = 0;
- p->numa_group = NULL;
- #endif /* CONFIG_NUMA_BALANCING */
- }
- DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
- #ifdef CONFIG_NUMA_BALANCING
- void set_numabalancing_state(bool enabled)
- {
- if (enabled)
- static_branch_enable(&sched_numa_balancing);
- else
- static_branch_disable(&sched_numa_balancing);
- }
- #ifdef CONFIG_PROC_SYSCTL
- int sysctl_numa_balancing(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp, loff_t *ppos)
- {
- struct ctl_table t;
- int err;
- int state = static_branch_likely(&sched_numa_balancing);
- if (write && !capable(CAP_SYS_ADMIN))
- return -EPERM;
- t = *table;
- t.data = &state;
- err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
- if (err < 0)
- return err;
- if (write)
- set_numabalancing_state(state);
- return err;
- }
- #endif
- #endif
- #ifdef CONFIG_SCHEDSTATS
- DEFINE_STATIC_KEY_FALSE(sched_schedstats);
- static bool __initdata __sched_schedstats = false;
- static void set_schedstats(bool enabled)
- {
- if (enabled)
- static_branch_enable(&sched_schedstats);
- else
- static_branch_disable(&sched_schedstats);
- }
- void force_schedstat_enabled(void)
- {
- if (!schedstat_enabled()) {
- pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
- static_branch_enable(&sched_schedstats);
- }
- }
- static int __init setup_schedstats(char *str)
- {
- int ret = 0;
- if (!str)
- goto out;
- /*
- * This code is called before jump labels have been set up, so we can't
- * change the static branch directly just yet. Instead set a temporary
- * variable so init_schedstats() can do it later.
- */
- if (!strcmp(str, "enable")) {
- __sched_schedstats = true;
- ret = 1;
- } else if (!strcmp(str, "disable")) {
- __sched_schedstats = false;
- ret = 1;
- }
- out:
- if (!ret)
- pr_warn("Unable to parse schedstats=\n");
- return ret;
- }
- __setup("schedstats=", setup_schedstats);
- static void __init init_schedstats(void)
- {
- set_schedstats(__sched_schedstats);
- }
- #ifdef CONFIG_PROC_SYSCTL
- int sysctl_schedstats(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp, loff_t *ppos)
- {
- struct ctl_table t;
- int err;
- int state = static_branch_likely(&sched_schedstats);
- if (write && !capable(CAP_SYS_ADMIN))
- return -EPERM;
- t = *table;
- t.data = &state;
- err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
- if (err < 0)
- return err;
- if (write)
- set_schedstats(state);
- return err;
- }
- #endif /* CONFIG_PROC_SYSCTL */
- #else /* !CONFIG_SCHEDSTATS */
- static inline void init_schedstats(void) {}
- #endif /* CONFIG_SCHEDSTATS */
- /*
- * fork()/clone()-time setup:
- */
- int sched_fork(unsigned long clone_flags, struct task_struct *p)
- {
- unsigned long flags;
- int cpu = get_cpu();
- __sched_fork(clone_flags, p);
- /*
- * We mark the process as NEW here. This guarantees that
- * nobody will actually run it, and a signal or other external
- * event cannot wake it up and insert it on the runqueue either.
- */
- p->state = TASK_NEW;
- /*
- * Make sure we do not leak PI boosting priority to the child.
- */
- p->prio = current->normal_prio;
- /*
- * Revert to default priority/policy on fork if requested.
- */
- if (unlikely(p->sched_reset_on_fork)) {
- if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
- p->policy = SCHED_NORMAL;
- p->static_prio = NICE_TO_PRIO(0);
- p->rt_priority = 0;
- } else if (PRIO_TO_NICE(p->static_prio) < 0)
- p->static_prio = NICE_TO_PRIO(0);
- p->prio = p->normal_prio = __normal_prio(p);
- set_load_weight(p);
- /*
- * We don't need the reset flag anymore after the fork. It has
- * fulfilled its duty:
- */
- p->sched_reset_on_fork = 0;
- }
- if (dl_prio(p->prio)) {
- put_cpu();
- return -EAGAIN;
- } else if (rt_prio(p->prio)) {
- p->sched_class = &rt_sched_class;
- } else {
- p->sched_class = &fair_sched_class;
- }
- init_entity_runnable_average(&p->se);
- /*
- * The child is not yet in the pid-hash so no cgroup attach races,
- * and the cgroup is pinned to this child due to cgroup_fork()
- * is ran before sched_fork().
- *
- * Silence PROVE_RCU.
- */
- raw_spin_lock_irqsave(&p->pi_lock, flags);
- /*
- * We're setting the cpu for the first time, we don't migrate,
- * so use __set_task_cpu().
- */
- __set_task_cpu(p, cpu);
- if (p->sched_class->task_fork)
- p->sched_class->task_fork(p);
- raw_spin_unlock_irqrestore(&p->pi_lock, flags);
- #ifdef CONFIG_SCHED_INFO
- if (likely(sched_info_on()))
- memset(&p->sched_info, 0, sizeof(p->sched_info));
- #endif
- #if defined(CONFIG_SMP)
- p->on_cpu = 0;
- #endif
- init_task_preempt_count(p);
- #ifdef CONFIG_SMP
- plist_node_init(&p->pushable_tasks, MAX_PRIO);
- RB_CLEAR_NODE(&p->pushable_dl_tasks);
- #endif
- put_cpu();
- return 0;
- }
- unsigned long to_ratio(u64 period, u64 runtime)
- {
- if (runtime == RUNTIME_INF)
- return 1ULL << 20;
- /*
- * Doing this here saves a lot of checks in all
- * the calling paths, and returning zero seems
- * safe for them anyway.
- */
- if (period == 0)
- return 0;
- return div64_u64(runtime << 20, period);
- }
- #ifdef CONFIG_SMP
- inline struct dl_bw *dl_bw_of(int i)
- {
- RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
- "sched RCU must be held");
- return &cpu_rq(i)->rd->dl_bw;
- }
- static inline int dl_bw_cpus(int i)
- {
- struct root_domain *rd = cpu_rq(i)->rd;
- int cpus = 0;
- RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
- "sched RCU must be held");
- for_each_cpu_and(i, rd->span, cpu_active_mask)
- cpus++;
- return cpus;
- }
- #else
- inline struct dl_bw *dl_bw_of(int i)
- {
- return &cpu_rq(i)->dl.dl_bw;
- }
- static inline int dl_bw_cpus(int i)
- {
- return 1;
- }
- #endif
- /*
- * We must be sure that accepting a new task (or allowing changing the
- * parameters of an existing one) is consistent with the bandwidth
- * constraints. If yes, this function also accordingly updates the currently
- * allocated bandwidth to reflect the new situation.
- *
- * This function is called while holding p's rq->lock.
- *
- * XXX we should delay bw change until the task's 0-lag point, see
- * __setparam_dl().
- */
- static int dl_overflow(struct task_struct *p, int policy,
- const struct sched_attr *attr)
- {
- struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
- u64 period = attr->sched_period ?: attr->sched_deadline;
- u64 runtime = attr->sched_runtime;
- u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
- int cpus, err = -1;
- /* !deadline task may carry old deadline bandwidth */
- if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
- return 0;
- /*
- * Either if a task, enters, leave, or stays -deadline but changes
- * its parameters, we may need to update accordingly the total
- * allocated bandwidth of the container.
- */
- raw_spin_lock(&dl_b->lock);
- cpus = dl_bw_cpus(task_cpu(p));
- if (dl_policy(policy) && !task_has_dl_policy(p) &&
- !__dl_overflow(dl_b, cpus, 0, new_bw)) {
- __dl_add(dl_b, new_bw);
- err = 0;
- } else if (dl_policy(policy) && task_has_dl_policy(p) &&
- !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
- __dl_clear(dl_b, p->dl.dl_bw);
- __dl_add(dl_b, new_bw);
- err = 0;
- } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
- __dl_clear(dl_b, p->dl.dl_bw);
- err = 0;
- }
- raw_spin_unlock(&dl_b->lock);
- return err;
- }
- extern void init_dl_bw(struct dl_bw *dl_b);
- /*
- * wake_up_new_task - wake up a newly created task for the first time.
- *
- * This function will do some initial scheduler statistics housekeeping
- * that must be done for every newly created context, then puts the task
- * on the runqueue and wakes it.
- */
- void wake_up_new_task(struct task_struct *p)
- {
- struct rq_flags rf;
- struct rq *rq;
- raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
- p->state = TASK_RUNNING;
- #ifdef CONFIG_SMP
- /*
- * Fork balancing, do it here and not earlier because:
- * - cpus_allowed can change in the fork path
- * - any previously selected cpu might disappear through hotplug
- *
- * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
- * as we're not fully set-up yet.
- */
- __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
- #endif
- rq = __task_rq_lock(p, &rf);
- post_init_entity_util_avg(&p->se);
- activate_task(rq, p, 0);
- p->on_rq = TASK_ON_RQ_QUEUED;
- trace_sched_wakeup_new(p);
- check_preempt_curr(rq, p, WF_FORK);
- #ifdef CONFIG_SMP
- if (p->sched_class->task_woken) {
- /*
- * Nothing relies on rq->lock after this, so its fine to
- * drop it.
- */
- lockdep_unpin_lock(&rq->lock, rf.cookie);
- p->sched_class->task_woken(rq, p);
- lockdep_repin_lock(&rq->lock, rf.cookie);
- }
- #endif
- task_rq_unlock(rq, p, &rf);
- }
- #ifdef CONFIG_PREEMPT_NOTIFIERS
- static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
- void preempt_notifier_inc(void)
- {
- static_key_slow_inc(&preempt_notifier_key);
- }
- EXPORT_SYMBOL_GPL(preempt_notifier_inc);
- void preempt_notifier_dec(void)
- {
- static_key_slow_dec(&preempt_notifier_key);
- }
- EXPORT_SYMBOL_GPL(preempt_notifier_dec);
- /**
- * preempt_notifier_register - tell me when current is being preempted & rescheduled
- * @notifier: notifier struct to register
- */
- void preempt_notifier_register(struct preempt_notifier *notifier)
- {
- if (!static_key_false(&preempt_notifier_key))
- WARN(1, "registering preempt_notifier while notifiers disabled\n");
- hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
- }
- EXPORT_SYMBOL_GPL(preempt_notifier_register);
- /**
- * preempt_notifier_unregister - no longer interested in preemption notifications
- * @notifier: notifier struct to unregister
- *
- * This is *not* safe to call from within a preemption notifier.
- */
- void preempt_notifier_unregister(struct preempt_notifier *notifier)
- {
- hlist_del(¬ifier->link);
- }
- EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
- static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
- {
- struct preempt_notifier *notifier;
- hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
- notifier->ops->sched_in(notifier, raw_smp_processor_id());
- }
- static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
- {
- if (static_key_false(&preempt_notifier_key))
- __fire_sched_in_preempt_notifiers(curr);
- }
- static void
- __fire_sched_out_preempt_notifiers(struct task_struct *curr,
- struct task_struct *next)
- {
- struct preempt_notifier *notifier;
- hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
- notifier->ops->sched_out(notifier, next);
- }
- static __always_inline void
- fire_sched_out_preempt_notifiers(struct task_struct *curr,
- struct task_struct *next)
- {
- if (static_key_false(&preempt_notifier_key))
- __fire_sched_out_preempt_notifiers(curr, next);
- }
- #else /* !CONFIG_PREEMPT_NOTIFIERS */
- static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
- {
- }
- static inline void
- fire_sched_out_preempt_notifiers(struct task_struct *curr,
- struct task_struct *next)
- {
- }
- #endif /* CONFIG_PREEMPT_NOTIFIERS */
- /**
- * prepare_task_switch - prepare to switch tasks
- * @rq: the runqueue preparing to switch
- * @prev: the current task that is being switched out
- * @next: the task we are going to switch to.
- *
- * This is called with the rq lock held and interrupts off. It must
- * be paired with a subsequent finish_task_switch after the context
- * switch.
- *
- * prepare_task_switch sets up locking and calls architecture specific
- * hooks.
- */
- static inline void
- prepare_task_switch(struct rq *rq, struct task_struct *prev,
- struct task_struct *next)
- {
- sched_info_switch(rq, prev, next);
- perf_event_task_sched_out(prev, next);
- fire_sched_out_preempt_notifiers(prev, next);
- prepare_lock_switch(rq, next);
- prepare_arch_switch(next);
- }
- /**
- * finish_task_switch - clean up after a task-switch
- * @prev: the thread we just switched away from.
- *
- * finish_task_switch must be called after the context switch, paired
- * with a prepare_task_switch call before the context switch.
- * finish_task_switch will reconcile locking set up by prepare_task_switch,
- * and do any other architecture-specific cleanup actions.
- *
- * Note that we may have delayed dropping an mm in context_switch(). If
- * so, we finish that here outside of the runqueue lock. (Doing it
- * with the lock held can cause deadlocks; see schedule() for
- * details.)
- *
- * The context switch have flipped the stack from under us and restored the
- * local variables which were saved when this task called schedule() in the
- * past. prev == current is still correct but we need to recalculate this_rq
- * because prev may have moved to another CPU.
- */
- static struct rq *finish_task_switch(struct task_struct *prev)
- __releases(rq->lock)
- {
- struct rq *rq = this_rq();
- struct mm_struct *mm = rq->prev_mm;
- long prev_state;
- /*
- * The previous task will have left us with a preempt_count of 2
- * because it left us after:
- *
- * schedule()
- * preempt_disable(); // 1
- * __schedule()
- * raw_spin_lock_irq(&rq->lock) // 2
- *
- * Also, see FORK_PREEMPT_COUNT.
- */
- if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
- "corrupted preempt_count: %s/%d/0x%x\n",
- current->comm, current->pid, preempt_count()))
- preempt_count_set(FORK_PREEMPT_COUNT);
- rq->prev_mm = NULL;
- /*
- * A task struct has one reference for the use as "current".
- * If a task dies, then it sets TASK_DEAD in tsk->state and calls
- * schedule one last time. The schedule call will never return, and
- * the scheduled task must drop that reference.
- *
- * We must observe prev->state before clearing prev->on_cpu (in
- * finish_lock_switch), otherwise a concurrent wakeup can get prev
- * running on another CPU and we could rave with its RUNNING -> DEAD
- * transition, resulting in a double drop.
- */
- prev_state = prev->state;
- vtime_task_switch(prev);
- perf_event_task_sched_in(prev, current);
- finish_lock_switch(rq, prev);
- finish_arch_post_lock_switch();
- fire_sched_in_preempt_notifiers(current);
- if (mm)
- mmdrop(mm);
- if (unlikely(prev_state == TASK_DEAD)) {
- if (prev->sched_class->task_dead)
- prev->sched_class->task_dead(prev);
- /*
- * Remove function-return probe instances associated with this
- * task and put them back on the free list.
- */
- kprobe_flush_task(prev);
- /* Task is done with its stack. */
- put_task_stack(prev);
- put_task_struct(prev);
- }
- tick_nohz_task_switch();
- return rq;
- }
- #ifdef CONFIG_SMP
- /* rq->lock is NOT held, but preemption is disabled */
- static void __balance_callback(struct rq *rq)
- {
- struct callback_head *head, *next;
- void (*func)(struct rq *rq);
- unsigned long flags;
- raw_spin_lock_irqsave(&rq->lock, flags);
- head = rq->balance_callback;
- rq->balance_callback = NULL;
- while (head) {
- func = (void (*)(struct rq *))head->func;
- next = head->next;
- head->next = NULL;
- head = next;
- func(rq);
- }
- raw_spin_unlock_irqrestore(&rq->lock, flags);
- }
- static inline void balance_callback(struct rq *rq)
- {
- if (unlikely(rq->balance_callback))
- __balance_callback(rq);
- }
- #else
- static inline void balance_callback(struct rq *rq)
- {
- }
- #endif
- /**
- * schedule_tail - first thing a freshly forked thread must call.
- * @prev: the thread we just switched away from.
- */
- asmlinkage __visible void schedule_tail(struct task_struct *prev)
- __releases(rq->lock)
- {
- struct rq *rq;
- /*
- * New tasks start with FORK_PREEMPT_COUNT, see there and
- * finish_task_switch() for details.
- *
- * finish_task_switch() will drop rq->lock() and lower preempt_count
- * and the preempt_enable() will end up enabling preemption (on
- * PREEMPT_COUNT kernels).
- */
- rq = finish_task_switch(prev);
- balance_callback(rq);
- preempt_enable();
- if (current->set_child_tid)
- put_user(task_pid_vnr(current), current->set_child_tid);
- }
- /*
- * context_switch - switch to the new MM and the new thread's register state.
- */
- static __always_inline struct rq *
- context_switch(struct rq *rq, struct task_struct *prev,
- struct task_struct *next, struct pin_cookie cookie)
- {
- struct mm_struct *mm, *oldmm;
- prepare_task_switch(rq, prev, next);
- mm = next->mm;
- oldmm = prev->active_mm;
- /*
- * For paravirt, this is coupled with an exit in switch_to to
- * combine the page table reload and the switch backend into
- * one hypercall.
- */
- arch_start_context_switch(prev);
- if (!mm) {
- next->active_mm = oldmm;
- atomic_inc(&oldmm->mm_count);
- enter_lazy_tlb(oldmm, next);
- } else
- switch_mm_irqs_off(oldmm, mm, next);
- if (!prev->mm) {
- prev->active_mm = NULL;
- rq->prev_mm = oldmm;
- }
- /*
- * Since the runqueue lock will be released by the next
- * task (which is an invalid locking op but in the case
- * of the scheduler it's an obvious special-case), so we
- * do an early lockdep release here:
- */
- lockdep_unpin_lock(&rq->lock, cookie);
- spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
- /* Here we just switch the register state and the stack. */
- switch_to(prev, next, prev);
- barrier();
- return finish_task_switch(prev);
- }
- /*
- * nr_running and nr_context_switches:
- *
- * externally visible scheduler statistics: current number of runnable
- * threads, total number of context switches performed since bootup.
- */
- unsigned long nr_running(void)
- {
- unsigned long i, sum = 0;
- for_each_online_cpu(i)
- sum += cpu_rq(i)->nr_running;
- return sum;
- }
- /*
- * Check if only the current task is running on the cpu.
- *
- * Caution: this function does not check that the caller has disabled
- * preemption, thus the result might have a time-of-check-to-time-of-use
- * race. The caller is responsible to use it correctly, for example:
- *
- * - from a non-preemptable section (of course)
- *
- * - from a thread that is bound to a single CPU
- *
- * - in a loop with very short iterations (e.g. a polling loop)
- */
- bool single_task_running(void)
- {
- return raw_rq()->nr_running == 1;
- }
- EXPORT_SYMBOL(single_task_running);
- unsigned long long nr_context_switches(void)
- {
- int i;
- unsigned long long sum = 0;
- for_each_possible_cpu(i)
- sum += cpu_rq(i)->nr_switches;
- return sum;
- }
- unsigned long nr_iowait(void)
- {
- unsigned long i, sum = 0;
- for_each_possible_cpu(i)
- sum += atomic_read(&cpu_rq(i)->nr_iowait);
- return sum;
- }
- unsigned long nr_iowait_cpu(int cpu)
- {
- struct rq *this = cpu_rq(cpu);
- return atomic_read(&this->nr_iowait);
- }
- void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
- {
- struct rq *rq = this_rq();
- *nr_waiters = atomic_read(&rq->nr_iowait);
- *load = rq->load.weight;
- }
- #ifdef CONFIG_SMP
- /*
- * sched_exec - execve() is a valuable balancing opportunity, because at
- * this point the task has the smallest effective memory and cache footprint.
- */
- void sched_exec(void)
- {
- struct task_struct *p = current;
- unsigned long flags;
- int dest_cpu;
- raw_spin_lock_irqsave(&p->pi_lock, flags);
- dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
- if (dest_cpu == smp_processor_id())
- goto unlock;
- if (likely(cpu_active(dest_cpu))) {
- struct migration_arg arg = { p, dest_cpu };
- raw_spin_unlock_irqrestore(&p->pi_lock, flags);
- stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
- return;
- }
- unlock:
- raw_spin_unlock_irqrestore(&p->pi_lock, flags);
- }
- #endif
- DEFINE_PER_CPU(struct kernel_stat, kstat);
- DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
- EXPORT_PER_CPU_SYMBOL(kstat);
- EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
- /*
- * The function fair_sched_class.update_curr accesses the struct curr
- * and its field curr->exec_start; when called from task_sched_runtime(),
- * we observe a high rate of cache misses in practice.
- * Prefetching this data results in improved performance.
- */
- static inline void prefetch_curr_exec_start(struct task_struct *p)
- {
- #ifdef CONFIG_FAIR_GROUP_SCHED
- struct sched_entity *curr = (&p->se)->cfs_rq->curr;
- #else
- struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
- #endif
- prefetch(curr);
- prefetch(&curr->exec_start);
- }
- /*
- * Return accounted runtime for the task.
- * In case the task is currently running, return the runtime plus current's
- * pending runtime that have not been accounted yet.
- */
- unsigned long long task_sched_runtime(struct task_struct *p)
- {
- struct rq_flags rf;
- struct rq *rq;
- u64 ns;
- #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
- /*
- * 64-bit doesn't need locks to atomically read a 64bit value.
- * So we have a optimization chance when the task's delta_exec is 0.
- * Reading ->on_cpu is racy, but this is ok.
- *
- * If we race with it leaving cpu, we'll take a lock. So we're correct.
- * If we race with it entering cpu, unaccounted time is 0. This is
- * indistinguishable from the read occurring a few cycles earlier.
- * If we see ->on_cpu without ->on_rq, the task is leaving, and has
- * been accounted, so we're correct here as well.
- */
- if (!p->on_cpu || !task_on_rq_queued(p))
- return p->se.sum_exec_runtime;
- #endif
- rq = task_rq_lock(p, &rf);
- /*
- * Must be ->curr _and_ ->on_rq. If dequeued, we would
- * project cycles that may never be accounted to this
- * thread, breaking clock_gettime().
- */
- if (task_current(rq, p) && task_on_rq_queued(p)) {
- prefetch_curr_exec_start(p);
- update_rq_clock(rq);
- p->sched_class->update_curr(rq);
- }
- ns = p->se.sum_exec_runtime;
- task_rq_unlock(rq, p, &rf);
- return ns;
- }
- /*
- * This function gets called by the timer code, with HZ frequency.
- * We call it with interrupts disabled.
- */
- void scheduler_tick(void)
- {
- int cpu = smp_processor_id();
- struct rq *rq = cpu_rq(cpu);
- struct task_struct *curr = rq->curr;
- sched_clock_tick();
- raw_spin_lock(&rq->lock);
- update_rq_clock(rq);
- curr->sched_class->task_tick(rq, curr, 0);
- cpu_load_update_active(rq);
- calc_global_load_tick(rq);
- raw_spin_unlock(&rq->lock);
- perf_event_task_tick();
- #ifdef CONFIG_SMP
- rq->idle_balance = idle_cpu(cpu);
- trigger_load_balance(rq);
- #endif
- rq_last_tick_reset(rq);
- }
- #ifdef CONFIG_NO_HZ_FULL
- /**
- * scheduler_tick_max_deferment
- *
- * Keep at least one tick per second when a single
- * active task is running because the scheduler doesn't
- * yet completely support full dynticks environment.
- *
- * This makes sure that uptime, CFS vruntime, load
- * balancing, etc... continue to move forward, even
- * with a very low granularity.
- *
- * Return: Maximum deferment in nanoseconds.
- */
- u64 scheduler_tick_max_deferment(void)
- {
- struct rq *rq = this_rq();
- unsigned long next, now = READ_ONCE(jiffies);
- next = rq->last_sched_tick + HZ;
- if (time_before_eq(next, now))
- return 0;
- return jiffies_to_nsecs(next - now);
- }
- #endif
- #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
- defined(CONFIG_PREEMPT_TRACER))
- /*
- * If the value passed in is equal to the current preempt count
- * then we just disabled preemption. Start timing the latency.
- */
- static inline void preempt_latency_start(int val)
- {
- if (preempt_count() == val) {
- unsigned long ip = get_lock_parent_ip();
- #ifdef CONFIG_DEBUG_PREEMPT
- current->preempt_disable_ip = ip;
- #endif
- trace_preempt_off(CALLER_ADDR0, ip);
- }
- }
- void preempt_count_add(int val)
- {
- #ifdef CONFIG_DEBUG_PREEMPT
- /*
- * Underflow?
- */
- if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
- return;
- #endif
- __preempt_count_add(val);
- #ifdef CONFIG_DEBUG_PREEMPT
- /*
- * Spinlock count overflowing soon?
- */
- DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
- PREEMPT_MASK - 10);
- #endif
- preempt_latency_start(val);
- }
- EXPORT_SYMBOL(preempt_count_add);
- NOKPROBE_SYMBOL(preempt_count_add);
- /*
- * If the value passed in equals to the current preempt count
- * then we just enabled preemption. Stop timing the latency.
- */
- static inline void preempt_latency_stop(int val)
- {
- if (preempt_count() == val)
- trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
- }
- void preempt_count_sub(int val)
- {
- #ifdef CONFIG_DEBUG_PREEMPT
- /*
- * Underflow?
- */
- if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
- return;
- /*
- * Is the spinlock portion underflowing?
- */
- if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
- !(preempt_count() & PREEMPT_MASK)))
- return;
- #endif
- preempt_latency_stop(val);
- __preempt_count_sub(val);
- }
- EXPORT_SYMBOL(preempt_count_sub);
- NOKPROBE_SYMBOL(preempt_count_sub);
- #else
- static inline void preempt_latency_start(int val) { }
- static inline void preempt_latency_stop(int val) { }
- #endif
- /*
- * Print scheduling while atomic bug:
- */
- static noinline void __schedule_bug(struct task_struct *prev)
- {
- /* Save this before calling printk(), since that will clobber it */
- unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
- if (oops_in_progress)
- return;
- printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
- prev->comm, prev->pid, preempt_count());
- debug_show_held_locks(prev);
- print_modules();
- if (irqs_disabled())
- print_irqtrace_events(prev);
- if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
- && in_atomic_preempt_off()) {
- pr_err("Preemption disabled at:");
- print_ip_sym(preempt_disable_ip);
- pr_cont("\n");
- }
- if (panic_on_warn)
- panic("scheduling while atomic\n");
- dump_stack();
- add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
- }
- /*
- * Various schedule()-time debugging checks and statistics:
- */
- static inline void schedule_debug(struct task_struct *prev)
- {
- #ifdef CONFIG_SCHED_STACK_END_CHECK
- if (task_stack_end_corrupted(prev))
- panic("corrupted stack end detected inside scheduler\n");
- #endif
- if (unlikely(in_atomic_preempt_off())) {
- __schedule_bug(prev);
- preempt_count_set(PREEMPT_DISABLED);
- }
- rcu_sleep_check();
- profile_hit(SCHED_PROFILING, __builtin_return_address(0));
- schedstat_inc(this_rq()->sched_count);
- }
- /*
- * Pick up the highest-prio task:
- */
- static inline struct task_struct *
- pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
- {
- const struct sched_class *class = &fair_sched_class;
- struct task_struct *p;
- /*
- * Optimization: we know that if all tasks are in
- * the fair class we can call that function directly:
- */
- if (likely(prev->sched_class == class &&
- rq->nr_running == rq->cfs.h_nr_running)) {
- p = fair_sched_class.pick_next_task(rq, prev, cookie);
- if (unlikely(p == RETRY_TASK))
- goto again;
- /* assumes fair_sched_class->next == idle_sched_class */
- if (unlikely(!p))
- p = idle_sched_class.pick_next_task(rq, prev, cookie);
- return p;
- }
- again:
- for_each_class(class) {
- p = class->pick_next_task(rq, prev, cookie);
- if (p) {
- if (unlikely(p == RETRY_TASK))
- goto again;
- return p;
- }
- }
- BUG(); /* the idle class will always have a runnable task */
- }
- /*
- * __schedule() is the main scheduler function.
- *
- * The main means of driving the scheduler and thus entering this function are:
- *
- * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
- *
- * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
- * paths. For example, see arch/x86/entry_64.S.
- *
- * To drive preemption between tasks, the scheduler sets the flag in timer
- * interrupt handler scheduler_tick().
- *
- * 3. Wakeups don't really cause entry into schedule(). They add a
- * task to the run-queue and that's it.
- *
- * Now, if the new task added to the run-queue preempts the current
- * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
- * called on the nearest possible occasion:
- *
- * - If the kernel is preemptible (CONFIG_PREEMPT=y):
- *
- * - in syscall or exception context, at the next outmost
- * preempt_enable(). (this might be as soon as the wake_up()'s
- * spin_unlock()!)
- *
- * - in IRQ context, return from interrupt-handler to
- * preemptible context
- *
- * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
- * then at the next:
- *
- * - cond_resched() call
- * - explicit schedule() call
- * - return from syscall or exception to user-space
- * - return from interrupt-handler to user-space
- *
- * WARNING: must be called with preemption disabled!
- */
- static void __sched notrace __schedule(bool preempt)
- {
- struct task_struct *prev, *next;
- unsigned long *switch_count;
- struct pin_cookie cookie;
- struct rq *rq;
- int cpu;
- cpu = smp_processor_id();
- rq = cpu_rq(cpu);
- prev = rq->curr;
- schedule_debug(prev);
- if (sched_feat(HRTICK))
- hrtick_clear(rq);
- local_irq_disable();
- rcu_note_context_switch();
- /*
- * Make sure that signal_pending_state()->signal_pending() below
- * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
- * done by the caller to avoid the race with signal_wake_up().
- */
- smp_mb__before_spinlock();
- raw_spin_lock(&rq->lock);
- cookie = lockdep_pin_lock(&rq->lock);
- rq->clock_skip_update <<= 1; /* promote REQ to ACT */
- switch_count = &prev->nivcsw;
- if (!preempt && prev->state) {
- if (unlikely(signal_pending_state(prev->state, prev))) {
- prev->state = TASK_RUNNING;
- } else {
- deactivate_task(rq, prev, DEQUEUE_SLEEP);
- prev->on_rq = 0;
- /*
- * If a worker went to sleep, notify and ask workqueue
- * whether it wants to wake up a task to maintain
- * concurrency.
- */
- if (prev->flags & PF_WQ_WORKER) {
- struct task_struct *to_wakeup;
- to_wakeup = wq_worker_sleeping(prev);
- if (to_wakeup)
- try_to_wake_up_local(to_wakeup, cookie);
- }
- }
- switch_count = &prev->nvcsw;
- }
- if (task_on_rq_queued(prev))
- update_rq_clock(rq);
- next = pick_next_task(rq, prev, cookie);
- clear_tsk_need_resched(prev);
- clear_preempt_need_resched();
- rq->clock_skip_update = 0;
- if (likely(prev != next)) {
- rq->nr_switches++;
- rq->curr = next;
- ++*switch_count;
- trace_sched_switch(preempt, prev, next);
- rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
- } else {
- lockdep_unpin_lock(&rq->lock, cookie);
- raw_spin_unlock_irq(&rq->lock);
- }
- balance_callback(rq);
- }
- void __noreturn do_task_dead(void)
- {
- /*
- * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
- * when the following two conditions become true.
- * - There is race condition of mmap_sem (It is acquired by
- * exit_mm()), and
- * - SMI occurs before setting TASK_RUNINNG.
- * (or hypervisor of virtual machine switches to other guest)
- * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
- *
- * To avoid it, we have to wait for releasing tsk->pi_lock which
- * is held by try_to_wake_up()
- */
- smp_mb();
- raw_spin_unlock_wait(¤t->pi_lock);
- /* causes final put_task_struct in finish_task_switch(). */
- __set_current_state(TASK_DEAD);
- current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
- __schedule(false);
- BUG();
- /* Avoid "noreturn function does return". */
- for (;;)
- cpu_relax(); /* For when BUG is null */
- }
- static inline void sched_submit_work(struct task_struct *tsk)
- {
- if (!tsk->state || tsk_is_pi_blocked(tsk))
- return;
- /*
- * If we are going to sleep and we have plugged IO queued,
- * make sure to submit it to avoid deadlocks.
- */
- if (blk_needs_flush_plug(tsk))
- blk_schedule_flush_plug(tsk);
- }
- asmlinkage __visible void __sched schedule(void)
- {
- struct task_struct *tsk = current;
- sched_submit_work(tsk);
- do {
- preempt_disable();
- __schedule(false);
- sched_preempt_enable_no_resched();
- } while (need_resched());
- }
- EXPORT_SYMBOL(schedule);
- #ifdef CONFIG_CONTEXT_TRACKING
- asmlinkage __visible void __sched schedule_user(void)
- {
- /*
- * If we come here after a random call to set_need_resched(),
- * or we have been woken up remotely but the IPI has not yet arrived,
- * we haven't yet exited the RCU idle mode. Do it here manually until
- * we find a better solution.
- *
- * NB: There are buggy callers of this function. Ideally we
- * should warn if prev_state != CONTEXT_USER, but that will trigger
- * too frequently to make sense yet.
- */
- enum ctx_state prev_state = exception_enter();
- schedule();
- exception_exit(prev_state);
- }
- #endif
- /**
- * schedule_preempt_disabled - called with preemption disabled
- *
- * Returns with preemption disabled. Note: preempt_count must be 1
- */
- void __sched schedule_preempt_disabled(void)
- {
- sched_preempt_enable_no_resched();
- schedule();
- preempt_disable();
- }
- static void __sched notrace preempt_schedule_common(void)
- {
- do {
- /*
- * Because the function tracer can trace preempt_count_sub()
- * and it also uses preempt_enable/disable_notrace(), if
- * NEED_RESCHED is set, the preempt_enable_notrace() called
- * by the function tracer will call this function again and
- * cause infinite recursion.
- *
- * Preemption must be disabled here before the function
- * tracer can trace. Break up preempt_disable() into two
- * calls. One to disable preemption without fear of being
- * traced. The other to still record the preemption latency,
- * which can also be traced by the function tracer.
- */
- preempt_disable_notrace();
- preempt_latency_start(1);
- __schedule(true);
- preempt_latency_stop(1);
- preempt_enable_no_resched_notrace();
- /*
- * Check again in case we missed a preemption opportunity
- * between schedule and now.
- */
- } while (need_resched());
- }
- #ifdef CONFIG_PREEMPT
- /*
- * this is the entry point to schedule() from in-kernel preemption
- * off of preempt_enable. Kernel preemptions off return from interrupt
- * occur there and call schedule directly.
- */
- asmlinkage __visible void __sched notrace preempt_schedule(void)
- {
- /*
- * If there is a non-zero preempt_count or interrupts are disabled,
- * we do not want to preempt the current task. Just return..
- */
- if (likely(!preemptible()))
- return;
- preempt_schedule_common();
- }
- NOKPROBE_SYMBOL(preempt_schedule);
- EXPORT_SYMBOL(preempt_schedule);
- /**
- * preempt_schedule_notrace - preempt_schedule called by tracing
- *
- * The tracing infrastructure uses preempt_enable_notrace to prevent
- * recursion and tracing preempt enabling caused by the tracing
- * infrastructure itself. But as tracing can happen in areas coming
- * from userspace or just about to enter userspace, a preempt enable
- * can occur before user_exit() is called. This will cause the scheduler
- * to be called when the system is still in usermode.
- *
- * To prevent this, the preempt_enable_notrace will use this function
- * instead of preempt_schedule() to exit user context if needed before
- * calling the scheduler.
- */
- asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
- {
- enum ctx_state prev_ctx;
- if (likely(!preemptible()))
- return;
- do {
- /*
- * Because the function tracer can trace preempt_count_sub()
- * and it also uses preempt_enable/disable_notrace(), if
- * NEED_RESCHED is set, the preempt_enable_notrace() called
- * by the function tracer will call this function again and
- * cause infinite recursion.
- *
- * Preemption must be disabled here before the function
- * tracer can trace. Break up preempt_disable() into two
- * calls. One to disable preemption without fear of being
- * traced. The other to still record the preemption latency,
- * which can also be traced by the function tracer.
- */
- preempt_disable_notrace();
- preempt_latency_start(1);
- /*
- * Needs preempt disabled in case user_exit() is traced
- * and the tracer calls preempt_enable_notrace() causing
- * an infinite recursion.
- */
- prev_ctx = exception_enter();
- __schedule(true);
- exception_exit(prev_ctx);
- preempt_latency_stop(1);
- preempt_enable_no_resched_notrace();
- } while (need_resched());
- }
- EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
- #endif /* CONFIG_PREEMPT */
- /*
- * this is the entry point to schedule() from kernel preemption
- * off of irq context.
- * Note, that this is called and return with irqs disabled. This will
- * protect us against recursive calling from irq.
- */
- asmlinkage __visible void __sched preempt_schedule_irq(void)
- {
- enum ctx_state prev_state;
- /* Catch callers which need to be fixed */
- BUG_ON(preempt_count() || !irqs_disabled());
- prev_state = exception_enter();
- do {
- preempt_disable();
- local_irq_enable();
- __schedule(true);
- local_irq_disable();
- sched_preempt_enable_no_resched();
- } while (need_resched());
- exception_exit(prev_state);
- }
- int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
- void *key)
- {
- return try_to_wake_up(curr->private, mode, wake_flags);
- }
- EXPORT_SYMBOL(default_wake_function);
- #ifdef CONFIG_RT_MUTEXES
- /*
- * rt_mutex_setprio - set the current priority of a task
- * @p: task
- * @prio: prio value (kernel-internal form)
- *
- * This function changes the 'effective' priority of a task. It does
- * not touch ->normal_prio like __setscheduler().
- *
- * Used by the rt_mutex code to implement priority inheritance
- * logic. Call site only calls if the priority of the task changed.
- */
- void rt_mutex_setprio(struct task_struct *p, int prio)
- {
- int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
- const struct sched_class *prev_class;
- struct rq_flags rf;
- struct rq *rq;
- BUG_ON(prio > MAX_PRIO);
- rq = __task_rq_lock(p, &rf);
- /*
- * Idle task boosting is a nono in general. There is one
- * exception, when PREEMPT_RT and NOHZ is active:
- *
- * The idle task calls get_next_timer_interrupt() and holds
- * the timer wheel base->lock on the CPU and another CPU wants
- * to access the timer (probably to cancel it). We can safely
- * ignore the boosting request, as the idle CPU runs this code
- * with interrupts disabled and will complete the lock
- * protected section without being interrupted. So there is no
- * real need to boost.
- */
- if (unlikely(p == rq->idle)) {
- WARN_ON(p != rq->curr);
- WARN_ON(p->pi_blocked_on);
- goto out_unlock;
- }
- trace_sched_pi_setprio(p, prio);
- oldprio = p->prio;
- if (oldprio == prio)
- queue_flag &= ~DEQUEUE_MOVE;
- prev_class = p->sched_class;
- queued = task_on_rq_queued(p);
- running = task_current(rq, p);
- if (queued)
- dequeue_task(rq, p, queue_flag);
- if (running)
- put_prev_task(rq, p);
- /*
- * Boosting condition are:
- * 1. -rt task is running and holds mutex A
- * --> -dl task blocks on mutex A
- *
- * 2. -dl task is running and holds mutex A
- * --> -dl task blocks on mutex A and could preempt the
- * running task
- */
- if (dl_prio(prio)) {
- struct task_struct *pi_task = rt_mutex_get_top_task(p);
- if (!dl_prio(p->normal_prio) ||
- (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
- p->dl.dl_boosted = 1;
- queue_flag |= ENQUEUE_REPLENISH;
- } else
- p->dl.dl_boosted = 0;
- p->sched_class = &dl_sched_class;
- } else if (rt_prio(prio)) {
- if (dl_prio(oldprio))
- p->dl.dl_boosted = 0;
- if (oldprio < prio)
- queue_flag |= ENQUEUE_HEAD;
- p->sched_class = &rt_sched_class;
- } else {
- if (dl_prio(oldprio))
- p->dl.dl_boosted = 0;
- if (rt_prio(oldprio))
- p->rt.timeout = 0;
- p->sched_class = &fair_sched_class;
- }
- p->prio = prio;
- if (queued)
- enqueue_task(rq, p, queue_flag);
- if (running)
- set_curr_task(rq, p);
- check_class_changed(rq, p, prev_class, oldprio);
- out_unlock:
- preempt_disable(); /* avoid rq from going away on us */
- __task_rq_unlock(rq, &rf);
- balance_callback(rq);
- preempt_enable();
- }
- #endif
- void set_user_nice(struct task_struct *p, long nice)
- {
- bool queued, running;
- int old_prio, delta;
- struct rq_flags rf;
- struct rq *rq;
- if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
- return;
- /*
- * We have to be careful, if called from sys_setpriority(),
- * the task might be in the middle of scheduling on another CPU.
- */
- rq = task_rq_lock(p, &rf);
- /*
- * The RT priorities are set via sched_setscheduler(), but we still
- * allow the 'normal' nice value to be set - but as expected
- * it wont have any effect on scheduling until the task is
- * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
- */
- if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
- p->static_prio = NICE_TO_PRIO(nice);
- goto out_unlock;
- }
- queued = task_on_rq_queued(p);
- running = task_current(rq, p);
- if (queued)
- dequeue_task(rq, p, DEQUEUE_SAVE);
- if (running)
- put_prev_task(rq, p);
- p->static_prio = NICE_TO_PRIO(nice);
- set_load_weight(p);
- old_prio = p->prio;
- p->prio = effective_prio(p);
- delta = p->prio - old_prio;
- if (queued) {
- enqueue_task(rq, p, ENQUEUE_RESTORE);
- /*
- * If the task increased its priority or is running and
- * lowered its priority, then reschedule its CPU:
- */
- if (delta < 0 || (delta > 0 && task_running(rq, p)))
- resched_curr(rq);
- }
- if (running)
- set_curr_task(rq, p);
- out_unlock:
- task_rq_unlock(rq, p, &rf);
- }
- EXPORT_SYMBOL(set_user_nice);
- /*
- * can_nice - check if a task can reduce its nice value
- * @p: task
- * @nice: nice value
- */
- int can_nice(const struct task_struct *p, const int nice)
- {
- /* convert nice value [19,-20] to rlimit style value [1,40] */
- int nice_rlim = nice_to_rlimit(nice);
- return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
- capable(CAP_SYS_NICE));
- }
- #ifdef __ARCH_WANT_SYS_NICE
- /*
- * sys_nice - change the priority of the current process.
- * @increment: priority increment
- *
- * sys_setpriority is a more generic, but much slower function that
- * does similar things.
- */
- SYSCALL_DEFINE1(nice, int, increment)
- {
- long nice, retval;
- /*
- * Setpriority might change our priority at the same moment.
- * We don't have to worry. Conceptually one call occurs first
- * and we have a single winner.
- */
- increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
- nice = task_nice(current) + increment;
- nice = clamp_val(nice, MIN_NICE, MAX_NICE);
- if (increment < 0 && !can_nice(current, nice))
- return -EPERM;
- retval = security_task_setnice(current, nice);
- if (retval)
- return retval;
- set_user_nice(current, nice);
- return 0;
- }
- #endif
- /**
- * task_prio - return the priority value of a given task.
- * @p: the task in question.
- *
- * Return: The priority value as seen by users in /proc.
- * RT tasks are offset by -200. Normal tasks are centered
- * around 0, value goes from -16 to +15.
- */
- int task_prio(const struct task_struct *p)
- {
- return p->prio - MAX_RT_PRIO;
- }
- /**
- * idle_cpu - is a given cpu idle currently?
- * @cpu: the processor in question.
- *
- * Return: 1 if the CPU is currently idle. 0 otherwise.
- */
- int idle_cpu(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- if (rq->curr != rq->idle)
- return 0;
- if (rq->nr_running)
- return 0;
- #ifdef CONFIG_SMP
- if (!llist_empty(&rq->wake_list))
- return 0;
- #endif
- return 1;
- }
- /**
- * idle_task - return the idle task for a given cpu.
- * @cpu: the processor in question.
- *
- * Return: The idle task for the cpu @cpu.
- */
- struct task_struct *idle_task(int cpu)
- {
- return cpu_rq(cpu)->idle;
- }
- /**
- * find_process_by_pid - find a process with a matching PID value.
- * @pid: the pid in question.
- *
- * The task of @pid, if found. %NULL otherwise.
- */
- static struct task_struct *find_process_by_pid(pid_t pid)
- {
- return pid ? find_task_by_vpid(pid) : current;
- }
- /*
- * This function initializes the sched_dl_entity of a newly becoming
- * SCHED_DEADLINE task.
- *
- * Only the static values are considered here, the actual runtime and the
- * absolute deadline will be properly calculated when the task is enqueued
- * for the first time with its new policy.
- */
- static void
- __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
- {
- struct sched_dl_entity *dl_se = &p->dl;
- dl_se->dl_runtime = attr->sched_runtime;
- dl_se->dl_deadline = attr->sched_deadline;
- dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
- dl_se->flags = attr->sched_flags;
- dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
- dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
- /*
- * Changing the parameters of a task is 'tricky' and we're not doing
- * the correct thing -- also see task_dead_dl() and switched_from_dl().
- *
- * What we SHOULD do is delay the bandwidth release until the 0-lag
- * point. This would include retaining the task_struct until that time
- * and change dl_overflow() to not immediately decrement the current
- * amount.
- *
- * Instead we retain the current runtime/deadline and let the new
- * parameters take effect after the current reservation period lapses.
- * This is safe (albeit pessimistic) because the 0-lag point is always
- * before the current scheduling deadline.
- *
- * We can still have temporary overloads because we do not delay the
- * change in bandwidth until that time; so admission control is
- * not on the safe side. It does however guarantee tasks will never
- * consume more than promised.
- */
- }
- /*
- * sched_setparam() passes in -1 for its policy, to let the functions
- * it calls know not to change it.
- */
- #define SETPARAM_POLICY -1
- static void __setscheduler_params(struct task_struct *p,
- const struct sched_attr *attr)
- {
- int policy = attr->sched_policy;
- if (policy == SETPARAM_POLICY)
- policy = p->policy;
- p->policy = policy;
- if (dl_policy(policy))
- __setparam_dl(p, attr);
- else if (fair_policy(policy))
- p->static_prio = NICE_TO_PRIO(attr->sched_nice);
- /*
- * __sched_setscheduler() ensures attr->sched_priority == 0 when
- * !rt_policy. Always setting this ensures that things like
- * getparam()/getattr() don't report silly values for !rt tasks.
- */
- p->rt_priority = attr->sched_priority;
- p->normal_prio = normal_prio(p);
- set_load_weight(p);
- }
- /* Actually do priority change: must hold pi & rq lock. */
- static void __setscheduler(struct rq *rq, struct task_struct *p,
- const struct sched_attr *attr, bool keep_boost)
- {
- __setscheduler_params(p, attr);
- /*
- * Keep a potential priority boosting if called from
- * sched_setscheduler().
- */
- if (keep_boost)
- p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
- else
- p->prio = normal_prio(p);
- if (dl_prio(p->prio))
- p->sched_class = &dl_sched_class;
- else if (rt_prio(p->prio))
- p->sched_class = &rt_sched_class;
- else
- p->sched_class = &fair_sched_class;
- }
- static void
- __getparam_dl(struct task_struct *p, struct sched_attr *attr)
- {
- struct sched_dl_entity *dl_se = &p->dl;
- attr->sched_priority = p->rt_priority;
- attr->sched_runtime = dl_se->dl_runtime;
- attr->sched_deadline = dl_se->dl_deadline;
- attr->sched_period = dl_se->dl_period;
- attr->sched_flags = dl_se->flags;
- }
- /*
- * This function validates the new parameters of a -deadline task.
- * We ask for the deadline not being zero, and greater or equal
- * than the runtime, as well as the period of being zero or
- * greater than deadline. Furthermore, we have to be sure that
- * user parameters are above the internal resolution of 1us (we
- * check sched_runtime only since it is always the smaller one) and
- * below 2^63 ns (we have to check both sched_deadline and
- * sched_period, as the latter can be zero).
- */
- static bool
- __checkparam_dl(const struct sched_attr *attr)
- {
- /* deadline != 0 */
- if (attr->sched_deadline == 0)
- return false;
- /*
- * Since we truncate DL_SCALE bits, make sure we're at least
- * that big.
- */
- if (attr->sched_runtime < (1ULL << DL_SCALE))
- return false;
- /*
- * Since we use the MSB for wrap-around and sign issues, make
- * sure it's not set (mind that period can be equal to zero).
- */
- if (attr->sched_deadline & (1ULL << 63) ||
- attr->sched_period & (1ULL << 63))
- return false;
- /* runtime <= deadline <= period (if period != 0) */
- if ((attr->sched_period != 0 &&
- attr->sched_period < attr->sched_deadline) ||
- attr->sched_deadline < attr->sched_runtime)
- return false;
- return true;
- }
- /*
- * check the target process has a UID that matches the current process's
- */
- static bool check_same_owner(struct task_struct *p)
- {
- const struct cred *cred = current_cred(), *pcred;
- bool match;
- rcu_read_lock();
- pcred = __task_cred(p);
- match = (uid_eq(cred->euid, pcred->euid) ||
- uid_eq(cred->euid, pcred->uid));
- rcu_read_unlock();
- return match;
- }
- static bool dl_param_changed(struct task_struct *p,
- const struct sched_attr *attr)
- {
- struct sched_dl_entity *dl_se = &p->dl;
- if (dl_se->dl_runtime != attr->sched_runtime ||
- dl_se->dl_deadline != attr->sched_deadline ||
- dl_se->dl_period != attr->sched_period ||
- dl_se->flags != attr->sched_flags)
- return true;
- return false;
- }
- static int __sched_setscheduler(struct task_struct *p,
- const struct sched_attr *attr,
- bool user, bool pi)
- {
- int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
- MAX_RT_PRIO - 1 - attr->sched_priority;
- int retval, oldprio, oldpolicy = -1, queued, running;
- int new_effective_prio, policy = attr->sched_policy;
- const struct sched_class *prev_class;
- struct rq_flags rf;
- int reset_on_fork;
- int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
- struct rq *rq;
- /* may grab non-irq protected spin_locks */
- BUG_ON(in_interrupt());
- recheck:
- /* double check policy once rq lock held */
- if (policy < 0) {
- reset_on_fork = p->sched_reset_on_fork;
- policy = oldpolicy = p->policy;
- } else {
- reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
- if (!valid_policy(policy))
- return -EINVAL;
- }
- if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
- return -EINVAL;
- /*
- * Valid priorities for SCHED_FIFO and SCHED_RR are
- * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
- * SCHED_BATCH and SCHED_IDLE is 0.
- */
- if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
- (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
- return -EINVAL;
- if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
- (rt_policy(policy) != (attr->sched_priority != 0)))
- return -EINVAL;
- /*
- * Allow unprivileged RT tasks to decrease priority:
- */
- if (user && !capable(CAP_SYS_NICE)) {
- if (fair_policy(policy)) {
- if (attr->sched_nice < task_nice(p) &&
- !can_nice(p, attr->sched_nice))
- return -EPERM;
- }
- if (rt_policy(policy)) {
- unsigned long rlim_rtprio =
- task_rlimit(p, RLIMIT_RTPRIO);
- /* can't set/change the rt policy */
- if (policy != p->policy && !rlim_rtprio)
- return -EPERM;
- /* can't increase priority */
- if (attr->sched_priority > p->rt_priority &&
- attr->sched_priority > rlim_rtprio)
- return -EPERM;
- }
- /*
- * Can't set/change SCHED_DEADLINE policy at all for now
- * (safest behavior); in the future we would like to allow
- * unprivileged DL tasks to increase their relative deadline
- * or reduce their runtime (both ways reducing utilization)
- */
- if (dl_policy(policy))
- return -EPERM;
- /*
- * Treat SCHED_IDLE as nice 20. Only allow a switch to
- * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
- */
- if (idle_policy(p->policy) && !idle_policy(policy)) {
- if (!can_nice(p, task_nice(p)))
- return -EPERM;
- }
- /* can't change other user's priorities */
- if (!check_same_owner(p))
- return -EPERM;
- /* Normal users shall not reset the sched_reset_on_fork flag */
- if (p->sched_reset_on_fork && !reset_on_fork)
- return -EPERM;
- }
- if (user) {
- retval = security_task_setscheduler(p);
- if (retval)
- return retval;
- }
- /*
- * make sure no PI-waiters arrive (or leave) while we are
- * changing the priority of the task:
- *
- * To be able to change p->policy safely, the appropriate
- * runqueue lock must be held.
- */
- rq = task_rq_lock(p, &rf);
- /*
- * Changing the policy of the stop threads its a very bad idea
- */
- if (p == rq->stop) {
- task_rq_unlock(rq, p, &rf);
- return -EINVAL;
- }
- /*
- * If not changing anything there's no need to proceed further,
- * but store a possible modification of reset_on_fork.
- */
- if (unlikely(policy == p->policy)) {
- if (fair_policy(policy) && attr->sched_nice != task_nice(p))
- goto change;
- if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
- goto change;
- if (dl_policy(policy) && dl_param_changed(p, attr))
- goto change;
- p->sched_reset_on_fork = reset_on_fork;
- task_rq_unlock(rq, p, &rf);
- return 0;
- }
- change:
- if (user) {
- #ifdef CONFIG_RT_GROUP_SCHED
- /*
- * Do not allow realtime tasks into groups that have no runtime
- * assigned.
- */
- if (rt_bandwidth_enabled() && rt_policy(policy) &&
- task_group(p)->rt_bandwidth.rt_runtime == 0 &&
- !task_group_is_autogroup(task_group(p))) {
- task_rq_unlock(rq, p, &rf);
- return -EPERM;
- }
- #endif
- #ifdef CONFIG_SMP
- if (dl_bandwidth_enabled() && dl_policy(policy)) {
- cpumask_t *span = rq->rd->span;
- /*
- * Don't allow tasks with an affinity mask smaller than
- * the entire root_domain to become SCHED_DEADLINE. We
- * will also fail if there's no bandwidth available.
- */
- if (!cpumask_subset(span, &p->cpus_allowed) ||
- rq->rd->dl_bw.bw == 0) {
- task_rq_unlock(rq, p, &rf);
- return -EPERM;
- }
- }
- #endif
- }
- /* recheck policy now with rq lock held */
- if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
- policy = oldpolicy = -1;
- task_rq_unlock(rq, p, &rf);
- goto recheck;
- }
- /*
- * If setscheduling to SCHED_DEADLINE (or changing the parameters
- * of a SCHED_DEADLINE task) we need to check if enough bandwidth
- * is available.
- */
- if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
- task_rq_unlock(rq, p, &rf);
- return -EBUSY;
- }
- p->sched_reset_on_fork = reset_on_fork;
- oldprio = p->prio;
- if (pi) {
- /*
- * Take priority boosted tasks into account. If the new
- * effective priority is unchanged, we just store the new
- * normal parameters and do not touch the scheduler class and
- * the runqueue. This will be done when the task deboost
- * itself.
- */
- new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
- if (new_effective_prio == oldprio)
- queue_flags &= ~DEQUEUE_MOVE;
- }
- queued = task_on_rq_queued(p);
- running = task_current(rq, p);
- if (queued)
- dequeue_task(rq, p, queue_flags);
- if (running)
- put_prev_task(rq, p);
- prev_class = p->sched_class;
- __setscheduler(rq, p, attr, pi);
- if (queued) {
- /*
- * We enqueue to tail when the priority of a task is
- * increased (user space view).
- */
- if (oldprio < p->prio)
- queue_flags |= ENQUEUE_HEAD;
- enqueue_task(rq, p, queue_flags);
- }
- if (running)
- set_curr_task(rq, p);
- check_class_changed(rq, p, prev_class, oldprio);
- preempt_disable(); /* avoid rq from going away on us */
- task_rq_unlock(rq, p, &rf);
- if (pi)
- rt_mutex_adjust_pi(p);
- /*
- * Run balance callbacks after we've adjusted the PI chain.
- */
- balance_callback(rq);
- preempt_enable();
- return 0;
- }
- static int _sched_setscheduler(struct task_struct *p, int policy,
- const struct sched_param *param, bool check)
- {
- struct sched_attr attr = {
- .sched_policy = policy,
- .sched_priority = param->sched_priority,
- .sched_nice = PRIO_TO_NICE(p->static_prio),
- };
- /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
- if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
- attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
- policy &= ~SCHED_RESET_ON_FORK;
- attr.sched_policy = policy;
- }
- return __sched_setscheduler(p, &attr, check, true);
- }
- /**
- * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
- * @p: the task in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * Return: 0 on success. An error code otherwise.
- *
- * NOTE that the task may be already dead.
- */
- int sched_setscheduler(struct task_struct *p, int policy,
- const struct sched_param *param)
- {
- return _sched_setscheduler(p, policy, param, true);
- }
- EXPORT_SYMBOL_GPL(sched_setscheduler);
- int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
- {
- return __sched_setscheduler(p, attr, true, true);
- }
- EXPORT_SYMBOL_GPL(sched_setattr);
- /**
- * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
- * @p: the task in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * Just like sched_setscheduler, only don't bother checking if the
- * current context has permission. For example, this is needed in
- * stop_machine(): we create temporary high priority worker threads,
- * but our caller might not have that capability.
- *
- * Return: 0 on success. An error code otherwise.
- */
- int sched_setscheduler_nocheck(struct task_struct *p, int policy,
- const struct sched_param *param)
- {
- return _sched_setscheduler(p, policy, param, false);
- }
- EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
- static int
- do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
- {
- struct sched_param lparam;
- struct task_struct *p;
- int retval;
- if (!param || pid < 0)
- return -EINVAL;
- if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
- return -EFAULT;
- rcu_read_lock();
- retval = -ESRCH;
- p = find_process_by_pid(pid);
- if (p != NULL)
- retval = sched_setscheduler(p, policy, &lparam);
- rcu_read_unlock();
- return retval;
- }
- /*
- * Mimics kernel/events/core.c perf_copy_attr().
- */
- static int sched_copy_attr(struct sched_attr __user *uattr,
- struct sched_attr *attr)
- {
- u32 size;
- int ret;
- if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
- return -EFAULT;
- /*
- * zero the full structure, so that a short copy will be nice.
- */
- memset(attr, 0, sizeof(*attr));
- ret = get_user(size, &uattr->size);
- if (ret)
- return ret;
- if (size > PAGE_SIZE) /* silly large */
- goto err_size;
- if (!size) /* abi compat */
- size = SCHED_ATTR_SIZE_VER0;
- if (size < SCHED_ATTR_SIZE_VER0)
- goto err_size;
- /*
- * If we're handed a bigger struct than we know of,
- * ensure all the unknown bits are 0 - i.e. new
- * user-space does not rely on any kernel feature
- * extensions we dont know about yet.
- */
- if (size > sizeof(*attr)) {
- unsigned char __user *addr;
- unsigned char __user *end;
- unsigned char val;
- addr = (void __user *)uattr + sizeof(*attr);
- end = (void __user *)uattr + size;
- for (; addr < end; addr++) {
- ret = get_user(val, addr);
- if (ret)
- return ret;
- if (val)
- goto err_size;
- }
- size = sizeof(*attr);
- }
- ret = copy_from_user(attr, uattr, size);
- if (ret)
- return -EFAULT;
- /*
- * XXX: do we want to be lenient like existing syscalls; or do we want
- * to be strict and return an error on out-of-bounds values?
- */
- attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
- return 0;
- err_size:
- put_user(sizeof(*attr), &uattr->size);
- return -E2BIG;
- }
- /**
- * sys_sched_setscheduler - set/change the scheduler policy and RT priority
- * @pid: the pid in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * Return: 0 on success. An error code otherwise.
- */
- SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
- struct sched_param __user *, param)
- {
- /* negative values for policy are not valid */
- if (policy < 0)
- return -EINVAL;
- return do_sched_setscheduler(pid, policy, param);
- }
- /**
- * sys_sched_setparam - set/change the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the new RT priority.
- *
- * Return: 0 on success. An error code otherwise.
- */
- SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
- {
- return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
- }
- /**
- * sys_sched_setattr - same as above, but with extended sched_attr
- * @pid: the pid in question.
- * @uattr: structure containing the extended parameters.
- * @flags: for future extension.
- */
- SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
- unsigned int, flags)
- {
- struct sched_attr attr;
- struct task_struct *p;
- int retval;
- if (!uattr || pid < 0 || flags)
- return -EINVAL;
- retval = sched_copy_attr(uattr, &attr);
- if (retval)
- return retval;
- if ((int)attr.sched_policy < 0)
- return -EINVAL;
- rcu_read_lock();
- retval = -ESRCH;
- p = find_process_by_pid(pid);
- if (p != NULL)
- retval = sched_setattr(p, &attr);
- rcu_read_unlock();
- return retval;
- }
- /**
- * sys_sched_getscheduler - get the policy (scheduling class) of a thread
- * @pid: the pid in question.
- *
- * Return: On success, the policy of the thread. Otherwise, a negative error
- * code.
- */
- SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
- {
- struct task_struct *p;
- int retval;
- if (pid < 0)
- return -EINVAL;
- retval = -ESRCH;
- rcu_read_lock();
- p = find_process_by_pid(pid);
- if (p) {
- retval = security_task_getscheduler(p);
- if (!retval)
- retval = p->policy
- | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
- }
- rcu_read_unlock();
- return retval;
- }
- /**
- * sys_sched_getparam - get the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the RT priority.
- *
- * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
- * code.
- */
- SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
- {
- struct sched_param lp = { .sched_priority = 0 };
- struct task_struct *p;
- int retval;
- if (!param || pid < 0)
- return -EINVAL;
- rcu_read_lock();
- p = find_process_by_pid(pid);
- retval = -ESRCH;
- if (!p)
- goto out_unlock;
- retval = security_task_getscheduler(p);
- if (retval)
- goto out_unlock;
- if (task_has_rt_policy(p))
- lp.sched_priority = p->rt_priority;
- rcu_read_unlock();
- /*
- * This one might sleep, we cannot do it with a spinlock held ...
- */
- retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
- return retval;
- out_unlock:
- rcu_read_unlock();
- return retval;
- }
- static int sched_read_attr(struct sched_attr __user *uattr,
- struct sched_attr *attr,
- unsigned int usize)
- {
- int ret;
- if (!access_ok(VERIFY_WRITE, uattr, usize))
- return -EFAULT;
- /*
- * If we're handed a smaller struct than we know of,
- * ensure all the unknown bits are 0 - i.e. old
- * user-space does not get uncomplete information.
- */
- if (usize < sizeof(*attr)) {
- unsigned char *addr;
- unsigned char *end;
- addr = (void *)attr + usize;
- end = (void *)attr + sizeof(*attr);
- for (; addr < end; addr++) {
- if (*addr)
- return -EFBIG;
- }
- attr->size = usize;
- }
- ret = copy_to_user(uattr, attr, attr->size);
- if (ret)
- return -EFAULT;
- return 0;
- }
- /**
- * sys_sched_getattr - similar to sched_getparam, but with sched_attr
- * @pid: the pid in question.
- * @uattr: structure containing the extended parameters.
- * @size: sizeof(attr) for fwd/bwd comp.
- * @flags: for future extension.
- */
- SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
- unsigned int, size, unsigned int, flags)
- {
- struct sched_attr attr = {
- .size = sizeof(struct sched_attr),
- };
- struct task_struct *p;
- int retval;
- if (!uattr || pid < 0 || size > PAGE_SIZE ||
- size < SCHED_ATTR_SIZE_VER0 || flags)
- return -EINVAL;
- rcu_read_lock();
- p = find_process_by_pid(pid);
- retval = -ESRCH;
- if (!p)
- goto out_unlock;
- retval = security_task_getscheduler(p);
- if (retval)
- goto out_unlock;
- attr.sched_policy = p->policy;
- if (p->sched_reset_on_fork)
- attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
- if (task_has_dl_policy(p))
- __getparam_dl(p, &attr);
- else if (task_has_rt_policy(p))
- attr.sched_priority = p->rt_priority;
- else
- attr.sched_nice = task_nice(p);
- rcu_read_unlock();
- retval = sched_read_attr(uattr, &attr, size);
- return retval;
- out_unlock:
- rcu_read_unlock();
- return retval;
- }
- long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
- {
- cpumask_var_t cpus_allowed, new_mask;
- struct task_struct *p;
- int retval;
- rcu_read_lock();
- p = find_process_by_pid(pid);
- if (!p) {
- rcu_read_unlock();
- return -ESRCH;
- }
- /* Prevent p going away */
- get_task_struct(p);
- rcu_read_unlock();
- if (p->flags & PF_NO_SETAFFINITY) {
- retval = -EINVAL;
- goto out_put_task;
- }
- if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
- retval = -ENOMEM;
- goto out_put_task;
- }
- if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
- retval = -ENOMEM;
- goto out_free_cpus_allowed;
- }
- retval = -EPERM;
- if (!check_same_owner(p)) {
- rcu_read_lock();
- if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
- rcu_read_unlock();
- goto out_free_new_mask;
- }
- rcu_read_unlock();
- }
- retval = security_task_setscheduler(p);
- if (retval)
- goto out_free_new_mask;
- cpuset_cpus_allowed(p, cpus_allowed);
- cpumask_and(new_mask, in_mask, cpus_allowed);
- /*
- * Since bandwidth control happens on root_domain basis,
- * if admission test is enabled, we only admit -deadline
- * tasks allowed to run on all the CPUs in the task's
- * root_domain.
- */
- #ifdef CONFIG_SMP
- if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
- rcu_read_lock();
- if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
- retval = -EBUSY;
- rcu_read_unlock();
- goto out_free_new_mask;
- }
- rcu_read_unlock();
- }
- #endif
- again:
- retval = __set_cpus_allowed_ptr(p, new_mask, true);
- if (!retval) {
- cpuset_cpus_allowed(p, cpus_allowed);
- if (!cpumask_subset(new_mask, cpus_allowed)) {
- /*
- * We must have raced with a concurrent cpuset
- * update. Just reset the cpus_allowed to the
- * cpuset's cpus_allowed
- */
- cpumask_copy(new_mask, cpus_allowed);
- goto again;
- }
- }
- out_free_new_mask:
- free_cpumask_var(new_mask);
- out_free_cpus_allowed:
- free_cpumask_var(cpus_allowed);
- out_put_task:
- put_task_struct(p);
- return retval;
- }
- static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
- struct cpumask *new_mask)
- {
- if (len < cpumask_size())
- cpumask_clear(new_mask);
- else if (len > cpumask_size())
- len = cpumask_size();
- return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
- }
- /**
- * sys_sched_setaffinity - set the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to the new cpu mask
- *
- * Return: 0 on success. An error code otherwise.
- */
- SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
- unsigned long __user *, user_mask_ptr)
- {
- cpumask_var_t new_mask;
- int retval;
- if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
- return -ENOMEM;
- retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
- if (retval == 0)
- retval = sched_setaffinity(pid, new_mask);
- free_cpumask_var(new_mask);
- return retval;
- }
- long sched_getaffinity(pid_t pid, struct cpumask *mask)
- {
- struct task_struct *p;
- unsigned long flags;
- int retval;
- rcu_read_lock();
- retval = -ESRCH;
- p = find_process_by_pid(pid);
- if (!p)
- goto out_unlock;
- retval = security_task_getscheduler(p);
- if (retval)
- goto out_unlock;
- raw_spin_lock_irqsave(&p->pi_lock, flags);
- cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
- raw_spin_unlock_irqrestore(&p->pi_lock, flags);
- out_unlock:
- rcu_read_unlock();
- return retval;
- }
- /**
- * sys_sched_getaffinity - get the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to hold the current cpu mask
- *
- * Return: size of CPU mask copied to user_mask_ptr on success. An
- * error code otherwise.
- */
- SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
- unsigned long __user *, user_mask_ptr)
- {
- int ret;
- cpumask_var_t mask;
- if ((len * BITS_PER_BYTE) < nr_cpu_ids)
- return -EINVAL;
- if (len & (sizeof(unsigned long)-1))
- return -EINVAL;
- if (!alloc_cpumask_var(&mask, GFP_KERNEL))
- return -ENOMEM;
- ret = sched_getaffinity(pid, mask);
- if (ret == 0) {
- size_t retlen = min_t(size_t, len, cpumask_size());
- if (copy_to_user(user_mask_ptr, mask, retlen))
- ret = -EFAULT;
- else
- ret = retlen;
- }
- free_cpumask_var(mask);
- return ret;
- }
- /**
- * sys_sched_yield - yield the current processor to other threads.
- *
- * This function yields the current CPU to other tasks. If there are no
- * other threads running on this CPU then this function will return.
- *
- * Return: 0.
- */
- SYSCALL_DEFINE0(sched_yield)
- {
- struct rq *rq = this_rq_lock();
- schedstat_inc(rq->yld_count);
- current->sched_class->yield_task(rq);
- /*
- * Since we are going to call schedule() anyway, there's
- * no need to preempt or enable interrupts:
- */
- __release(rq->lock);
- spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
- do_raw_spin_unlock(&rq->lock);
- sched_preempt_enable_no_resched();
- schedule();
- return 0;
- }
- #ifndef CONFIG_PREEMPT
- int __sched _cond_resched(void)
- {
- if (should_resched(0)) {
- preempt_schedule_common();
- return 1;
- }
- return 0;
- }
- EXPORT_SYMBOL(_cond_resched);
- #endif
- /*
- * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
- * call schedule, and on return reacquire the lock.
- *
- * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
- * operations here to prevent schedule() from being called twice (once via
- * spin_unlock(), once by hand).
- */
- int __cond_resched_lock(spinlock_t *lock)
- {
- int resched = should_resched(PREEMPT_LOCK_OFFSET);
- int ret = 0;
- lockdep_assert_held(lock);
- if (spin_needbreak(lock) || resched) {
- spin_unlock(lock);
- if (resched)
- preempt_schedule_common();
- else
- cpu_relax();
- ret = 1;
- spin_lock(lock);
- }
- return ret;
- }
- EXPORT_SYMBOL(__cond_resched_lock);
- int __sched __cond_resched_softirq(void)
- {
- BUG_ON(!in_softirq());
- if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
- local_bh_enable();
- preempt_schedule_common();
- local_bh_disable();
- return 1;
- }
- return 0;
- }
- EXPORT_SYMBOL(__cond_resched_softirq);
- /**
- * yield - yield the current processor to other threads.
- *
- * Do not ever use this function, there's a 99% chance you're doing it wrong.
- *
- * The scheduler is at all times free to pick the calling task as the most
- * eligible task to run, if removing the yield() call from your code breaks
- * it, its already broken.
- *
- * Typical broken usage is:
- *
- * while (!event)
- * yield();
- *
- * where one assumes that yield() will let 'the other' process run that will
- * make event true. If the current task is a SCHED_FIFO task that will never
- * happen. Never use yield() as a progress guarantee!!
- *
- * If you want to use yield() to wait for something, use wait_event().
- * If you want to use yield() to be 'nice' for others, use cond_resched().
- * If you still want to use yield(), do not!
- */
- void __sched yield(void)
- {
- set_current_state(TASK_RUNNING);
- sys_sched_yield();
- }
- EXPORT_SYMBOL(yield);
- /**
- * yield_to - yield the current processor to another thread in
- * your thread group, or accelerate that thread toward the
- * processor it's on.
- * @p: target task
- * @preempt: whether task preemption is allowed or not
- *
- * It's the caller's job to ensure that the target task struct
- * can't go away on us before we can do any checks.
- *
- * Return:
- * true (>0) if we indeed boosted the target task.
- * false (0) if we failed to boost the target.
- * -ESRCH if there's no task to yield to.
- */
- int __sched yield_to(struct task_struct *p, bool preempt)
- {
- struct task_struct *curr = current;
- struct rq *rq, *p_rq;
- unsigned long flags;
- int yielded = 0;
- local_irq_save(flags);
- rq = this_rq();
- again:
- p_rq = task_rq(p);
- /*
- * If we're the only runnable task on the rq and target rq also
- * has only one task, there's absolutely no point in yielding.
- */
- if (rq->nr_running == 1 && p_rq->nr_running == 1) {
- yielded = -ESRCH;
- goto out_irq;
- }
- double_rq_lock(rq, p_rq);
- if (task_rq(p) != p_rq) {
- double_rq_unlock(rq, p_rq);
- goto again;
- }
- if (!curr->sched_class->yield_to_task)
- goto out_unlock;
- if (curr->sched_class != p->sched_class)
- goto out_unlock;
- if (task_running(p_rq, p) || p->state)
- goto out_unlock;
- yielded = curr->sched_class->yield_to_task(rq, p, preempt);
- if (yielded) {
- schedstat_inc(rq->yld_count);
- /*
- * Make p's CPU reschedule; pick_next_entity takes care of
- * fairness.
- */
- if (preempt && rq != p_rq)
- resched_curr(p_rq);
- }
- out_unlock:
- double_rq_unlock(rq, p_rq);
- out_irq:
- local_irq_restore(flags);
- if (yielded > 0)
- schedule();
- return yielded;
- }
- EXPORT_SYMBOL_GPL(yield_to);
- /*
- * This task is about to go to sleep on IO. Increment rq->nr_iowait so
- * that process accounting knows that this is a task in IO wait state.
- */
- long __sched io_schedule_timeout(long timeout)
- {
- int old_iowait = current->in_iowait;
- struct rq *rq;
- long ret;
- current->in_iowait = 1;
- blk_schedule_flush_plug(current);
- delayacct_blkio_start();
- rq = raw_rq();
- atomic_inc(&rq->nr_iowait);
- ret = schedule_timeout(timeout);
- current->in_iowait = old_iowait;
- atomic_dec(&rq->nr_iowait);
- delayacct_blkio_end();
- return ret;
- }
- EXPORT_SYMBOL(io_schedule_timeout);
- /**
- * sys_sched_get_priority_max - return maximum RT priority.
- * @policy: scheduling class.
- *
- * Return: On success, this syscall returns the maximum
- * rt_priority that can be used by a given scheduling class.
- * On failure, a negative error code is returned.
- */
- SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
- {
- int ret = -EINVAL;
- switch (policy) {
- case SCHED_FIFO:
- case SCHED_RR:
- ret = MAX_USER_RT_PRIO-1;
- break;
- case SCHED_DEADLINE:
- case SCHED_NORMAL:
- case SCHED_BATCH:
- case SCHED_IDLE:
- ret = 0;
- break;
- }
- return ret;
- }
- /**
- * sys_sched_get_priority_min - return minimum RT priority.
- * @policy: scheduling class.
- *
- * Return: On success, this syscall returns the minimum
- * rt_priority that can be used by a given scheduling class.
- * On failure, a negative error code is returned.
- */
- SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
- {
- int ret = -EINVAL;
- switch (policy) {
- case SCHED_FIFO:
- case SCHED_RR:
- ret = 1;
- break;
- case SCHED_DEADLINE:
- case SCHED_NORMAL:
- case SCHED_BATCH:
- case SCHED_IDLE:
- ret = 0;
- }
- return ret;
- }
- /**
- * sys_sched_rr_get_interval - return the default timeslice of a process.
- * @pid: pid of the process.
- * @interval: userspace pointer to the timeslice value.
- *
- * this syscall writes the default timeslice value of a given process
- * into the user-space timespec buffer. A value of '0' means infinity.
- *
- * Return: On success, 0 and the timeslice is in @interval. Otherwise,
- * an error code.
- */
- SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
- struct timespec __user *, interval)
- {
- struct task_struct *p;
- unsigned int time_slice;
- struct rq_flags rf;
- struct timespec t;
- struct rq *rq;
- int retval;
- if (pid < 0)
- return -EINVAL;
- retval = -ESRCH;
- rcu_read_lock();
- p = find_process_by_pid(pid);
- if (!p)
- goto out_unlock;
- retval = security_task_getscheduler(p);
- if (retval)
- goto out_unlock;
- rq = task_rq_lock(p, &rf);
- time_slice = 0;
- if (p->sched_class->get_rr_interval)
- time_slice = p->sched_class->get_rr_interval(rq, p);
- task_rq_unlock(rq, p, &rf);
- rcu_read_unlock();
- jiffies_to_timespec(time_slice, &t);
- retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
- return retval;
- out_unlock:
- rcu_read_unlock();
- return retval;
- }
- static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
- void sched_show_task(struct task_struct *p)
- {
- unsigned long free = 0;
- int ppid;
- unsigned long state = p->state;
- if (!try_get_task_stack(p))
- return;
- if (state)
- state = __ffs(state) + 1;
- printk(KERN_INFO "%-15.15s %c", p->comm,
- state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
- if (state == TASK_RUNNING)
- printk(KERN_CONT " running task ");
- #ifdef CONFIG_DEBUG_STACK_USAGE
- free = stack_not_used(p);
- #endif
- ppid = 0;
- rcu_read_lock();
- if (pid_alive(p))
- ppid = task_pid_nr(rcu_dereference(p->real_parent));
- rcu_read_unlock();
- printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
- task_pid_nr(p), ppid,
- (unsigned long)task_thread_info(p)->flags);
- print_worker_info(KERN_INFO, p);
- show_stack(p, NULL);
- put_task_stack(p);
- }
- void show_state_filter(unsigned long state_filter)
- {
- struct task_struct *g, *p;
- #if BITS_PER_LONG == 32
- printk(KERN_INFO
- " task PC stack pid father\n");
- #else
- printk(KERN_INFO
- " task PC stack pid father\n");
- #endif
- rcu_read_lock();
- for_each_process_thread(g, p) {
- /*
- * reset the NMI-timeout, listing all files on a slow
- * console might take a lot of time:
- * Also, reset softlockup watchdogs on all CPUs, because
- * another CPU might be blocked waiting for us to process
- * an IPI.
- */
- touch_nmi_watchdog();
- touch_all_softlockup_watchdogs();
- if (!state_filter || (p->state & state_filter))
- sched_show_task(p);
- }
- #ifdef CONFIG_SCHED_DEBUG
- if (!state_filter)
- sysrq_sched_debug_show();
- #endif
- rcu_read_unlock();
- /*
- * Only show locks if all tasks are dumped:
- */
- if (!state_filter)
- debug_show_all_locks();
- }
- void init_idle_bootup_task(struct task_struct *idle)
- {
- idle->sched_class = &idle_sched_class;
- }
- /**
- * init_idle - set up an idle thread for a given CPU
- * @idle: task in question
- * @cpu: cpu the idle task belongs to
- *
- * NOTE: this function does not set the idle thread's NEED_RESCHED
- * flag, to make booting more robust.
- */
- void init_idle(struct task_struct *idle, int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
- raw_spin_lock_irqsave(&idle->pi_lock, flags);
- raw_spin_lock(&rq->lock);
- __sched_fork(0, idle);
- idle->state = TASK_RUNNING;
- idle->se.exec_start = sched_clock();
- kasan_unpoison_task_stack(idle);
- #ifdef CONFIG_SMP
- /*
- * Its possible that init_idle() gets called multiple times on a task,
- * in that case do_set_cpus_allowed() will not do the right thing.
- *
- * And since this is boot we can forgo the serialization.
- */
- set_cpus_allowed_common(idle, cpumask_of(cpu));
- #endif
- /*
- * We're having a chicken and egg problem, even though we are
- * holding rq->lock, the cpu isn't yet set to this cpu so the
- * lockdep check in task_group() will fail.
- *
- * Similar case to sched_fork(). / Alternatively we could
- * use task_rq_lock() here and obtain the other rq->lock.
- *
- * Silence PROVE_RCU
- */
- rcu_read_lock();
- __set_task_cpu(idle, cpu);
- rcu_read_unlock();
- rq->curr = rq->idle = idle;
- idle->on_rq = TASK_ON_RQ_QUEUED;
- #ifdef CONFIG_SMP
- idle->on_cpu = 1;
- #endif
- raw_spin_unlock(&rq->lock);
- raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
- /* Set the preempt count _outside_ the spinlocks! */
- init_idle_preempt_count(idle, cpu);
- /*
- * The idle tasks have their own, simple scheduling class:
- */
- idle->sched_class = &idle_sched_class;
- ftrace_graph_init_idle_task(idle, cpu);
- vtime_init_idle(idle, cpu);
- #ifdef CONFIG_SMP
- sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
- #endif
- }
- int cpuset_cpumask_can_shrink(const struct cpumask *cur,
- const struct cpumask *trial)
- {
- int ret = 1, trial_cpus;
- struct dl_bw *cur_dl_b;
- unsigned long flags;
- if (!cpumask_weight(cur))
- return ret;
- rcu_read_lock_sched();
- cur_dl_b = dl_bw_of(cpumask_any(cur));
- trial_cpus = cpumask_weight(trial);
- raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
- if (cur_dl_b->bw != -1 &&
- cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
- ret = 0;
- raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
- rcu_read_unlock_sched();
- return ret;
- }
- int task_can_attach(struct task_struct *p,
- const struct cpumask *cs_cpus_allowed)
- {
- int ret = 0;
- /*
- * Kthreads which disallow setaffinity shouldn't be moved
- * to a new cpuset; we don't want to change their cpu
- * affinity and isolating such threads by their set of
- * allowed nodes is unnecessary. Thus, cpusets are not
- * applicable for such threads. This prevents checking for
- * success of set_cpus_allowed_ptr() on all attached tasks
- * before cpus_allowed may be changed.
- */
- if (p->flags & PF_NO_SETAFFINITY) {
- ret = -EINVAL;
- goto out;
- }
- #ifdef CONFIG_SMP
- if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
- cs_cpus_allowed)) {
- unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
- cs_cpus_allowed);
- struct dl_bw *dl_b;
- bool overflow;
- int cpus;
- unsigned long flags;
- rcu_read_lock_sched();
- dl_b = dl_bw_of(dest_cpu);
- raw_spin_lock_irqsave(&dl_b->lock, flags);
- cpus = dl_bw_cpus(dest_cpu);
- overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
- if (overflow)
- ret = -EBUSY;
- else {
- /*
- * We reserve space for this task in the destination
- * root_domain, as we can't fail after this point.
- * We will free resources in the source root_domain
- * later on (see set_cpus_allowed_dl()).
- */
- __dl_add(dl_b, p->dl.dl_bw);
- }
- raw_spin_unlock_irqrestore(&dl_b->lock, flags);
- rcu_read_unlock_sched();
- }
- #endif
- out:
- return ret;
- }
- #ifdef CONFIG_SMP
- static bool sched_smp_initialized __read_mostly;
- #ifdef CONFIG_NUMA_BALANCING
- /* Migrate current task p to target_cpu */
- int migrate_task_to(struct task_struct *p, int target_cpu)
- {
- struct migration_arg arg = { p, target_cpu };
- int curr_cpu = task_cpu(p);
- if (curr_cpu == target_cpu)
- return 0;
- if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
- return -EINVAL;
- /* TODO: This is not properly updating schedstats */
- trace_sched_move_numa(p, curr_cpu, target_cpu);
- return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
- }
- /*
- * Requeue a task on a given node and accurately track the number of NUMA
- * tasks on the runqueues
- */
- void sched_setnuma(struct task_struct *p, int nid)
- {
- bool queued, running;
- struct rq_flags rf;
- struct rq *rq;
- rq = task_rq_lock(p, &rf);
- queued = task_on_rq_queued(p);
- running = task_current(rq, p);
- if (queued)
- dequeue_task(rq, p, DEQUEUE_SAVE);
- if (running)
- put_prev_task(rq, p);
- p->numa_preferred_nid = nid;
- if (queued)
- enqueue_task(rq, p, ENQUEUE_RESTORE);
- if (running)
- set_curr_task(rq, p);
- task_rq_unlock(rq, p, &rf);
- }
- #endif /* CONFIG_NUMA_BALANCING */
- #ifdef CONFIG_HOTPLUG_CPU
- /*
- * Ensures that the idle task is using init_mm right before its cpu goes
- * offline.
- */
- void idle_task_exit(void)
- {
- struct mm_struct *mm = current->active_mm;
- BUG_ON(cpu_online(smp_processor_id()));
- if (mm != &init_mm) {
- switch_mm(mm, &init_mm, current);
- finish_arch_post_lock_switch();
- }
- mmdrop(mm);
- }
- /*
- * Since this CPU is going 'away' for a while, fold any nr_active delta
- * we might have. Assumes we're called after migrate_tasks() so that the
- * nr_active count is stable. We need to take the teardown thread which
- * is calling this into account, so we hand in adjust = 1 to the load
- * calculation.
- *
- * Also see the comment "Global load-average calculations".
- */
- static void calc_load_migrate(struct rq *rq)
- {
- long delta = calc_load_fold_active(rq, 1);
- if (delta)
- atomic_long_add(delta, &calc_load_tasks);
- }
- static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
- {
- }
- static const struct sched_class fake_sched_class = {
- .put_prev_task = put_prev_task_fake,
- };
- static struct task_struct fake_task = {
- /*
- * Avoid pull_{rt,dl}_task()
- */
- .prio = MAX_PRIO + 1,
- .sched_class = &fake_sched_class,
- };
- /*
- * Migrate all tasks from the rq, sleeping tasks will be migrated by
- * try_to_wake_up()->select_task_rq().
- *
- * Called with rq->lock held even though we'er in stop_machine() and
- * there's no concurrency possible, we hold the required locks anyway
- * because of lock validation efforts.
- */
- static void migrate_tasks(struct rq *dead_rq)
- {
- struct rq *rq = dead_rq;
- struct task_struct *next, *stop = rq->stop;
- struct pin_cookie cookie;
- int dest_cpu;
- /*
- * Fudge the rq selection such that the below task selection loop
- * doesn't get stuck on the currently eligible stop task.
- *
- * We're currently inside stop_machine() and the rq is either stuck
- * in the stop_machine_cpu_stop() loop, or we're executing this code,
- * either way we should never end up calling schedule() until we're
- * done here.
- */
- rq->stop = NULL;
- /*
- * put_prev_task() and pick_next_task() sched
- * class method both need to have an up-to-date
- * value of rq->clock[_task]
- */
- update_rq_clock(rq);
- for (;;) {
- /*
- * There's this thread running, bail when that's the only
- * remaining thread.
- */
- if (rq->nr_running == 1)
- break;
- /*
- * pick_next_task assumes pinned rq->lock.
- */
- cookie = lockdep_pin_lock(&rq->lock);
- next = pick_next_task(rq, &fake_task, cookie);
- BUG_ON(!next);
- next->sched_class->put_prev_task(rq, next);
- /*
- * Rules for changing task_struct::cpus_allowed are holding
- * both pi_lock and rq->lock, such that holding either
- * stabilizes the mask.
- *
- * Drop rq->lock is not quite as disastrous as it usually is
- * because !cpu_active at this point, which means load-balance
- * will not interfere. Also, stop-machine.
- */
- lockdep_unpin_lock(&rq->lock, cookie);
- raw_spin_unlock(&rq->lock);
- raw_spin_lock(&next->pi_lock);
- raw_spin_lock(&rq->lock);
- /*
- * Since we're inside stop-machine, _nothing_ should have
- * changed the task, WARN if weird stuff happened, because in
- * that case the above rq->lock drop is a fail too.
- */
- if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
- raw_spin_unlock(&next->pi_lock);
- continue;
- }
- /* Find suitable destination for @next, with force if needed. */
- dest_cpu = select_fallback_rq(dead_rq->cpu, next);
- rq = __migrate_task(rq, next, dest_cpu);
- if (rq != dead_rq) {
- raw_spin_unlock(&rq->lock);
- rq = dead_rq;
- raw_spin_lock(&rq->lock);
- }
- raw_spin_unlock(&next->pi_lock);
- }
- rq->stop = stop;
- }
- #endif /* CONFIG_HOTPLUG_CPU */
- static void set_rq_online(struct rq *rq)
- {
- if (!rq->online) {
- const struct sched_class *class;
- cpumask_set_cpu(rq->cpu, rq->rd->online);
- rq->online = 1;
- for_each_class(class) {
- if (class->rq_online)
- class->rq_online(rq);
- }
- }
- }
- static void set_rq_offline(struct rq *rq)
- {
- if (rq->online) {
- const struct sched_class *class;
- for_each_class(class) {
- if (class->rq_offline)
- class->rq_offline(rq);
- }
- cpumask_clear_cpu(rq->cpu, rq->rd->online);
- rq->online = 0;
- }
- }
- static void set_cpu_rq_start_time(unsigned int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- rq->age_stamp = sched_clock_cpu(cpu);
- }
- static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
- #ifdef CONFIG_SCHED_DEBUG
- static __read_mostly int sched_debug_enabled;
- static int __init sched_debug_setup(char *str)
- {
- sched_debug_enabled = 1;
- return 0;
- }
- early_param("sched_debug", sched_debug_setup);
- static inline bool sched_debug(void)
- {
- return sched_debug_enabled;
- }
- static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
- struct cpumask *groupmask)
- {
- struct sched_group *group = sd->groups;
- cpumask_clear(groupmask);
- printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
- if (!(sd->flags & SD_LOAD_BALANCE)) {
- printk("does not load-balance\n");
- if (sd->parent)
- printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
- " has parent");
- return -1;
- }
- printk(KERN_CONT "span %*pbl level %s\n",
- cpumask_pr_args(sched_domain_span(sd)), sd->name);
- if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
- printk(KERN_ERR "ERROR: domain->span does not contain "
- "CPU%d\n", cpu);
- }
- if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
- printk(KERN_ERR "ERROR: domain->groups does not contain"
- " CPU%d\n", cpu);
- }
- printk(KERN_DEBUG "%*s groups:", level + 1, "");
- do {
- if (!group) {
- printk("\n");
- printk(KERN_ERR "ERROR: group is NULL\n");
- break;
- }
- if (!cpumask_weight(sched_group_cpus(group))) {
- printk(KERN_CONT "\n");
- printk(KERN_ERR "ERROR: empty group\n");
- break;
- }
- if (!(sd->flags & SD_OVERLAP) &&
- cpumask_intersects(groupmask, sched_group_cpus(group))) {
- printk(KERN_CONT "\n");
- printk(KERN_ERR "ERROR: repeated CPUs\n");
- break;
- }
- cpumask_or(groupmask, groupmask, sched_group_cpus(group));
- printk(KERN_CONT " %*pbl",
- cpumask_pr_args(sched_group_cpus(group)));
- if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
- printk(KERN_CONT " (cpu_capacity = %d)",
- group->sgc->capacity);
- }
- group = group->next;
- } while (group != sd->groups);
- printk(KERN_CONT "\n");
- if (!cpumask_equal(sched_domain_span(sd), groupmask))
- printk(KERN_ERR "ERROR: groups don't span domain->span\n");
- if (sd->parent &&
- !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
- printk(KERN_ERR "ERROR: parent span is not a superset "
- "of domain->span\n");
- return 0;
- }
- static void sched_domain_debug(struct sched_domain *sd, int cpu)
- {
- int level = 0;
- if (!sched_debug_enabled)
- return;
- if (!sd) {
- printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
- return;
- }
- printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
- for (;;) {
- if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
- break;
- level++;
- sd = sd->parent;
- if (!sd)
- break;
- }
- }
- #else /* !CONFIG_SCHED_DEBUG */
- # define sched_debug_enabled 0
- # define sched_domain_debug(sd, cpu) do { } while (0)
- static inline bool sched_debug(void)
- {
- return false;
- }
- #endif /* CONFIG_SCHED_DEBUG */
- static int sd_degenerate(struct sched_domain *sd)
- {
- if (cpumask_weight(sched_domain_span(sd)) == 1)
- return 1;
- /* Following flags need at least 2 groups */
- if (sd->flags & (SD_LOAD_BALANCE |
- SD_BALANCE_NEWIDLE |
- SD_BALANCE_FORK |
- SD_BALANCE_EXEC |
- SD_SHARE_CPUCAPACITY |
- SD_ASYM_CPUCAPACITY |
- SD_SHARE_PKG_RESOURCES |
- SD_SHARE_POWERDOMAIN)) {
- if (sd->groups != sd->groups->next)
- return 0;
- }
- /* Following flags don't use groups */
- if (sd->flags & (SD_WAKE_AFFINE))
- return 0;
- return 1;
- }
- static int
- sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
- {
- unsigned long cflags = sd->flags, pflags = parent->flags;
- if (sd_degenerate(parent))
- return 1;
- if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
- return 0;
- /* Flags needing groups don't count if only 1 group in parent */
- if (parent->groups == parent->groups->next) {
- pflags &= ~(SD_LOAD_BALANCE |
- SD_BALANCE_NEWIDLE |
- SD_BALANCE_FORK |
- SD_BALANCE_EXEC |
- SD_ASYM_CPUCAPACITY |
- SD_SHARE_CPUCAPACITY |
- SD_SHARE_PKG_RESOURCES |
- SD_PREFER_SIBLING |
- SD_SHARE_POWERDOMAIN);
- if (nr_node_ids == 1)
- pflags &= ~SD_SERIALIZE;
- }
- if (~cflags & pflags)
- return 0;
- return 1;
- }
- static void free_rootdomain(struct rcu_head *rcu)
- {
- struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
- cpupri_cleanup(&rd->cpupri);
- cpudl_cleanup(&rd->cpudl);
- free_cpumask_var(rd->dlo_mask);
- free_cpumask_var(rd->rto_mask);
- free_cpumask_var(rd->online);
- free_cpumask_var(rd->span);
- kfree(rd);
- }
- static void rq_attach_root(struct rq *rq, struct root_domain *rd)
- {
- struct root_domain *old_rd = NULL;
- unsigned long flags;
- raw_spin_lock_irqsave(&rq->lock, flags);
- if (rq->rd) {
- old_rd = rq->rd;
- if (cpumask_test_cpu(rq->cpu, old_rd->online))
- set_rq_offline(rq);
- cpumask_clear_cpu(rq->cpu, old_rd->span);
- /*
- * If we dont want to free the old_rd yet then
- * set old_rd to NULL to skip the freeing later
- * in this function:
- */
- if (!atomic_dec_and_test(&old_rd->refcount))
- old_rd = NULL;
- }
- atomic_inc(&rd->refcount);
- rq->rd = rd;
- cpumask_set_cpu(rq->cpu, rd->span);
- if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
- set_rq_online(rq);
- raw_spin_unlock_irqrestore(&rq->lock, flags);
- if (old_rd)
- call_rcu_sched(&old_rd->rcu, free_rootdomain);
- }
- void sched_get_rd(struct root_domain *rd)
- {
- atomic_inc(&rd->refcount);
- }
- void sched_put_rd(struct root_domain *rd)
- {
- if (!atomic_dec_and_test(&rd->refcount))
- return;
- call_rcu_sched(&rd->rcu, free_rootdomain);
- }
- static int init_rootdomain(struct root_domain *rd)
- {
- memset(rd, 0, sizeof(*rd));
- if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
- goto out;
- if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
- goto free_span;
- if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
- goto free_online;
- if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
- goto free_dlo_mask;
- #ifdef HAVE_RT_PUSH_IPI
- rd->rto_cpu = -1;
- raw_spin_lock_init(&rd->rto_lock);
- init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
- #endif
- init_dl_bw(&rd->dl_bw);
- if (cpudl_init(&rd->cpudl) != 0)
- goto free_dlo_mask;
- if (cpupri_init(&rd->cpupri) != 0)
- goto free_rto_mask;
- return 0;
- free_rto_mask:
- free_cpumask_var(rd->rto_mask);
- free_dlo_mask:
- free_cpumask_var(rd->dlo_mask);
- free_online:
- free_cpumask_var(rd->online);
- free_span:
- free_cpumask_var(rd->span);
- out:
- return -ENOMEM;
- }
- /*
- * By default the system creates a single root-domain with all cpus as
- * members (mimicking the global state we have today).
- */
- struct root_domain def_root_domain;
- static void init_defrootdomain(void)
- {
- init_rootdomain(&def_root_domain);
- atomic_set(&def_root_domain.refcount, 1);
- }
- static struct root_domain *alloc_rootdomain(void)
- {
- struct root_domain *rd;
- rd = kmalloc(sizeof(*rd), GFP_KERNEL);
- if (!rd)
- return NULL;
- if (init_rootdomain(rd) != 0) {
- kfree(rd);
- return NULL;
- }
- return rd;
- }
- static void free_sched_groups(struct sched_group *sg, int free_sgc)
- {
- struct sched_group *tmp, *first;
- if (!sg)
- return;
- first = sg;
- do {
- tmp = sg->next;
- if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
- kfree(sg->sgc);
- kfree(sg);
- sg = tmp;
- } while (sg != first);
- }
- static void destroy_sched_domain(struct sched_domain *sd)
- {
- /*
- * If its an overlapping domain it has private groups, iterate and
- * nuke them all.
- */
- if (sd->flags & SD_OVERLAP) {
- free_sched_groups(sd->groups, 1);
- } else if (atomic_dec_and_test(&sd->groups->ref)) {
- kfree(sd->groups->sgc);
- kfree(sd->groups);
- }
- if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
- kfree(sd->shared);
- kfree(sd);
- }
- static void destroy_sched_domains_rcu(struct rcu_head *rcu)
- {
- struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
- while (sd) {
- struct sched_domain *parent = sd->parent;
- destroy_sched_domain(sd);
- sd = parent;
- }
- }
- static void destroy_sched_domains(struct sched_domain *sd)
- {
- if (sd)
- call_rcu(&sd->rcu, destroy_sched_domains_rcu);
- }
- /*
- * Keep a special pointer to the highest sched_domain that has
- * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
- * allows us to avoid some pointer chasing select_idle_sibling().
- *
- * Also keep a unique ID per domain (we use the first cpu number in
- * the cpumask of the domain), this allows us to quickly tell if
- * two cpus are in the same cache domain, see cpus_share_cache().
- */
- DEFINE_PER_CPU(struct sched_domain *, sd_llc);
- DEFINE_PER_CPU(int, sd_llc_size);
- DEFINE_PER_CPU(int, sd_llc_id);
- DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
- DEFINE_PER_CPU(struct sched_domain *, sd_numa);
- DEFINE_PER_CPU(struct sched_domain *, sd_asym);
- static void update_top_cache_domain(int cpu)
- {
- struct sched_domain_shared *sds = NULL;
- struct sched_domain *sd;
- int id = cpu;
- int size = 1;
- sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
- if (sd) {
- id = cpumask_first(sched_domain_span(sd));
- size = cpumask_weight(sched_domain_span(sd));
- sds = sd->shared;
- }
- rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
- per_cpu(sd_llc_size, cpu) = size;
- per_cpu(sd_llc_id, cpu) = id;
- rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
- sd = lowest_flag_domain(cpu, SD_NUMA);
- rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
- sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
- rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
- }
- /*
- * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
- * hold the hotplug lock.
- */
- static void
- cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- struct sched_domain *tmp;
- /* Remove the sched domains which do not contribute to scheduling. */
- for (tmp = sd; tmp; ) {
- struct sched_domain *parent = tmp->parent;
- if (!parent)
- break;
- if (sd_parent_degenerate(tmp, parent)) {
- tmp->parent = parent->parent;
- if (parent->parent)
- parent->parent->child = tmp;
- /*
- * Transfer SD_PREFER_SIBLING down in case of a
- * degenerate parent; the spans match for this
- * so the property transfers.
- */
- if (parent->flags & SD_PREFER_SIBLING)
- tmp->flags |= SD_PREFER_SIBLING;
- destroy_sched_domain(parent);
- } else
- tmp = tmp->parent;
- }
- if (sd && sd_degenerate(sd)) {
- tmp = sd;
- sd = sd->parent;
- destroy_sched_domain(tmp);
- if (sd)
- sd->child = NULL;
- }
- sched_domain_debug(sd, cpu);
- rq_attach_root(rq, rd);
- tmp = rq->sd;
- rcu_assign_pointer(rq->sd, sd);
- destroy_sched_domains(tmp);
- update_top_cache_domain(cpu);
- }
- /* Setup the mask of cpus configured for isolated domains */
- static int __init isolated_cpu_setup(char *str)
- {
- int ret;
- alloc_bootmem_cpumask_var(&cpu_isolated_map);
- ret = cpulist_parse(str, cpu_isolated_map);
- if (ret) {
- pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
- return 0;
- }
- return 1;
- }
- __setup("isolcpus=", isolated_cpu_setup);
- struct s_data {
- struct sched_domain ** __percpu sd;
- struct root_domain *rd;
- };
- enum s_alloc {
- sa_rootdomain,
- sa_sd,
- sa_sd_storage,
- sa_none,
- };
- /*
- * Build an iteration mask that can exclude certain CPUs from the upwards
- * domain traversal.
- *
- * Only CPUs that can arrive at this group should be considered to continue
- * balancing.
- *
- * Asymmetric node setups can result in situations where the domain tree is of
- * unequal depth, make sure to skip domains that already cover the entire
- * range.
- *
- * In that case build_sched_domains() will have terminated the iteration early
- * and our sibling sd spans will be empty. Domains should always include the
- * cpu they're built on, so check that.
- *
- */
- static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
- {
- const struct cpumask *sg_span = sched_group_cpus(sg);
- struct sd_data *sdd = sd->private;
- struct sched_domain *sibling;
- int i;
- for_each_cpu(i, sg_span) {
- sibling = *per_cpu_ptr(sdd->sd, i);
- /*
- * Can happen in the asymmetric case, where these siblings are
- * unused. The mask will not be empty because those CPUs that
- * do have the top domain _should_ span the domain.
- */
- if (!sibling->child)
- continue;
- /* If we would not end up here, we can't continue from here */
- if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
- continue;
- cpumask_set_cpu(i, sched_group_mask(sg));
- }
- /* We must not have empty masks here */
- WARN_ON_ONCE(cpumask_empty(sched_group_mask(sg)));
- }
- /*
- * Return the canonical balance cpu for this group, this is the first cpu
- * of this group that's also in the iteration mask.
- */
- int group_balance_cpu(struct sched_group *sg)
- {
- return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
- }
- static int
- build_overlap_sched_groups(struct sched_domain *sd, int cpu)
- {
- struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
- const struct cpumask *span = sched_domain_span(sd);
- struct cpumask *covered = sched_domains_tmpmask;
- struct sd_data *sdd = sd->private;
- struct sched_domain *sibling;
- int i;
- cpumask_clear(covered);
- for_each_cpu_wrap(i, span, cpu) {
- struct cpumask *sg_span;
- if (cpumask_test_cpu(i, covered))
- continue;
- sibling = *per_cpu_ptr(sdd->sd, i);
- /* See the comment near build_group_mask(). */
- if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
- continue;
- sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(cpu));
- if (!sg)
- goto fail;
- sg_span = sched_group_cpus(sg);
- if (sibling->child)
- cpumask_copy(sg_span, sched_domain_span(sibling->child));
- else
- cpumask_set_cpu(i, sg_span);
- cpumask_or(covered, covered, sg_span);
- sg->sgc = *per_cpu_ptr(sdd->sgc, i);
- if (atomic_inc_return(&sg->sgc->ref) == 1)
- build_group_mask(sd, sg);
- /*
- * Initialize sgc->capacity such that even if we mess up the
- * domains and no possible iteration will get us here, we won't
- * die on a /0 trap.
- */
- sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
- /*
- * Make sure the first group of this domain contains the
- * canonical balance cpu. Otherwise the sched_domain iteration
- * breaks. See update_sg_lb_stats().
- */
- if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
- group_balance_cpu(sg) == cpu)
- groups = sg;
- if (!first)
- first = sg;
- if (last)
- last->next = sg;
- last = sg;
- last->next = first;
- }
- sd->groups = groups;
- return 0;
- fail:
- free_sched_groups(first, 0);
- return -ENOMEM;
- }
- static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
- {
- struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
- struct sched_domain *child = sd->child;
- if (child)
- cpu = cpumask_first(sched_domain_span(child));
- if (sg) {
- *sg = *per_cpu_ptr(sdd->sg, cpu);
- (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
- atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
- }
- return cpu;
- }
- /*
- * build_sched_groups will build a circular linked list of the groups
- * covered by the given span, and will set each group's ->cpumask correctly,
- * and ->cpu_capacity to 0.
- *
- * Assumes the sched_domain tree is fully constructed
- */
- static int
- build_sched_groups(struct sched_domain *sd, int cpu)
- {
- struct sched_group *first = NULL, *last = NULL;
- struct sd_data *sdd = sd->private;
- const struct cpumask *span = sched_domain_span(sd);
- struct cpumask *covered;
- int i;
- get_group(cpu, sdd, &sd->groups);
- atomic_inc(&sd->groups->ref);
- if (cpu != cpumask_first(span))
- return 0;
- lockdep_assert_held(&sched_domains_mutex);
- covered = sched_domains_tmpmask;
- cpumask_clear(covered);
- for_each_cpu(i, span) {
- struct sched_group *sg;
- int group, j;
- if (cpumask_test_cpu(i, covered))
- continue;
- group = get_group(i, sdd, &sg);
- cpumask_setall(sched_group_mask(sg));
- for_each_cpu(j, span) {
- if (get_group(j, sdd, NULL) != group)
- continue;
- cpumask_set_cpu(j, covered);
- cpumask_set_cpu(j, sched_group_cpus(sg));
- }
- if (!first)
- first = sg;
- if (last)
- last->next = sg;
- last = sg;
- }
- last->next = first;
- return 0;
- }
- /*
- * Initialize sched groups cpu_capacity.
- *
- * cpu_capacity indicates the capacity of sched group, which is used while
- * distributing the load between different sched groups in a sched domain.
- * Typically cpu_capacity for all the groups in a sched domain will be same
- * unless there are asymmetries in the topology. If there are asymmetries,
- * group having more cpu_capacity will pickup more load compared to the
- * group having less cpu_capacity.
- */
- static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
- {
- struct sched_group *sg = sd->groups;
- WARN_ON(!sg);
- do {
- sg->group_weight = cpumask_weight(sched_group_cpus(sg));
- sg = sg->next;
- } while (sg != sd->groups);
- if (cpu != group_balance_cpu(sg))
- return;
- update_group_capacity(sd, cpu);
- }
- /*
- * Initializers for schedule domains
- * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
- */
- static int default_relax_domain_level = -1;
- int sched_domain_level_max;
- static int __init setup_relax_domain_level(char *str)
- {
- if (kstrtoint(str, 0, &default_relax_domain_level))
- pr_warn("Unable to set relax_domain_level\n");
- return 1;
- }
- __setup("relax_domain_level=", setup_relax_domain_level);
- static void set_domain_attribute(struct sched_domain *sd,
- struct sched_domain_attr *attr)
- {
- int request;
- if (!attr || attr->relax_domain_level < 0) {
- if (default_relax_domain_level < 0)
- return;
- else
- request = default_relax_domain_level;
- } else
- request = attr->relax_domain_level;
- if (request < sd->level) {
- /* turn off idle balance on this domain */
- sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
- } else {
- /* turn on idle balance on this domain */
- sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
- }
- }
- static void __sdt_free(const struct cpumask *cpu_map);
- static int __sdt_alloc(const struct cpumask *cpu_map);
- static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
- const struct cpumask *cpu_map)
- {
- switch (what) {
- case sa_rootdomain:
- if (!atomic_read(&d->rd->refcount))
- free_rootdomain(&d->rd->rcu); /* fall through */
- case sa_sd:
- free_percpu(d->sd); /* fall through */
- case sa_sd_storage:
- __sdt_free(cpu_map); /* fall through */
- case sa_none:
- break;
- }
- }
- static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
- const struct cpumask *cpu_map)
- {
- memset(d, 0, sizeof(*d));
- if (__sdt_alloc(cpu_map))
- return sa_sd_storage;
- d->sd = alloc_percpu(struct sched_domain *);
- if (!d->sd)
- return sa_sd_storage;
- d->rd = alloc_rootdomain();
- if (!d->rd)
- return sa_sd;
- return sa_rootdomain;
- }
- /*
- * NULL the sd_data elements we've used to build the sched_domain and
- * sched_group structure so that the subsequent __free_domain_allocs()
- * will not free the data we're using.
- */
- static void claim_allocations(int cpu, struct sched_domain *sd)
- {
- struct sd_data *sdd = sd->private;
- WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
- *per_cpu_ptr(sdd->sd, cpu) = NULL;
- if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
- *per_cpu_ptr(sdd->sds, cpu) = NULL;
- if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
- *per_cpu_ptr(sdd->sg, cpu) = NULL;
- if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
- *per_cpu_ptr(sdd->sgc, cpu) = NULL;
- }
- #ifdef CONFIG_NUMA
- static int sched_domains_numa_levels;
- enum numa_topology_type sched_numa_topology_type;
- static int *sched_domains_numa_distance;
- int sched_max_numa_distance;
- static struct cpumask ***sched_domains_numa_masks;
- static int sched_domains_curr_level;
- #endif
- /*
- * SD_flags allowed in topology descriptions.
- *
- * These flags are purely descriptive of the topology and do not prescribe
- * behaviour. Behaviour is artificial and mapped in the below sd_init()
- * function:
- *
- * SD_SHARE_CPUCAPACITY - describes SMT topologies
- * SD_SHARE_PKG_RESOURCES - describes shared caches
- * SD_NUMA - describes NUMA topologies
- * SD_SHARE_POWERDOMAIN - describes shared power domain
- * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
- *
- * Odd one out, which beside describing the topology has a quirk also
- * prescribes the desired behaviour that goes along with it:
- *
- * SD_ASYM_PACKING - describes SMT quirks
- */
- #define TOPOLOGY_SD_FLAGS \
- (SD_SHARE_CPUCAPACITY | \
- SD_SHARE_PKG_RESOURCES | \
- SD_NUMA | \
- SD_ASYM_PACKING | \
- SD_ASYM_CPUCAPACITY | \
- SD_SHARE_POWERDOMAIN)
- static struct sched_domain *
- sd_init(struct sched_domain_topology_level *tl,
- const struct cpumask *cpu_map,
- struct sched_domain *child, int cpu)
- {
- struct sd_data *sdd = &tl->data;
- struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
- int sd_id, sd_weight, sd_flags = 0;
- #ifdef CONFIG_NUMA
- /*
- * Ugly hack to pass state to sd_numa_mask()...
- */
- sched_domains_curr_level = tl->numa_level;
- #endif
- sd_weight = cpumask_weight(tl->mask(cpu));
- if (tl->sd_flags)
- sd_flags = (*tl->sd_flags)();
- if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
- "wrong sd_flags in topology description\n"))
- sd_flags &= ~TOPOLOGY_SD_FLAGS;
- *sd = (struct sched_domain){
- .min_interval = sd_weight,
- .max_interval = 2*sd_weight,
- .busy_factor = 32,
- .imbalance_pct = 125,
- .cache_nice_tries = 0,
- .busy_idx = 0,
- .idle_idx = 0,
- .newidle_idx = 0,
- .wake_idx = 0,
- .forkexec_idx = 0,
- .flags = 1*SD_LOAD_BALANCE
- | 1*SD_BALANCE_NEWIDLE
- | 1*SD_BALANCE_EXEC
- | 1*SD_BALANCE_FORK
- | 0*SD_BALANCE_WAKE
- | 1*SD_WAKE_AFFINE
- | 0*SD_SHARE_CPUCAPACITY
- | 0*SD_SHARE_PKG_RESOURCES
- | 0*SD_SERIALIZE
- | 0*SD_PREFER_SIBLING
- | 0*SD_NUMA
- | sd_flags
- ,
- .last_balance = jiffies,
- .balance_interval = sd_weight,
- .smt_gain = 0,
- .max_newidle_lb_cost = 0,
- .next_decay_max_lb_cost = jiffies,
- .child = child,
- #ifdef CONFIG_SCHED_DEBUG
- .name = tl->name,
- #endif
- };
- cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
- sd_id = cpumask_first(sched_domain_span(sd));
- /*
- * Convert topological properties into behaviour.
- */
- if (sd->flags & SD_ASYM_CPUCAPACITY) {
- struct sched_domain *t = sd;
- for_each_lower_domain(t)
- t->flags |= SD_BALANCE_WAKE;
- }
- if (sd->flags & SD_SHARE_CPUCAPACITY) {
- sd->flags |= SD_PREFER_SIBLING;
- sd->imbalance_pct = 110;
- sd->smt_gain = 1178; /* ~15% */
- } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
- sd->imbalance_pct = 117;
- sd->cache_nice_tries = 1;
- sd->busy_idx = 2;
- #ifdef CONFIG_NUMA
- } else if (sd->flags & SD_NUMA) {
- sd->cache_nice_tries = 2;
- sd->busy_idx = 3;
- sd->idle_idx = 2;
- sd->flags |= SD_SERIALIZE;
- if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
- sd->flags &= ~(SD_BALANCE_EXEC |
- SD_BALANCE_FORK |
- SD_WAKE_AFFINE);
- }
- #endif
- } else {
- sd->flags |= SD_PREFER_SIBLING;
- sd->cache_nice_tries = 1;
- sd->busy_idx = 2;
- sd->idle_idx = 1;
- }
- /*
- * For all levels sharing cache; connect a sched_domain_shared
- * instance.
- */
- if (sd->flags & SD_SHARE_PKG_RESOURCES) {
- sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
- atomic_inc(&sd->shared->ref);
- atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
- }
- sd->private = sdd;
- return sd;
- }
- /*
- * Topology list, bottom-up.
- */
- static struct sched_domain_topology_level default_topology[] = {
- #ifdef CONFIG_SCHED_SMT
- { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
- #endif
- #ifdef CONFIG_SCHED_MC
- { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
- #endif
- { cpu_cpu_mask, SD_INIT_NAME(DIE) },
- { NULL, },
- };
- static struct sched_domain_topology_level *sched_domain_topology =
- default_topology;
- #define for_each_sd_topology(tl) \
- for (tl = sched_domain_topology; tl->mask; tl++)
- void set_sched_topology(struct sched_domain_topology_level *tl)
- {
- if (WARN_ON_ONCE(sched_smp_initialized))
- return;
- sched_domain_topology = tl;
- }
- #ifdef CONFIG_NUMA
- static const struct cpumask *sd_numa_mask(int cpu)
- {
- return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
- }
- static void sched_numa_warn(const char *str)
- {
- static int done = false;
- int i,j;
- if (done)
- return;
- done = true;
- printk(KERN_WARNING "ERROR: %s\n\n", str);
- for (i = 0; i < nr_node_ids; i++) {
- printk(KERN_WARNING " ");
- for (j = 0; j < nr_node_ids; j++)
- printk(KERN_CONT "%02d ", node_distance(i,j));
- printk(KERN_CONT "\n");
- }
- printk(KERN_WARNING "\n");
- }
- bool find_numa_distance(int distance)
- {
- int i;
- if (distance == node_distance(0, 0))
- return true;
- for (i = 0; i < sched_domains_numa_levels; i++) {
- if (sched_domains_numa_distance[i] == distance)
- return true;
- }
- return false;
- }
- /*
- * A system can have three types of NUMA topology:
- * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
- * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
- * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
- *
- * The difference between a glueless mesh topology and a backplane
- * topology lies in whether communication between not directly
- * connected nodes goes through intermediary nodes (where programs
- * could run), or through backplane controllers. This affects
- * placement of programs.
- *
- * The type of topology can be discerned with the following tests:
- * - If the maximum distance between any nodes is 1 hop, the system
- * is directly connected.
- * - If for two nodes A and B, located N > 1 hops away from each other,
- * there is an intermediary node C, which is < N hops away from both
- * nodes A and B, the system is a glueless mesh.
- */
- static void init_numa_topology_type(void)
- {
- int a, b, c, n;
- n = sched_max_numa_distance;
- if (sched_domains_numa_levels <= 1) {
- sched_numa_topology_type = NUMA_DIRECT;
- return;
- }
- for_each_online_node(a) {
- for_each_online_node(b) {
- /* Find two nodes furthest removed from each other. */
- if (node_distance(a, b) < n)
- continue;
- /* Is there an intermediary node between a and b? */
- for_each_online_node(c) {
- if (node_distance(a, c) < n &&
- node_distance(b, c) < n) {
- sched_numa_topology_type =
- NUMA_GLUELESS_MESH;
- return;
- }
- }
- sched_numa_topology_type = NUMA_BACKPLANE;
- return;
- }
- }
- }
- static void sched_init_numa(void)
- {
- int next_distance, curr_distance = node_distance(0, 0);
- struct sched_domain_topology_level *tl;
- int level = 0;
- int i, j, k;
- sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
- if (!sched_domains_numa_distance)
- return;
- /*
- * O(nr_nodes^2) deduplicating selection sort -- in order to find the
- * unique distances in the node_distance() table.
- *
- * Assumes node_distance(0,j) includes all distances in
- * node_distance(i,j) in order to avoid cubic time.
- */
- next_distance = curr_distance;
- for (i = 0; i < nr_node_ids; i++) {
- for (j = 0; j < nr_node_ids; j++) {
- for (k = 0; k < nr_node_ids; k++) {
- int distance = node_distance(i, k);
- if (distance > curr_distance &&
- (distance < next_distance ||
- next_distance == curr_distance))
- next_distance = distance;
- /*
- * While not a strong assumption it would be nice to know
- * about cases where if node A is connected to B, B is not
- * equally connected to A.
- */
- if (sched_debug() && node_distance(k, i) != distance)
- sched_numa_warn("Node-distance not symmetric");
- if (sched_debug() && i && !find_numa_distance(distance))
- sched_numa_warn("Node-0 not representative");
- }
- if (next_distance != curr_distance) {
- sched_domains_numa_distance[level++] = next_distance;
- sched_domains_numa_levels = level;
- curr_distance = next_distance;
- } else break;
- }
- /*
- * In case of sched_debug() we verify the above assumption.
- */
- if (!sched_debug())
- break;
- }
- if (!level)
- return;
- /*
- * 'level' contains the number of unique distances, excluding the
- * identity distance node_distance(i,i).
- *
- * The sched_domains_numa_distance[] array includes the actual distance
- * numbers.
- */
- /*
- * Here, we should temporarily reset sched_domains_numa_levels to 0.
- * If it fails to allocate memory for array sched_domains_numa_masks[][],
- * the array will contain less then 'level' members. This could be
- * dangerous when we use it to iterate array sched_domains_numa_masks[][]
- * in other functions.
- *
- * We reset it to 'level' at the end of this function.
- */
- sched_domains_numa_levels = 0;
- sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
- if (!sched_domains_numa_masks)
- return;
- /*
- * Now for each level, construct a mask per node which contains all
- * cpus of nodes that are that many hops away from us.
- */
- for (i = 0; i < level; i++) {
- sched_domains_numa_masks[i] =
- kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
- if (!sched_domains_numa_masks[i])
- return;
- for (j = 0; j < nr_node_ids; j++) {
- struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
- if (!mask)
- return;
- sched_domains_numa_masks[i][j] = mask;
- for_each_node(k) {
- if (node_distance(j, k) > sched_domains_numa_distance[i])
- continue;
- cpumask_or(mask, mask, cpumask_of_node(k));
- }
- }
- }
- /* Compute default topology size */
- for (i = 0; sched_domain_topology[i].mask; i++);
- tl = kzalloc((i + level + 1) *
- sizeof(struct sched_domain_topology_level), GFP_KERNEL);
- if (!tl)
- return;
- /*
- * Copy the default topology bits..
- */
- for (i = 0; sched_domain_topology[i].mask; i++)
- tl[i] = sched_domain_topology[i];
- /*
- * .. and append 'j' levels of NUMA goodness.
- */
- for (j = 0; j < level; i++, j++) {
- tl[i] = (struct sched_domain_topology_level){
- .mask = sd_numa_mask,
- .sd_flags = cpu_numa_flags,
- .flags = SDTL_OVERLAP,
- .numa_level = j,
- SD_INIT_NAME(NUMA)
- };
- }
- sched_domain_topology = tl;
- sched_domains_numa_levels = level;
- sched_max_numa_distance = sched_domains_numa_distance[level - 1];
- init_numa_topology_type();
- }
- static void sched_domains_numa_masks_set(unsigned int cpu)
- {
- int node = cpu_to_node(cpu);
- int i, j;
- for (i = 0; i < sched_domains_numa_levels; i++) {
- for (j = 0; j < nr_node_ids; j++) {
- if (node_distance(j, node) <= sched_domains_numa_distance[i])
- cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
- }
- }
- }
- static void sched_domains_numa_masks_clear(unsigned int cpu)
- {
- int i, j;
- for (i = 0; i < sched_domains_numa_levels; i++) {
- for (j = 0; j < nr_node_ids; j++)
- cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
- }
- }
- #else
- static inline void sched_init_numa(void) { }
- static void sched_domains_numa_masks_set(unsigned int cpu) { }
- static void sched_domains_numa_masks_clear(unsigned int cpu) { }
- #endif /* CONFIG_NUMA */
- static int __sdt_alloc(const struct cpumask *cpu_map)
- {
- struct sched_domain_topology_level *tl;
- int j;
- for_each_sd_topology(tl) {
- struct sd_data *sdd = &tl->data;
- sdd->sd = alloc_percpu(struct sched_domain *);
- if (!sdd->sd)
- return -ENOMEM;
- sdd->sds = alloc_percpu(struct sched_domain_shared *);
- if (!sdd->sds)
- return -ENOMEM;
- sdd->sg = alloc_percpu(struct sched_group *);
- if (!sdd->sg)
- return -ENOMEM;
- sdd->sgc = alloc_percpu(struct sched_group_capacity *);
- if (!sdd->sgc)
- return -ENOMEM;
- for_each_cpu(j, cpu_map) {
- struct sched_domain *sd;
- struct sched_domain_shared *sds;
- struct sched_group *sg;
- struct sched_group_capacity *sgc;
- sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(j));
- if (!sd)
- return -ENOMEM;
- *per_cpu_ptr(sdd->sd, j) = sd;
- sds = kzalloc_node(sizeof(struct sched_domain_shared),
- GFP_KERNEL, cpu_to_node(j));
- if (!sds)
- return -ENOMEM;
- *per_cpu_ptr(sdd->sds, j) = sds;
- sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(j));
- if (!sg)
- return -ENOMEM;
- sg->next = sg;
- *per_cpu_ptr(sdd->sg, j) = sg;
- sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(j));
- if (!sgc)
- return -ENOMEM;
- *per_cpu_ptr(sdd->sgc, j) = sgc;
- }
- }
- return 0;
- }
- static void __sdt_free(const struct cpumask *cpu_map)
- {
- struct sched_domain_topology_level *tl;
- int j;
- for_each_sd_topology(tl) {
- struct sd_data *sdd = &tl->data;
- for_each_cpu(j, cpu_map) {
- struct sched_domain *sd;
- if (sdd->sd) {
- sd = *per_cpu_ptr(sdd->sd, j);
- if (sd && (sd->flags & SD_OVERLAP))
- free_sched_groups(sd->groups, 0);
- kfree(*per_cpu_ptr(sdd->sd, j));
- }
- if (sdd->sds)
- kfree(*per_cpu_ptr(sdd->sds, j));
- if (sdd->sg)
- kfree(*per_cpu_ptr(sdd->sg, j));
- if (sdd->sgc)
- kfree(*per_cpu_ptr(sdd->sgc, j));
- }
- free_percpu(sdd->sd);
- sdd->sd = NULL;
- free_percpu(sdd->sds);
- sdd->sds = NULL;
- free_percpu(sdd->sg);
- sdd->sg = NULL;
- free_percpu(sdd->sgc);
- sdd->sgc = NULL;
- }
- }
- struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
- const struct cpumask *cpu_map, struct sched_domain_attr *attr,
- struct sched_domain *child, int cpu)
- {
- struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
- if (child) {
- sd->level = child->level + 1;
- sched_domain_level_max = max(sched_domain_level_max, sd->level);
- child->parent = sd;
- if (!cpumask_subset(sched_domain_span(child),
- sched_domain_span(sd))) {
- pr_err("BUG: arch topology borken\n");
- #ifdef CONFIG_SCHED_DEBUG
- pr_err(" the %s domain not a subset of the %s domain\n",
- child->name, sd->name);
- #endif
- /* Fixup, ensure @sd has at least @child cpus. */
- cpumask_or(sched_domain_span(sd),
- sched_domain_span(sd),
- sched_domain_span(child));
- }
- }
- set_domain_attribute(sd, attr);
- return sd;
- }
- /*
- * Build sched domains for a given set of cpus and attach the sched domains
- * to the individual cpus
- */
- static int build_sched_domains(const struct cpumask *cpu_map,
- struct sched_domain_attr *attr)
- {
- enum s_alloc alloc_state;
- struct sched_domain *sd;
- struct s_data d;
- struct rq *rq = NULL;
- int i, ret = -ENOMEM;
- alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
- if (alloc_state != sa_rootdomain)
- goto error;
- /* Set up domains for cpus specified by the cpu_map. */
- for_each_cpu(i, cpu_map) {
- struct sched_domain_topology_level *tl;
- sd = NULL;
- for_each_sd_topology(tl) {
- sd = build_sched_domain(tl, cpu_map, attr, sd, i);
- if (tl == sched_domain_topology)
- *per_cpu_ptr(d.sd, i) = sd;
- if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
- sd->flags |= SD_OVERLAP;
- if (cpumask_equal(cpu_map, sched_domain_span(sd)))
- break;
- }
- }
- /* Build the groups for the domains */
- for_each_cpu(i, cpu_map) {
- for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
- sd->span_weight = cpumask_weight(sched_domain_span(sd));
- if (sd->flags & SD_OVERLAP) {
- if (build_overlap_sched_groups(sd, i))
- goto error;
- } else {
- if (build_sched_groups(sd, i))
- goto error;
- }
- }
- }
- /* Calculate CPU capacity for physical packages and nodes */
- for (i = nr_cpumask_bits-1; i >= 0; i--) {
- if (!cpumask_test_cpu(i, cpu_map))
- continue;
- for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
- claim_allocations(i, sd);
- init_sched_groups_capacity(i, sd);
- }
- }
- /* Attach the domains */
- rcu_read_lock();
- for_each_cpu(i, cpu_map) {
- rq = cpu_rq(i);
- sd = *per_cpu_ptr(d.sd, i);
- /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
- if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
- WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
- cpu_attach_domain(sd, d.rd, i);
- }
- rcu_read_unlock();
- if (rq && sched_debug_enabled) {
- pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
- cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
- }
- ret = 0;
- error:
- __free_domain_allocs(&d, alloc_state, cpu_map);
- return ret;
- }
- static cpumask_var_t *doms_cur; /* current sched domains */
- static int ndoms_cur; /* number of sched domains in 'doms_cur' */
- static struct sched_domain_attr *dattr_cur;
- /* attribues of custom domains in 'doms_cur' */
- /*
- * Special case: If a kmalloc of a doms_cur partition (array of
- * cpumask) fails, then fallback to a single sched domain,
- * as determined by the single cpumask fallback_doms.
- */
- static cpumask_var_t fallback_doms;
- /*
- * arch_update_cpu_topology lets virtualized architectures update the
- * cpu core maps. It is supposed to return 1 if the topology changed
- * or 0 if it stayed the same.
- */
- int __weak arch_update_cpu_topology(void)
- {
- return 0;
- }
- cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
- {
- int i;
- cpumask_var_t *doms;
- doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
- if (!doms)
- return NULL;
- for (i = 0; i < ndoms; i++) {
- if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
- free_sched_domains(doms, i);
- return NULL;
- }
- }
- return doms;
- }
- void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
- {
- unsigned int i;
- for (i = 0; i < ndoms; i++)
- free_cpumask_var(doms[i]);
- kfree(doms);
- }
- /*
- * Set up scheduler domains and groups. Callers must hold the hotplug lock.
- * For now this just excludes isolated cpus, but could be used to
- * exclude other special cases in the future.
- */
- static int init_sched_domains(const struct cpumask *cpu_map)
- {
- int err;
- arch_update_cpu_topology();
- ndoms_cur = 1;
- doms_cur = alloc_sched_domains(ndoms_cur);
- if (!doms_cur)
- doms_cur = &fallback_doms;
- cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
- err = build_sched_domains(doms_cur[0], NULL);
- register_sched_domain_sysctl();
- return err;
- }
- /*
- * Detach sched domains from a group of cpus specified in cpu_map
- * These cpus will now be attached to the NULL domain
- */
- static void detach_destroy_domains(const struct cpumask *cpu_map)
- {
- int i;
- rcu_read_lock();
- for_each_cpu(i, cpu_map)
- cpu_attach_domain(NULL, &def_root_domain, i);
- rcu_read_unlock();
- }
- /* handle null as "default" */
- static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
- struct sched_domain_attr *new, int idx_new)
- {
- struct sched_domain_attr tmp;
- /* fast path */
- if (!new && !cur)
- return 1;
- tmp = SD_ATTR_INIT;
- return !memcmp(cur ? (cur + idx_cur) : &tmp,
- new ? (new + idx_new) : &tmp,
- sizeof(struct sched_domain_attr));
- }
- /*
- * Partition sched domains as specified by the 'ndoms_new'
- * cpumasks in the array doms_new[] of cpumasks. This compares
- * doms_new[] to the current sched domain partitioning, doms_cur[].
- * It destroys each deleted domain and builds each new domain.
- *
- * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
- * The masks don't intersect (don't overlap.) We should setup one
- * sched domain for each mask. CPUs not in any of the cpumasks will
- * not be load balanced. If the same cpumask appears both in the
- * current 'doms_cur' domains and in the new 'doms_new', we can leave
- * it as it is.
- *
- * The passed in 'doms_new' should be allocated using
- * alloc_sched_domains. This routine takes ownership of it and will
- * free_sched_domains it when done with it. If the caller failed the
- * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
- * and partition_sched_domains() will fallback to the single partition
- * 'fallback_doms', it also forces the domains to be rebuilt.
- *
- * If doms_new == NULL it will be replaced with cpu_online_mask.
- * ndoms_new == 0 is a special case for destroying existing domains,
- * and it will not create the default domain.
- *
- * Call with hotplug lock held
- */
- void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
- struct sched_domain_attr *dattr_new)
- {
- int i, j, n;
- int new_topology;
- mutex_lock(&sched_domains_mutex);
- /* always unregister in case we don't destroy any domains */
- unregister_sched_domain_sysctl();
- /* Let architecture update cpu core mappings. */
- new_topology = arch_update_cpu_topology();
- n = doms_new ? ndoms_new : 0;
- /* Destroy deleted domains */
- for (i = 0; i < ndoms_cur; i++) {
- for (j = 0; j < n && !new_topology; j++) {
- if (cpumask_equal(doms_cur[i], doms_new[j])
- && dattrs_equal(dattr_cur, i, dattr_new, j))
- goto match1;
- }
- /* no match - a current sched domain not in new doms_new[] */
- detach_destroy_domains(doms_cur[i]);
- match1:
- ;
- }
- n = ndoms_cur;
- if (doms_new == NULL) {
- n = 0;
- doms_new = &fallback_doms;
- cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
- WARN_ON_ONCE(dattr_new);
- }
- /* Build new domains */
- for (i = 0; i < ndoms_new; i++) {
- for (j = 0; j < n && !new_topology; j++) {
- if (cpumask_equal(doms_new[i], doms_cur[j])
- && dattrs_equal(dattr_new, i, dattr_cur, j))
- goto match2;
- }
- /* no match - add a new doms_new */
- build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
- match2:
- ;
- }
- /* Remember the new sched domains */
- if (doms_cur != &fallback_doms)
- free_sched_domains(doms_cur, ndoms_cur);
- kfree(dattr_cur); /* kfree(NULL) is safe */
- doms_cur = doms_new;
- dattr_cur = dattr_new;
- ndoms_cur = ndoms_new;
- register_sched_domain_sysctl();
- mutex_unlock(&sched_domains_mutex);
- }
- static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
- /*
- * Update cpusets according to cpu_active mask. If cpusets are
- * disabled, cpuset_update_active_cpus() becomes a simple wrapper
- * around partition_sched_domains().
- *
- * If we come here as part of a suspend/resume, don't touch cpusets because we
- * want to restore it back to its original state upon resume anyway.
- */
- static void cpuset_cpu_active(void)
- {
- if (cpuhp_tasks_frozen) {
- /*
- * num_cpus_frozen tracks how many CPUs are involved in suspend
- * resume sequence. As long as this is not the last online
- * operation in the resume sequence, just build a single sched
- * domain, ignoring cpusets.
- */
- partition_sched_domains(1, NULL, NULL);
- if (--num_cpus_frozen)
- return;
- /*
- * This is the last CPU online operation. So fall through and
- * restore the original sched domains by considering the
- * cpuset configurations.
- */
- cpuset_force_rebuild();
- }
- cpuset_update_active_cpus(true);
- }
- static int cpuset_cpu_inactive(unsigned int cpu)
- {
- unsigned long flags;
- struct dl_bw *dl_b;
- bool overflow;
- int cpus;
- if (!cpuhp_tasks_frozen) {
- rcu_read_lock_sched();
- dl_b = dl_bw_of(cpu);
- raw_spin_lock_irqsave(&dl_b->lock, flags);
- cpus = dl_bw_cpus(cpu);
- overflow = __dl_overflow(dl_b, cpus, 0, 0);
- raw_spin_unlock_irqrestore(&dl_b->lock, flags);
- rcu_read_unlock_sched();
- if (overflow)
- return -EBUSY;
- cpuset_update_active_cpus(false);
- } else {
- num_cpus_frozen++;
- partition_sched_domains(1, NULL, NULL);
- }
- return 0;
- }
- int sched_cpu_activate(unsigned int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
- set_cpu_active(cpu, true);
- if (sched_smp_initialized) {
- sched_domains_numa_masks_set(cpu);
- cpuset_cpu_active();
- }
- /*
- * Put the rq online, if not already. This happens:
- *
- * 1) In the early boot process, because we build the real domains
- * after all cpus have been brought up.
- *
- * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
- * domains.
- */
- raw_spin_lock_irqsave(&rq->lock, flags);
- if (rq->rd) {
- BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
- set_rq_online(rq);
- }
- raw_spin_unlock_irqrestore(&rq->lock, flags);
- update_max_interval();
- return 0;
- }
- int sched_cpu_deactivate(unsigned int cpu)
- {
- int ret;
- set_cpu_active(cpu, false);
- /*
- * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
- * users of this state to go away such that all new such users will
- * observe it.
- *
- * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
- * not imply sync_sched(), so wait for both.
- *
- * Do sync before park smpboot threads to take care the rcu boost case.
- */
- if (IS_ENABLED(CONFIG_PREEMPT))
- synchronize_rcu_mult(call_rcu, call_rcu_sched);
- else
- synchronize_rcu();
- if (!sched_smp_initialized)
- return 0;
- ret = cpuset_cpu_inactive(cpu);
- if (ret) {
- set_cpu_active(cpu, true);
- return ret;
- }
- sched_domains_numa_masks_clear(cpu);
- return 0;
- }
- static void sched_rq_cpu_starting(unsigned int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- rq->calc_load_update = calc_load_update;
- update_max_interval();
- }
- int sched_cpu_starting(unsigned int cpu)
- {
- set_cpu_rq_start_time(cpu);
- sched_rq_cpu_starting(cpu);
- return 0;
- }
- #ifdef CONFIG_HOTPLUG_CPU
- int sched_cpu_dying(unsigned int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
- /* Handle pending wakeups and then migrate everything off */
- sched_ttwu_pending();
- raw_spin_lock_irqsave(&rq->lock, flags);
- if (rq->rd) {
- BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
- set_rq_offline(rq);
- }
- migrate_tasks(rq);
- BUG_ON(rq->nr_running != 1);
- raw_spin_unlock_irqrestore(&rq->lock, flags);
- calc_load_migrate(rq);
- update_max_interval();
- nohz_balance_exit_idle(cpu);
- hrtick_clear(rq);
- return 0;
- }
- #endif
- void __init sched_init_smp(void)
- {
- cpumask_var_t non_isolated_cpus;
- alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
- alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
- sched_init_numa();
- /*
- * There's no userspace yet to cause hotplug operations; hence all the
- * cpu masks are stable and all blatant races in the below code cannot
- * happen.
- */
- mutex_lock(&sched_domains_mutex);
- init_sched_domains(cpu_active_mask);
- cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
- if (cpumask_empty(non_isolated_cpus))
- cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
- mutex_unlock(&sched_domains_mutex);
- /* Move init over to a non-isolated CPU */
- if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
- BUG();
- sched_init_granularity();
- free_cpumask_var(non_isolated_cpus);
- init_sched_rt_class();
- init_sched_dl_class();
- sched_smp_initialized = true;
- }
- static int __init migration_init(void)
- {
- sched_rq_cpu_starting(smp_processor_id());
- return 0;
- }
- early_initcall(migration_init);
- #else
- void __init sched_init_smp(void)
- {
- sched_init_granularity();
- }
- #endif /* CONFIG_SMP */
- int in_sched_functions(unsigned long addr)
- {
- return in_lock_functions(addr) ||
- (addr >= (unsigned long)__sched_text_start
- && addr < (unsigned long)__sched_text_end);
- }
- #ifdef CONFIG_CGROUP_SCHED
- /*
- * Default task group.
- * Every task in system belongs to this group at bootup.
- */
- struct task_group root_task_group;
- LIST_HEAD(task_groups);
- /* Cacheline aligned slab cache for task_group */
- static struct kmem_cache *task_group_cache __read_mostly;
- #endif
- DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
- DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
- #define WAIT_TABLE_BITS 8
- #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
- static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
- wait_queue_head_t *bit_waitqueue(void *word, int bit)
- {
- const int shift = BITS_PER_LONG == 32 ? 5 : 6;
- unsigned long val = (unsigned long)word << shift | bit;
- return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
- }
- EXPORT_SYMBOL(bit_waitqueue);
- void __init sched_init(void)
- {
- int i, j;
- unsigned long alloc_size = 0, ptr;
- for (i = 0; i < WAIT_TABLE_SIZE; i++)
- init_waitqueue_head(bit_wait_table + i);
- #ifdef CONFIG_FAIR_GROUP_SCHED
- alloc_size += 2 * nr_cpu_ids * sizeof(void **);
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- alloc_size += 2 * nr_cpu_ids * sizeof(void **);
- #endif
- if (alloc_size) {
- ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
- #ifdef CONFIG_FAIR_GROUP_SCHED
- root_task_group.se = (struct sched_entity **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- root_task_group.cfs_rq = (struct cfs_rq **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- #ifdef CONFIG_RT_GROUP_SCHED
- root_task_group.rt_se = (struct sched_rt_entity **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- root_task_group.rt_rq = (struct rt_rq **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- #endif /* CONFIG_RT_GROUP_SCHED */
- }
- #ifdef CONFIG_CPUMASK_OFFSTACK
- for_each_possible_cpu(i) {
- per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
- cpumask_size(), GFP_KERNEL, cpu_to_node(i));
- per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
- cpumask_size(), GFP_KERNEL, cpu_to_node(i));
- }
- #endif /* CONFIG_CPUMASK_OFFSTACK */
- init_rt_bandwidth(&def_rt_bandwidth,
- global_rt_period(), global_rt_runtime());
- init_dl_bandwidth(&def_dl_bandwidth,
- global_rt_period(), global_rt_runtime());
- #ifdef CONFIG_SMP
- init_defrootdomain();
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- init_rt_bandwidth(&root_task_group.rt_bandwidth,
- global_rt_period(), global_rt_runtime());
- #endif /* CONFIG_RT_GROUP_SCHED */
- #ifdef CONFIG_CGROUP_SCHED
- task_group_cache = KMEM_CACHE(task_group, 0);
- list_add(&root_task_group.list, &task_groups);
- INIT_LIST_HEAD(&root_task_group.children);
- INIT_LIST_HEAD(&root_task_group.siblings);
- autogroup_init(&init_task);
- #endif /* CONFIG_CGROUP_SCHED */
- for_each_possible_cpu(i) {
- struct rq *rq;
- rq = cpu_rq(i);
- raw_spin_lock_init(&rq->lock);
- rq->nr_running = 0;
- rq->calc_load_active = 0;
- rq->calc_load_update = jiffies + LOAD_FREQ;
- init_cfs_rq(&rq->cfs);
- init_rt_rq(&rq->rt);
- init_dl_rq(&rq->dl);
- #ifdef CONFIG_FAIR_GROUP_SCHED
- root_task_group.shares = ROOT_TASK_GROUP_LOAD;
- INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
- /*
- * How much cpu bandwidth does root_task_group get?
- *
- * In case of task-groups formed thr' the cgroup filesystem, it
- * gets 100% of the cpu resources in the system. This overall
- * system cpu resource is divided among the tasks of
- * root_task_group and its child task-groups in a fair manner,
- * based on each entity's (task or task-group's) weight
- * (se->load.weight).
- *
- * In other words, if root_task_group has 10 tasks of weight
- * 1024) and two child groups A0 and A1 (of weight 1024 each),
- * then A0's share of the cpu resource is:
- *
- * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
- *
- * We achieve this by letting root_task_group's tasks sit
- * directly in rq->cfs (i.e root_task_group->se[] = NULL).
- */
- init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
- init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
- #ifdef CONFIG_RT_GROUP_SCHED
- init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
- #endif
- for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
- rq->cpu_load[j] = 0;
- #ifdef CONFIG_SMP
- rq->sd = NULL;
- rq->rd = NULL;
- rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
- rq->balance_callback = NULL;
- rq->active_balance = 0;
- rq->next_balance = jiffies;
- rq->push_cpu = 0;
- rq->cpu = i;
- rq->online = 0;
- rq->idle_stamp = 0;
- rq->avg_idle = 2*sysctl_sched_migration_cost;
- rq->max_idle_balance_cost = sysctl_sched_migration_cost;
- INIT_LIST_HEAD(&rq->cfs_tasks);
- rq_attach_root(rq, &def_root_domain);
- #ifdef CONFIG_NO_HZ_COMMON
- rq->last_load_update_tick = jiffies;
- rq->nohz_flags = 0;
- #endif
- #ifdef CONFIG_NO_HZ_FULL
- rq->last_sched_tick = 0;
- #endif
- #endif /* CONFIG_SMP */
- init_rq_hrtick(rq);
- atomic_set(&rq->nr_iowait, 0);
- }
- set_load_weight(&init_task);
- /*
- * The boot idle thread does lazy MMU switching as well:
- */
- atomic_inc(&init_mm.mm_count);
- enter_lazy_tlb(&init_mm, current);
- /*
- * Make us the idle thread. Technically, schedule() should not be
- * called from this thread, however somewhere below it might be,
- * but because we are the idle thread, we just pick up running again
- * when this runqueue becomes "idle".
- */
- init_idle(current, smp_processor_id());
- calc_load_update = jiffies + LOAD_FREQ;
- #ifdef CONFIG_SMP
- zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
- /* May be allocated at isolcpus cmdline parse time */
- if (cpu_isolated_map == NULL)
- zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
- idle_thread_set_boot_cpu();
- set_cpu_rq_start_time(smp_processor_id());
- #endif
- init_sched_fair_class();
- init_schedstats();
- scheduler_running = 1;
- }
- #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
- static inline int preempt_count_equals(int preempt_offset)
- {
- int nested = preempt_count() + rcu_preempt_depth();
- return (nested == preempt_offset);
- }
- void __might_sleep(const char *file, int line, int preempt_offset)
- {
- /*
- * Blocking primitives will set (and therefore destroy) current->state,
- * since we will exit with TASK_RUNNING make sure we enter with it,
- * otherwise we will destroy state.
- */
- WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
- "do not call blocking ops when !TASK_RUNNING; "
- "state=%lx set at [<%p>] %pS\n",
- current->state,
- (void *)current->task_state_change,
- (void *)current->task_state_change);
- ___might_sleep(file, line, preempt_offset);
- }
- EXPORT_SYMBOL(__might_sleep);
- void ___might_sleep(const char *file, int line, int preempt_offset)
- {
- static unsigned long prev_jiffy; /* ratelimiting */
- unsigned long preempt_disable_ip;
- rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
- if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
- !is_idle_task(current)) ||
- system_state != SYSTEM_RUNNING || oops_in_progress)
- return;
- if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
- return;
- prev_jiffy = jiffies;
- /* Save this before calling printk(), since that will clobber it */
- preempt_disable_ip = get_preempt_disable_ip(current);
- printk(KERN_ERR
- "BUG: sleeping function called from invalid context at %s:%d\n",
- file, line);
- printk(KERN_ERR
- "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
- in_atomic(), irqs_disabled(),
- current->pid, current->comm);
- if (task_stack_end_corrupted(current))
- printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
- debug_show_held_locks(current);
- if (irqs_disabled())
- print_irqtrace_events(current);
- if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
- && !preempt_count_equals(preempt_offset)) {
- pr_err("Preemption disabled at:");
- print_ip_sym(preempt_disable_ip);
- pr_cont("\n");
- }
- dump_stack();
- add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
- }
- EXPORT_SYMBOL(___might_sleep);
- #endif
- #ifdef CONFIG_MAGIC_SYSRQ
- void normalize_rt_tasks(void)
- {
- struct task_struct *g, *p;
- struct sched_attr attr = {
- .sched_policy = SCHED_NORMAL,
- };
- read_lock(&tasklist_lock);
- for_each_process_thread(g, p) {
- /*
- * Only normalize user tasks:
- */
- if (p->flags & PF_KTHREAD)
- continue;
- p->se.exec_start = 0;
- schedstat_set(p->se.statistics.wait_start, 0);
- schedstat_set(p->se.statistics.sleep_start, 0);
- schedstat_set(p->se.statistics.block_start, 0);
- if (!dl_task(p) && !rt_task(p)) {
- /*
- * Renice negative nice level userspace
- * tasks back to 0:
- */
- if (task_nice(p) < 0)
- set_user_nice(p, 0);
- continue;
- }
- __sched_setscheduler(p, &attr, false, false);
- }
- read_unlock(&tasklist_lock);
- }
- #endif /* CONFIG_MAGIC_SYSRQ */
- #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
- /*
- * These functions are only useful for the IA64 MCA handling, or kdb.
- *
- * They can only be called when the whole system has been
- * stopped - every CPU needs to be quiescent, and no scheduling
- * activity can take place. Using them for anything else would
- * be a serious bug, and as a result, they aren't even visible
- * under any other configuration.
- */
- /**
- * curr_task - return the current task for a given cpu.
- * @cpu: the processor in question.
- *
- * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
- *
- * Return: The current task for @cpu.
- */
- struct task_struct *curr_task(int cpu)
- {
- return cpu_curr(cpu);
- }
- #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
- #ifdef CONFIG_IA64
- /**
- * set_curr_task - set the current task for a given cpu.
- * @cpu: the processor in question.
- * @p: the task pointer to set.
- *
- * Description: This function must only be used when non-maskable interrupts
- * are serviced on a separate stack. It allows the architecture to switch the
- * notion of the current task on a cpu in a non-blocking manner. This function
- * must be called with all CPU's synchronized, and interrupts disabled, the
- * and caller must save the original value of the current task (see
- * curr_task() above) and restore that value before reenabling interrupts and
- * re-starting the system.
- *
- * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
- */
- void ia64_set_curr_task(int cpu, struct task_struct *p)
- {
- cpu_curr(cpu) = p;
- }
- #endif
- #ifdef CONFIG_CGROUP_SCHED
- /* task_group_lock serializes the addition/removal of task groups */
- static DEFINE_SPINLOCK(task_group_lock);
- static void sched_free_group(struct task_group *tg)
- {
- free_fair_sched_group(tg);
- free_rt_sched_group(tg);
- autogroup_free(tg);
- kmem_cache_free(task_group_cache, tg);
- }
- /* allocate runqueue etc for a new task group */
- struct task_group *sched_create_group(struct task_group *parent)
- {
- struct task_group *tg;
- tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
- if (!tg)
- return ERR_PTR(-ENOMEM);
- if (!alloc_fair_sched_group(tg, parent))
- goto err;
- if (!alloc_rt_sched_group(tg, parent))
- goto err;
- return tg;
- err:
- sched_free_group(tg);
- return ERR_PTR(-ENOMEM);
- }
- void sched_online_group(struct task_group *tg, struct task_group *parent)
- {
- unsigned long flags;
- spin_lock_irqsave(&task_group_lock, flags);
- list_add_rcu(&tg->list, &task_groups);
- WARN_ON(!parent); /* root should already exist */
- tg->parent = parent;
- INIT_LIST_HEAD(&tg->children);
- list_add_rcu(&tg->siblings, &parent->children);
- spin_unlock_irqrestore(&task_group_lock, flags);
- online_fair_sched_group(tg);
- }
- /* rcu callback to free various structures associated with a task group */
- static void sched_free_group_rcu(struct rcu_head *rhp)
- {
- /* now it should be safe to free those cfs_rqs */
- sched_free_group(container_of(rhp, struct task_group, rcu));
- }
- void sched_destroy_group(struct task_group *tg)
- {
- /* wait for possible concurrent references to cfs_rqs complete */
- call_rcu(&tg->rcu, sched_free_group_rcu);
- }
- void sched_offline_group(struct task_group *tg)
- {
- unsigned long flags;
- /* end participation in shares distribution */
- unregister_fair_sched_group(tg);
- spin_lock_irqsave(&task_group_lock, flags);
- list_del_rcu(&tg->list);
- list_del_rcu(&tg->siblings);
- spin_unlock_irqrestore(&task_group_lock, flags);
- }
- static void sched_change_group(struct task_struct *tsk, int type)
- {
- struct task_group *tg;
- /*
- * All callers are synchronized by task_rq_lock(); we do not use RCU
- * which is pointless here. Thus, we pass "true" to task_css_check()
- * to prevent lockdep warnings.
- */
- tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
- struct task_group, css);
- tg = autogroup_task_group(tsk, tg);
- tsk->sched_task_group = tg;
- #ifdef CONFIG_FAIR_GROUP_SCHED
- if (tsk->sched_class->task_change_group)
- tsk->sched_class->task_change_group(tsk, type);
- else
- #endif
- set_task_rq(tsk, task_cpu(tsk));
- }
- /*
- * Change task's runqueue when it moves between groups.
- *
- * The caller of this function should have put the task in its new group by
- * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
- * its new group.
- */
- void sched_move_task(struct task_struct *tsk)
- {
- int queued, running;
- struct rq_flags rf;
- struct rq *rq;
- rq = task_rq_lock(tsk, &rf);
- update_rq_clock(rq);
- running = task_current(rq, tsk);
- queued = task_on_rq_queued(tsk);
- if (queued)
- dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
- if (unlikely(running))
- put_prev_task(rq, tsk);
- sched_change_group(tsk, TASK_MOVE_GROUP);
- if (queued)
- enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
- if (unlikely(running))
- set_curr_task(rq, tsk);
- task_rq_unlock(rq, tsk, &rf);
- }
- #endif /* CONFIG_CGROUP_SCHED */
- #ifdef CONFIG_RT_GROUP_SCHED
- /*
- * Ensure that the real time constraints are schedulable.
- */
- static DEFINE_MUTEX(rt_constraints_mutex);
- /* Must be called with tasklist_lock held */
- static inline int tg_has_rt_tasks(struct task_group *tg)
- {
- struct task_struct *g, *p;
- /*
- * Autogroups do not have RT tasks; see autogroup_create().
- */
- if (task_group_is_autogroup(tg))
- return 0;
- for_each_process_thread(g, p) {
- if (rt_task(p) && task_group(p) == tg)
- return 1;
- }
- return 0;
- }
- struct rt_schedulable_data {
- struct task_group *tg;
- u64 rt_period;
- u64 rt_runtime;
- };
- static int tg_rt_schedulable(struct task_group *tg, void *data)
- {
- struct rt_schedulable_data *d = data;
- struct task_group *child;
- unsigned long total, sum = 0;
- u64 period, runtime;
- period = ktime_to_ns(tg->rt_bandwidth.rt_period);
- runtime = tg->rt_bandwidth.rt_runtime;
- if (tg == d->tg) {
- period = d->rt_period;
- runtime = d->rt_runtime;
- }
- /*
- * Cannot have more runtime than the period.
- */
- if (runtime > period && runtime != RUNTIME_INF)
- return -EINVAL;
- /*
- * Ensure we don't starve existing RT tasks.
- */
- if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
- return -EBUSY;
- total = to_ratio(period, runtime);
- /*
- * Nobody can have more than the global setting allows.
- */
- if (total > to_ratio(global_rt_period(), global_rt_runtime()))
- return -EINVAL;
- /*
- * The sum of our children's runtime should not exceed our own.
- */
- list_for_each_entry_rcu(child, &tg->children, siblings) {
- period = ktime_to_ns(child->rt_bandwidth.rt_period);
- runtime = child->rt_bandwidth.rt_runtime;
- if (child == d->tg) {
- period = d->rt_period;
- runtime = d->rt_runtime;
- }
- sum += to_ratio(period, runtime);
- }
- if (sum > total)
- return -EINVAL;
- return 0;
- }
- static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
- {
- int ret;
- struct rt_schedulable_data data = {
- .tg = tg,
- .rt_period = period,
- .rt_runtime = runtime,
- };
- rcu_read_lock();
- ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
- rcu_read_unlock();
- return ret;
- }
- static int tg_set_rt_bandwidth(struct task_group *tg,
- u64 rt_period, u64 rt_runtime)
- {
- int i, err = 0;
- /*
- * Disallowing the root group RT runtime is BAD, it would disallow the
- * kernel creating (and or operating) RT threads.
- */
- if (tg == &root_task_group && rt_runtime == 0)
- return -EINVAL;
- /* No period doesn't make any sense. */
- if (rt_period == 0)
- return -EINVAL;
- mutex_lock(&rt_constraints_mutex);
- read_lock(&tasklist_lock);
- err = __rt_schedulable(tg, rt_period, rt_runtime);
- if (err)
- goto unlock;
- raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
- tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
- tg->rt_bandwidth.rt_runtime = rt_runtime;
- for_each_possible_cpu(i) {
- struct rt_rq *rt_rq = tg->rt_rq[i];
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- rt_rq->rt_runtime = rt_runtime;
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- }
- raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
- unlock:
- read_unlock(&tasklist_lock);
- mutex_unlock(&rt_constraints_mutex);
- return err;
- }
- static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
- {
- u64 rt_runtime, rt_period;
- rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
- rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
- if (rt_runtime_us < 0)
- rt_runtime = RUNTIME_INF;
- return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
- }
- static long sched_group_rt_runtime(struct task_group *tg)
- {
- u64 rt_runtime_us;
- if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
- return -1;
- rt_runtime_us = tg->rt_bandwidth.rt_runtime;
- do_div(rt_runtime_us, NSEC_PER_USEC);
- return rt_runtime_us;
- }
- static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
- {
- u64 rt_runtime, rt_period;
- rt_period = rt_period_us * NSEC_PER_USEC;
- rt_runtime = tg->rt_bandwidth.rt_runtime;
- return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
- }
- static long sched_group_rt_period(struct task_group *tg)
- {
- u64 rt_period_us;
- rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
- do_div(rt_period_us, NSEC_PER_USEC);
- return rt_period_us;
- }
- #endif /* CONFIG_RT_GROUP_SCHED */
- #ifdef CONFIG_RT_GROUP_SCHED
- static int sched_rt_global_constraints(void)
- {
- int ret = 0;
- mutex_lock(&rt_constraints_mutex);
- read_lock(&tasklist_lock);
- ret = __rt_schedulable(NULL, 0, 0);
- read_unlock(&tasklist_lock);
- mutex_unlock(&rt_constraints_mutex);
- return ret;
- }
- static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
- {
- /* Don't accept realtime tasks when there is no way for them to run */
- if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
- return 0;
- return 1;
- }
- #else /* !CONFIG_RT_GROUP_SCHED */
- static int sched_rt_global_constraints(void)
- {
- unsigned long flags;
- int i;
- raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
- for_each_possible_cpu(i) {
- struct rt_rq *rt_rq = &cpu_rq(i)->rt;
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- rt_rq->rt_runtime = global_rt_runtime();
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- }
- raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
- return 0;
- }
- #endif /* CONFIG_RT_GROUP_SCHED */
- static int sched_dl_global_validate(void)
- {
- u64 runtime = global_rt_runtime();
- u64 period = global_rt_period();
- u64 new_bw = to_ratio(period, runtime);
- struct dl_bw *dl_b;
- int cpu, ret = 0;
- unsigned long flags;
- /*
- * Here we want to check the bandwidth not being set to some
- * value smaller than the currently allocated bandwidth in
- * any of the root_domains.
- *
- * FIXME: Cycling on all the CPUs is overdoing, but simpler than
- * cycling on root_domains... Discussion on different/better
- * solutions is welcome!
- */
- for_each_possible_cpu(cpu) {
- rcu_read_lock_sched();
- dl_b = dl_bw_of(cpu);
- raw_spin_lock_irqsave(&dl_b->lock, flags);
- if (new_bw < dl_b->total_bw)
- ret = -EBUSY;
- raw_spin_unlock_irqrestore(&dl_b->lock, flags);
- rcu_read_unlock_sched();
- if (ret)
- break;
- }
- return ret;
- }
- static void sched_dl_do_global(void)
- {
- u64 new_bw = -1;
- struct dl_bw *dl_b;
- int cpu;
- unsigned long flags;
- def_dl_bandwidth.dl_period = global_rt_period();
- def_dl_bandwidth.dl_runtime = global_rt_runtime();
- if (global_rt_runtime() != RUNTIME_INF)
- new_bw = to_ratio(global_rt_period(), global_rt_runtime());
- /*
- * FIXME: As above...
- */
- for_each_possible_cpu(cpu) {
- rcu_read_lock_sched();
- dl_b = dl_bw_of(cpu);
- raw_spin_lock_irqsave(&dl_b->lock, flags);
- dl_b->bw = new_bw;
- raw_spin_unlock_irqrestore(&dl_b->lock, flags);
- rcu_read_unlock_sched();
- }
- }
- static int sched_rt_global_validate(void)
- {
- if (sysctl_sched_rt_period <= 0)
- return -EINVAL;
- if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
- (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
- return -EINVAL;
- return 0;
- }
- static void sched_rt_do_global(void)
- {
- def_rt_bandwidth.rt_runtime = global_rt_runtime();
- def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
- }
- int sched_rt_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
- {
- int old_period, old_runtime;
- static DEFINE_MUTEX(mutex);
- int ret;
- mutex_lock(&mutex);
- old_period = sysctl_sched_rt_period;
- old_runtime = sysctl_sched_rt_runtime;
- ret = proc_dointvec(table, write, buffer, lenp, ppos);
- if (!ret && write) {
- ret = sched_rt_global_validate();
- if (ret)
- goto undo;
- ret = sched_dl_global_validate();
- if (ret)
- goto undo;
- ret = sched_rt_global_constraints();
- if (ret)
- goto undo;
- sched_rt_do_global();
- sched_dl_do_global();
- }
- if (0) {
- undo:
- sysctl_sched_rt_period = old_period;
- sysctl_sched_rt_runtime = old_runtime;
- }
- mutex_unlock(&mutex);
- return ret;
- }
- int sched_rr_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
- {
- int ret;
- static DEFINE_MUTEX(mutex);
- mutex_lock(&mutex);
- ret = proc_dointvec(table, write, buffer, lenp, ppos);
- /* make sure that internally we keep jiffies */
- /* also, writing zero resets timeslice to default */
- if (!ret && write) {
- sched_rr_timeslice = sched_rr_timeslice <= 0 ?
- RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
- }
- mutex_unlock(&mutex);
- return ret;
- }
- #ifdef CONFIG_CGROUP_SCHED
- static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
- {
- return css ? container_of(css, struct task_group, css) : NULL;
- }
- static struct cgroup_subsys_state *
- cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
- {
- struct task_group *parent = css_tg(parent_css);
- struct task_group *tg;
- if (!parent) {
- /* This is early initialization for the top cgroup */
- return &root_task_group.css;
- }
- tg = sched_create_group(parent);
- if (IS_ERR(tg))
- return ERR_PTR(-ENOMEM);
- return &tg->css;
- }
- /* Expose task group only after completing cgroup initialization */
- static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
- {
- struct task_group *tg = css_tg(css);
- struct task_group *parent = css_tg(css->parent);
- if (parent)
- sched_online_group(tg, parent);
- return 0;
- }
- static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
- {
- struct task_group *tg = css_tg(css);
- sched_offline_group(tg);
- }
- static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
- {
- struct task_group *tg = css_tg(css);
- /*
- * Relies on the RCU grace period between css_released() and this.
- */
- sched_free_group(tg);
- }
- /*
- * This is called before wake_up_new_task(), therefore we really only
- * have to set its group bits, all the other stuff does not apply.
- */
- static void cpu_cgroup_fork(struct task_struct *task)
- {
- struct rq_flags rf;
- struct rq *rq;
- rq = task_rq_lock(task, &rf);
- sched_change_group(task, TASK_SET_GROUP);
- task_rq_unlock(rq, task, &rf);
- }
- static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
- {
- struct task_struct *task;
- struct cgroup_subsys_state *css;
- int ret = 0;
- cgroup_taskset_for_each(task, css, tset) {
- #ifdef CONFIG_RT_GROUP_SCHED
- if (!sched_rt_can_attach(css_tg(css), task))
- return -EINVAL;
- #else
- /* We don't support RT-tasks being in separate groups */
- if (task->sched_class != &fair_sched_class)
- return -EINVAL;
- #endif
- /*
- * Serialize against wake_up_new_task() such that if its
- * running, we're sure to observe its full state.
- */
- raw_spin_lock_irq(&task->pi_lock);
- /*
- * Avoid calling sched_move_task() before wake_up_new_task()
- * has happened. This would lead to problems with PELT, due to
- * move wanting to detach+attach while we're not attached yet.
- */
- if (task->state == TASK_NEW)
- ret = -EINVAL;
- raw_spin_unlock_irq(&task->pi_lock);
- if (ret)
- break;
- }
- return ret;
- }
- static void cpu_cgroup_attach(struct cgroup_taskset *tset)
- {
- struct task_struct *task;
- struct cgroup_subsys_state *css;
- cgroup_taskset_for_each(task, css, tset)
- sched_move_task(task);
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
- struct cftype *cftype, u64 shareval)
- {
- return sched_group_set_shares(css_tg(css), scale_load(shareval));
- }
- static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
- struct cftype *cft)
- {
- struct task_group *tg = css_tg(css);
- return (u64) scale_load_down(tg->shares);
- }
- #ifdef CONFIG_CFS_BANDWIDTH
- static DEFINE_MUTEX(cfs_constraints_mutex);
- const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
- const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
- static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
- static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
- {
- int i, ret = 0, runtime_enabled, runtime_was_enabled;
- struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
- if (tg == &root_task_group)
- return -EINVAL;
- /*
- * Ensure we have at some amount of bandwidth every period. This is
- * to prevent reaching a state of large arrears when throttled via
- * entity_tick() resulting in prolonged exit starvation.
- */
- if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
- return -EINVAL;
- /*
- * Likewise, bound things on the otherside by preventing insane quota
- * periods. This also allows us to normalize in computing quota
- * feasibility.
- */
- if (period > max_cfs_quota_period)
- return -EINVAL;
- /*
- * Prevent race between setting of cfs_rq->runtime_enabled and
- * unthrottle_offline_cfs_rqs().
- */
- get_online_cpus();
- mutex_lock(&cfs_constraints_mutex);
- ret = __cfs_schedulable(tg, period, quota);
- if (ret)
- goto out_unlock;
- runtime_enabled = quota != RUNTIME_INF;
- runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
- /*
- * If we need to toggle cfs_bandwidth_used, off->on must occur
- * before making related changes, and on->off must occur afterwards
- */
- if (runtime_enabled && !runtime_was_enabled)
- cfs_bandwidth_usage_inc();
- raw_spin_lock_irq(&cfs_b->lock);
- cfs_b->period = ns_to_ktime(period);
- cfs_b->quota = quota;
- __refill_cfs_bandwidth_runtime(cfs_b);
- /* restart the period timer (if active) to handle new period expiry */
- if (runtime_enabled)
- start_cfs_bandwidth(cfs_b);
- raw_spin_unlock_irq(&cfs_b->lock);
- for_each_online_cpu(i) {
- struct cfs_rq *cfs_rq = tg->cfs_rq[i];
- struct rq *rq = cfs_rq->rq;
- raw_spin_lock_irq(&rq->lock);
- cfs_rq->runtime_enabled = runtime_enabled;
- cfs_rq->runtime_remaining = 0;
- if (cfs_rq->throttled)
- unthrottle_cfs_rq(cfs_rq);
- raw_spin_unlock_irq(&rq->lock);
- }
- if (runtime_was_enabled && !runtime_enabled)
- cfs_bandwidth_usage_dec();
- out_unlock:
- mutex_unlock(&cfs_constraints_mutex);
- put_online_cpus();
- return ret;
- }
- int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
- {
- u64 quota, period;
- period = ktime_to_ns(tg->cfs_bandwidth.period);
- if (cfs_quota_us < 0)
- quota = RUNTIME_INF;
- else
- quota = (u64)cfs_quota_us * NSEC_PER_USEC;
- return tg_set_cfs_bandwidth(tg, period, quota);
- }
- long tg_get_cfs_quota(struct task_group *tg)
- {
- u64 quota_us;
- if (tg->cfs_bandwidth.quota == RUNTIME_INF)
- return -1;
- quota_us = tg->cfs_bandwidth.quota;
- do_div(quota_us, NSEC_PER_USEC);
- return quota_us;
- }
- int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
- {
- u64 quota, period;
- period = (u64)cfs_period_us * NSEC_PER_USEC;
- quota = tg->cfs_bandwidth.quota;
- return tg_set_cfs_bandwidth(tg, period, quota);
- }
- long tg_get_cfs_period(struct task_group *tg)
- {
- u64 cfs_period_us;
- cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
- do_div(cfs_period_us, NSEC_PER_USEC);
- return cfs_period_us;
- }
- static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
- struct cftype *cft)
- {
- return tg_get_cfs_quota(css_tg(css));
- }
- static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
- struct cftype *cftype, s64 cfs_quota_us)
- {
- return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
- }
- static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
- struct cftype *cft)
- {
- return tg_get_cfs_period(css_tg(css));
- }
- static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
- struct cftype *cftype, u64 cfs_period_us)
- {
- return tg_set_cfs_period(css_tg(css), cfs_period_us);
- }
- struct cfs_schedulable_data {
- struct task_group *tg;
- u64 period, quota;
- };
- /*
- * normalize group quota/period to be quota/max_period
- * note: units are usecs
- */
- static u64 normalize_cfs_quota(struct task_group *tg,
- struct cfs_schedulable_data *d)
- {
- u64 quota, period;
- if (tg == d->tg) {
- period = d->period;
- quota = d->quota;
- } else {
- period = tg_get_cfs_period(tg);
- quota = tg_get_cfs_quota(tg);
- }
- /* note: these should typically be equivalent */
- if (quota == RUNTIME_INF || quota == -1)
- return RUNTIME_INF;
- return to_ratio(period, quota);
- }
- static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
- {
- struct cfs_schedulable_data *d = data;
- struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
- s64 quota = 0, parent_quota = -1;
- if (!tg->parent) {
- quota = RUNTIME_INF;
- } else {
- struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
- quota = normalize_cfs_quota(tg, d);
- parent_quota = parent_b->hierarchical_quota;
- /*
- * ensure max(child_quota) <= parent_quota, inherit when no
- * limit is set
- */
- if (quota == RUNTIME_INF)
- quota = parent_quota;
- else if (parent_quota != RUNTIME_INF && quota > parent_quota)
- return -EINVAL;
- }
- cfs_b->hierarchical_quota = quota;
- return 0;
- }
- static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
- {
- int ret;
- struct cfs_schedulable_data data = {
- .tg = tg,
- .period = period,
- .quota = quota,
- };
- if (quota != RUNTIME_INF) {
- do_div(data.period, NSEC_PER_USEC);
- do_div(data.quota, NSEC_PER_USEC);
- }
- rcu_read_lock();
- ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
- rcu_read_unlock();
- return ret;
- }
- static int cpu_stats_show(struct seq_file *sf, void *v)
- {
- struct task_group *tg = css_tg(seq_css(sf));
- struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
- seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
- seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
- seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
- return 0;
- }
- #endif /* CONFIG_CFS_BANDWIDTH */
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- #ifdef CONFIG_RT_GROUP_SCHED
- static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
- struct cftype *cft, s64 val)
- {
- return sched_group_set_rt_runtime(css_tg(css), val);
- }
- static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
- struct cftype *cft)
- {
- return sched_group_rt_runtime(css_tg(css));
- }
- static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
- struct cftype *cftype, u64 rt_period_us)
- {
- return sched_group_set_rt_period(css_tg(css), rt_period_us);
- }
- static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
- struct cftype *cft)
- {
- return sched_group_rt_period(css_tg(css));
- }
- #endif /* CONFIG_RT_GROUP_SCHED */
- static struct cftype cpu_files[] = {
- #ifdef CONFIG_FAIR_GROUP_SCHED
- {
- .name = "shares",
- .read_u64 = cpu_shares_read_u64,
- .write_u64 = cpu_shares_write_u64,
- },
- #endif
- #ifdef CONFIG_CFS_BANDWIDTH
- {
- .name = "cfs_quota_us",
- .read_s64 = cpu_cfs_quota_read_s64,
- .write_s64 = cpu_cfs_quota_write_s64,
- },
- {
- .name = "cfs_period_us",
- .read_u64 = cpu_cfs_period_read_u64,
- .write_u64 = cpu_cfs_period_write_u64,
- },
- {
- .name = "stat",
- .seq_show = cpu_stats_show,
- },
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- {
- .name = "rt_runtime_us",
- .read_s64 = cpu_rt_runtime_read,
- .write_s64 = cpu_rt_runtime_write,
- },
- {
- .name = "rt_period_us",
- .read_u64 = cpu_rt_period_read_uint,
- .write_u64 = cpu_rt_period_write_uint,
- },
- #endif
- { } /* terminate */
- };
- struct cgroup_subsys cpu_cgrp_subsys = {
- .css_alloc = cpu_cgroup_css_alloc,
- .css_online = cpu_cgroup_css_online,
- .css_released = cpu_cgroup_css_released,
- .css_free = cpu_cgroup_css_free,
- .fork = cpu_cgroup_fork,
- .can_attach = cpu_cgroup_can_attach,
- .attach = cpu_cgroup_attach,
- .legacy_cftypes = cpu_files,
- .early_init = true,
- };
- #endif /* CONFIG_CGROUP_SCHED */
- void dump_cpu_task(int cpu)
- {
- pr_info("Task dump for CPU %d:\n", cpu);
- sched_show_task(cpu_curr(cpu));
- }
- /*
- * Nice levels are multiplicative, with a gentle 10% change for every
- * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
- * nice 1, it will get ~10% less CPU time than another CPU-bound task
- * that remained on nice 0.
- *
- * The "10% effect" is relative and cumulative: from _any_ nice level,
- * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
- * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
- * If a task goes up by ~10% and another task goes down by ~10% then
- * the relative distance between them is ~25%.)
- */
- const int sched_prio_to_weight[40] = {
- /* -20 */ 88761, 71755, 56483, 46273, 36291,
- /* -15 */ 29154, 23254, 18705, 14949, 11916,
- /* -10 */ 9548, 7620, 6100, 4904, 3906,
- /* -5 */ 3121, 2501, 1991, 1586, 1277,
- /* 0 */ 1024, 820, 655, 526, 423,
- /* 5 */ 335, 272, 215, 172, 137,
- /* 10 */ 110, 87, 70, 56, 45,
- /* 15 */ 36, 29, 23, 18, 15,
- };
- /*
- * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
- *
- * In cases where the weight does not change often, we can use the
- * precalculated inverse to speed up arithmetics by turning divisions
- * into multiplications:
- */
- const u32 sched_prio_to_wmult[40] = {
- /* -20 */ 48388, 59856, 76040, 92818, 118348,
- /* -15 */ 147320, 184698, 229616, 287308, 360437,
- /* -10 */ 449829, 563644, 704093, 875809, 1099582,
- /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
- /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
- /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
- /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
- /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
- };
|