update.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, you can access it online at
  16. * http://www.gnu.org/licenses/gpl-2.0.html.
  17. *
  18. * Copyright IBM Corporation, 2001
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. *
  23. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  24. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  25. * Papers:
  26. * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  27. * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  28. *
  29. * For detailed explanation of Read-Copy Update mechanism see -
  30. * http://lse.sourceforge.net/locking/rcupdate.html
  31. *
  32. */
  33. #include <linux/types.h>
  34. #include <linux/kernel.h>
  35. #include <linux/init.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/smp.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/sched.h>
  40. #include <linux/atomic.h>
  41. #include <linux/bitops.h>
  42. #include <linux/percpu.h>
  43. #include <linux/notifier.h>
  44. #include <linux/cpu.h>
  45. #include <linux/mutex.h>
  46. #include <linux/export.h>
  47. #include <linux/hardirq.h>
  48. #include <linux/delay.h>
  49. #include <linux/moduleparam.h>
  50. #include <linux/kthread.h>
  51. #include <linux/tick.h>
  52. #define CREATE_TRACE_POINTS
  53. #include "rcu.h"
  54. #ifdef MODULE_PARAM_PREFIX
  55. #undef MODULE_PARAM_PREFIX
  56. #endif
  57. #define MODULE_PARAM_PREFIX "rcupdate."
  58. #ifndef CONFIG_TINY_RCU
  59. module_param(rcu_expedited, int, 0);
  60. module_param(rcu_normal, int, 0);
  61. static int rcu_normal_after_boot;
  62. module_param(rcu_normal_after_boot, int, 0);
  63. #endif /* #ifndef CONFIG_TINY_RCU */
  64. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  65. /**
  66. * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
  67. *
  68. * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
  69. * RCU-sched read-side critical section. In absence of
  70. * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
  71. * critical section unless it can prove otherwise. Note that disabling
  72. * of preemption (including disabling irqs) counts as an RCU-sched
  73. * read-side critical section. This is useful for debug checks in functions
  74. * that required that they be called within an RCU-sched read-side
  75. * critical section.
  76. *
  77. * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
  78. * and while lockdep is disabled.
  79. *
  80. * Note that if the CPU is in the idle loop from an RCU point of
  81. * view (ie: that we are in the section between rcu_idle_enter() and
  82. * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
  83. * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
  84. * that are in such a section, considering these as in extended quiescent
  85. * state, so such a CPU is effectively never in an RCU read-side critical
  86. * section regardless of what RCU primitives it invokes. This state of
  87. * affairs is required --- we need to keep an RCU-free window in idle
  88. * where the CPU may possibly enter into low power mode. This way we can
  89. * notice an extended quiescent state to other CPUs that started a grace
  90. * period. Otherwise we would delay any grace period as long as we run in
  91. * the idle task.
  92. *
  93. * Similarly, we avoid claiming an SRCU read lock held if the current
  94. * CPU is offline.
  95. */
  96. int rcu_read_lock_sched_held(void)
  97. {
  98. int lockdep_opinion = 0;
  99. if (!debug_lockdep_rcu_enabled())
  100. return 1;
  101. if (!rcu_is_watching())
  102. return 0;
  103. if (!rcu_lockdep_current_cpu_online())
  104. return 0;
  105. if (debug_locks)
  106. lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
  107. return lockdep_opinion || !preemptible();
  108. }
  109. EXPORT_SYMBOL(rcu_read_lock_sched_held);
  110. #endif
  111. #ifndef CONFIG_TINY_RCU
  112. /*
  113. * Should expedited grace-period primitives always fall back to their
  114. * non-expedited counterparts? Intended for use within RCU. Note
  115. * that if the user specifies both rcu_expedited and rcu_normal, then
  116. * rcu_normal wins. (Except during the time period during boot from
  117. * when the first task is spawned until the rcu_exp_runtime_mode()
  118. * core_initcall() is invoked, at which point everything is expedited.)
  119. */
  120. bool rcu_gp_is_normal(void)
  121. {
  122. return READ_ONCE(rcu_normal) &&
  123. rcu_scheduler_active != RCU_SCHEDULER_INIT;
  124. }
  125. EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
  126. static atomic_t rcu_expedited_nesting =
  127. ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
  128. /*
  129. * Should normal grace-period primitives be expedited? Intended for
  130. * use within RCU. Note that this function takes the rcu_expedited
  131. * sysfs/boot variable and rcu_scheduler_active into account as well
  132. * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp()
  133. * until rcu_gp_is_expedited() returns false is a -really- bad idea.
  134. */
  135. bool rcu_gp_is_expedited(void)
  136. {
  137. return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
  138. rcu_scheduler_active == RCU_SCHEDULER_INIT;
  139. }
  140. EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
  141. /**
  142. * rcu_expedite_gp - Expedite future RCU grace periods
  143. *
  144. * After a call to this function, future calls to synchronize_rcu() and
  145. * friends act as the corresponding synchronize_rcu_expedited() function
  146. * had instead been called.
  147. */
  148. void rcu_expedite_gp(void)
  149. {
  150. atomic_inc(&rcu_expedited_nesting);
  151. }
  152. EXPORT_SYMBOL_GPL(rcu_expedite_gp);
  153. /**
  154. * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
  155. *
  156. * Undo a prior call to rcu_expedite_gp(). If all prior calls to
  157. * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
  158. * and if the rcu_expedited sysfs/boot parameter is not set, then all
  159. * subsequent calls to synchronize_rcu() and friends will return to
  160. * their normal non-expedited behavior.
  161. */
  162. void rcu_unexpedite_gp(void)
  163. {
  164. atomic_dec(&rcu_expedited_nesting);
  165. }
  166. EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
  167. /*
  168. * Inform RCU of the end of the in-kernel boot sequence.
  169. */
  170. void rcu_end_inkernel_boot(void)
  171. {
  172. if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
  173. rcu_unexpedite_gp();
  174. if (rcu_normal_after_boot)
  175. WRITE_ONCE(rcu_normal, 1);
  176. }
  177. #endif /* #ifndef CONFIG_TINY_RCU */
  178. #ifdef CONFIG_PREEMPT_RCU
  179. /*
  180. * Preemptible RCU implementation for rcu_read_lock().
  181. * Just increment ->rcu_read_lock_nesting, shared state will be updated
  182. * if we block.
  183. */
  184. void __rcu_read_lock(void)
  185. {
  186. current->rcu_read_lock_nesting++;
  187. barrier(); /* critical section after entry code. */
  188. }
  189. EXPORT_SYMBOL_GPL(__rcu_read_lock);
  190. /*
  191. * Preemptible RCU implementation for rcu_read_unlock().
  192. * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
  193. * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
  194. * invoke rcu_read_unlock_special() to clean up after a context switch
  195. * in an RCU read-side critical section and other special cases.
  196. */
  197. void __rcu_read_unlock(void)
  198. {
  199. struct task_struct *t = current;
  200. if (t->rcu_read_lock_nesting != 1) {
  201. --t->rcu_read_lock_nesting;
  202. } else {
  203. barrier(); /* critical section before exit code. */
  204. t->rcu_read_lock_nesting = INT_MIN;
  205. barrier(); /* assign before ->rcu_read_unlock_special load */
  206. if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
  207. rcu_read_unlock_special(t);
  208. barrier(); /* ->rcu_read_unlock_special load before assign */
  209. t->rcu_read_lock_nesting = 0;
  210. }
  211. #ifdef CONFIG_PROVE_LOCKING
  212. {
  213. int rrln = READ_ONCE(t->rcu_read_lock_nesting);
  214. WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
  215. }
  216. #endif /* #ifdef CONFIG_PROVE_LOCKING */
  217. }
  218. EXPORT_SYMBOL_GPL(__rcu_read_unlock);
  219. #endif /* #ifdef CONFIG_PREEMPT_RCU */
  220. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  221. static struct lock_class_key rcu_lock_key;
  222. struct lockdep_map rcu_lock_map =
  223. STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
  224. EXPORT_SYMBOL_GPL(rcu_lock_map);
  225. static struct lock_class_key rcu_bh_lock_key;
  226. struct lockdep_map rcu_bh_lock_map =
  227. STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
  228. EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
  229. static struct lock_class_key rcu_sched_lock_key;
  230. struct lockdep_map rcu_sched_lock_map =
  231. STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
  232. EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
  233. static struct lock_class_key rcu_callback_key;
  234. struct lockdep_map rcu_callback_map =
  235. STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
  236. EXPORT_SYMBOL_GPL(rcu_callback_map);
  237. int notrace debug_lockdep_rcu_enabled(void)
  238. {
  239. return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
  240. current->lockdep_recursion == 0;
  241. }
  242. EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
  243. /**
  244. * rcu_read_lock_held() - might we be in RCU read-side critical section?
  245. *
  246. * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
  247. * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
  248. * this assumes we are in an RCU read-side critical section unless it can
  249. * prove otherwise. This is useful for debug checks in functions that
  250. * require that they be called within an RCU read-side critical section.
  251. *
  252. * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
  253. * and while lockdep is disabled.
  254. *
  255. * Note that rcu_read_lock() and the matching rcu_read_unlock() must
  256. * occur in the same context, for example, it is illegal to invoke
  257. * rcu_read_unlock() in process context if the matching rcu_read_lock()
  258. * was invoked from within an irq handler.
  259. *
  260. * Note that rcu_read_lock() is disallowed if the CPU is either idle or
  261. * offline from an RCU perspective, so check for those as well.
  262. */
  263. int rcu_read_lock_held(void)
  264. {
  265. if (!debug_lockdep_rcu_enabled())
  266. return 1;
  267. if (!rcu_is_watching())
  268. return 0;
  269. if (!rcu_lockdep_current_cpu_online())
  270. return 0;
  271. return lock_is_held(&rcu_lock_map);
  272. }
  273. EXPORT_SYMBOL_GPL(rcu_read_lock_held);
  274. /**
  275. * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
  276. *
  277. * Check for bottom half being disabled, which covers both the
  278. * CONFIG_PROVE_RCU and not cases. Note that if someone uses
  279. * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
  280. * will show the situation. This is useful for debug checks in functions
  281. * that require that they be called within an RCU read-side critical
  282. * section.
  283. *
  284. * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
  285. *
  286. * Note that rcu_read_lock() is disallowed if the CPU is either idle or
  287. * offline from an RCU perspective, so check for those as well.
  288. */
  289. int rcu_read_lock_bh_held(void)
  290. {
  291. if (!debug_lockdep_rcu_enabled())
  292. return 1;
  293. if (!rcu_is_watching())
  294. return 0;
  295. if (!rcu_lockdep_current_cpu_online())
  296. return 0;
  297. return in_softirq() || irqs_disabled();
  298. }
  299. EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
  300. #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
  301. /**
  302. * wakeme_after_rcu() - Callback function to awaken a task after grace period
  303. * @head: Pointer to rcu_head member within rcu_synchronize structure
  304. *
  305. * Awaken the corresponding task now that a grace period has elapsed.
  306. */
  307. void wakeme_after_rcu(struct rcu_head *head)
  308. {
  309. struct rcu_synchronize *rcu;
  310. rcu = container_of(head, struct rcu_synchronize, head);
  311. complete(&rcu->completion);
  312. }
  313. EXPORT_SYMBOL_GPL(wakeme_after_rcu);
  314. void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
  315. struct rcu_synchronize *rs_array)
  316. {
  317. int i;
  318. /* Initialize and register callbacks for each flavor specified. */
  319. for (i = 0; i < n; i++) {
  320. if (checktiny &&
  321. (crcu_array[i] == call_rcu ||
  322. crcu_array[i] == call_rcu_bh)) {
  323. might_sleep();
  324. continue;
  325. }
  326. init_rcu_head_on_stack(&rs_array[i].head);
  327. init_completion(&rs_array[i].completion);
  328. (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
  329. }
  330. /* Wait for all callbacks to be invoked. */
  331. for (i = 0; i < n; i++) {
  332. if (checktiny &&
  333. (crcu_array[i] == call_rcu ||
  334. crcu_array[i] == call_rcu_bh))
  335. continue;
  336. wait_for_completion(&rs_array[i].completion);
  337. destroy_rcu_head_on_stack(&rs_array[i].head);
  338. }
  339. }
  340. EXPORT_SYMBOL_GPL(__wait_rcu_gp);
  341. #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
  342. void init_rcu_head(struct rcu_head *head)
  343. {
  344. debug_object_init(head, &rcuhead_debug_descr);
  345. }
  346. void destroy_rcu_head(struct rcu_head *head)
  347. {
  348. debug_object_free(head, &rcuhead_debug_descr);
  349. }
  350. static bool rcuhead_is_static_object(void *addr)
  351. {
  352. return true;
  353. }
  354. /**
  355. * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
  356. * @head: pointer to rcu_head structure to be initialized
  357. *
  358. * This function informs debugobjects of a new rcu_head structure that
  359. * has been allocated as an auto variable on the stack. This function
  360. * is not required for rcu_head structures that are statically defined or
  361. * that are dynamically allocated on the heap. This function has no
  362. * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
  363. */
  364. void init_rcu_head_on_stack(struct rcu_head *head)
  365. {
  366. debug_object_init_on_stack(head, &rcuhead_debug_descr);
  367. }
  368. EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
  369. /**
  370. * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
  371. * @head: pointer to rcu_head structure to be initialized
  372. *
  373. * This function informs debugobjects that an on-stack rcu_head structure
  374. * is about to go out of scope. As with init_rcu_head_on_stack(), this
  375. * function is not required for rcu_head structures that are statically
  376. * defined or that are dynamically allocated on the heap. Also as with
  377. * init_rcu_head_on_stack(), this function has no effect for
  378. * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
  379. */
  380. void destroy_rcu_head_on_stack(struct rcu_head *head)
  381. {
  382. debug_object_free(head, &rcuhead_debug_descr);
  383. }
  384. EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
  385. struct debug_obj_descr rcuhead_debug_descr = {
  386. .name = "rcu_head",
  387. .is_static_object = rcuhead_is_static_object,
  388. };
  389. EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
  390. #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
  391. #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
  392. void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
  393. unsigned long secs,
  394. unsigned long c_old, unsigned long c)
  395. {
  396. trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
  397. }
  398. EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
  399. #else
  400. #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
  401. do { } while (0)
  402. #endif
  403. #ifdef CONFIG_RCU_STALL_COMMON
  404. #ifdef CONFIG_PROVE_RCU
  405. #define RCU_STALL_DELAY_DELTA (5 * HZ)
  406. #else
  407. #define RCU_STALL_DELAY_DELTA 0
  408. #endif
  409. int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
  410. static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
  411. module_param(rcu_cpu_stall_suppress, int, 0644);
  412. module_param(rcu_cpu_stall_timeout, int, 0644);
  413. int rcu_jiffies_till_stall_check(void)
  414. {
  415. int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
  416. /*
  417. * Limit check must be consistent with the Kconfig limits
  418. * for CONFIG_RCU_CPU_STALL_TIMEOUT.
  419. */
  420. if (till_stall_check < 3) {
  421. WRITE_ONCE(rcu_cpu_stall_timeout, 3);
  422. till_stall_check = 3;
  423. } else if (till_stall_check > 300) {
  424. WRITE_ONCE(rcu_cpu_stall_timeout, 300);
  425. till_stall_check = 300;
  426. }
  427. return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
  428. }
  429. void rcu_sysrq_start(void)
  430. {
  431. if (!rcu_cpu_stall_suppress)
  432. rcu_cpu_stall_suppress = 2;
  433. }
  434. void rcu_sysrq_end(void)
  435. {
  436. if (rcu_cpu_stall_suppress == 2)
  437. rcu_cpu_stall_suppress = 0;
  438. }
  439. static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
  440. {
  441. rcu_cpu_stall_suppress = 1;
  442. return NOTIFY_DONE;
  443. }
  444. static struct notifier_block rcu_panic_block = {
  445. .notifier_call = rcu_panic,
  446. };
  447. static int __init check_cpu_stall_init(void)
  448. {
  449. atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
  450. return 0;
  451. }
  452. early_initcall(check_cpu_stall_init);
  453. #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
  454. #ifdef CONFIG_TASKS_RCU
  455. /*
  456. * Simple variant of RCU whose quiescent states are voluntary context switch,
  457. * user-space execution, and idle. As such, grace periods can take one good
  458. * long time. There are no read-side primitives similar to rcu_read_lock()
  459. * and rcu_read_unlock() because this implementation is intended to get
  460. * the system into a safe state for some of the manipulations involved in
  461. * tracing and the like. Finally, this implementation does not support
  462. * high call_rcu_tasks() rates from multiple CPUs. If this is required,
  463. * per-CPU callback lists will be needed.
  464. */
  465. /* Global list of callbacks and associated lock. */
  466. static struct rcu_head *rcu_tasks_cbs_head;
  467. static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
  468. static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
  469. static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
  470. /* Track exiting tasks in order to allow them to be waited for. */
  471. DEFINE_SRCU(tasks_rcu_exit_srcu);
  472. /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
  473. static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
  474. module_param(rcu_task_stall_timeout, int, 0644);
  475. static void rcu_spawn_tasks_kthread(void);
  476. static struct task_struct *rcu_tasks_kthread_ptr;
  477. /*
  478. * Post an RCU-tasks callback. First call must be from process context
  479. * after the scheduler if fully operational.
  480. */
  481. void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
  482. {
  483. unsigned long flags;
  484. bool needwake;
  485. bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
  486. rhp->next = NULL;
  487. rhp->func = func;
  488. raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
  489. needwake = !rcu_tasks_cbs_head;
  490. *rcu_tasks_cbs_tail = rhp;
  491. rcu_tasks_cbs_tail = &rhp->next;
  492. raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
  493. /* We can't create the thread unless interrupts are enabled. */
  494. if ((needwake && havetask) ||
  495. (!havetask && !irqs_disabled_flags(flags))) {
  496. rcu_spawn_tasks_kthread();
  497. wake_up(&rcu_tasks_cbs_wq);
  498. }
  499. }
  500. EXPORT_SYMBOL_GPL(call_rcu_tasks);
  501. /**
  502. * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
  503. *
  504. * Control will return to the caller some time after a full rcu-tasks
  505. * grace period has elapsed, in other words after all currently
  506. * executing rcu-tasks read-side critical sections have elapsed. These
  507. * read-side critical sections are delimited by calls to schedule(),
  508. * cond_resched_rcu_qs(), idle execution, userspace execution, calls
  509. * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
  510. *
  511. * This is a very specialized primitive, intended only for a few uses in
  512. * tracing and other situations requiring manipulation of function
  513. * preambles and profiling hooks. The synchronize_rcu_tasks() function
  514. * is not (yet) intended for heavy use from multiple CPUs.
  515. *
  516. * Note that this guarantee implies further memory-ordering guarantees.
  517. * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
  518. * each CPU is guaranteed to have executed a full memory barrier since the
  519. * end of its last RCU-tasks read-side critical section whose beginning
  520. * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
  521. * having an RCU-tasks read-side critical section that extends beyond
  522. * the return from synchronize_rcu_tasks() is guaranteed to have executed
  523. * a full memory barrier after the beginning of synchronize_rcu_tasks()
  524. * and before the beginning of that RCU-tasks read-side critical section.
  525. * Note that these guarantees include CPUs that are offline, idle, or
  526. * executing in user mode, as well as CPUs that are executing in the kernel.
  527. *
  528. * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
  529. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  530. * to have executed a full memory barrier during the execution of
  531. * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
  532. * (but again only if the system has more than one CPU).
  533. */
  534. void synchronize_rcu_tasks(void)
  535. {
  536. /* Complain if the scheduler has not started. */
  537. RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
  538. "synchronize_rcu_tasks called too soon");
  539. /* Wait for the grace period. */
  540. wait_rcu_gp(call_rcu_tasks);
  541. }
  542. EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
  543. /**
  544. * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
  545. *
  546. * Although the current implementation is guaranteed to wait, it is not
  547. * obligated to, for example, if there are no pending callbacks.
  548. */
  549. void rcu_barrier_tasks(void)
  550. {
  551. /* There is only one callback queue, so this is easy. ;-) */
  552. synchronize_rcu_tasks();
  553. }
  554. EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
  555. /* See if tasks are still holding out, complain if so. */
  556. static void check_holdout_task(struct task_struct *t,
  557. bool needreport, bool *firstreport)
  558. {
  559. int cpu;
  560. if (!READ_ONCE(t->rcu_tasks_holdout) ||
  561. t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
  562. !READ_ONCE(t->on_rq) ||
  563. (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
  564. !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
  565. WRITE_ONCE(t->rcu_tasks_holdout, false);
  566. list_del_init(&t->rcu_tasks_holdout_list);
  567. put_task_struct(t);
  568. return;
  569. }
  570. if (!needreport)
  571. return;
  572. if (*firstreport) {
  573. pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
  574. *firstreport = false;
  575. }
  576. cpu = task_cpu(t);
  577. pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
  578. t, ".I"[is_idle_task(t)],
  579. "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
  580. t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
  581. t->rcu_tasks_idle_cpu, cpu);
  582. sched_show_task(t);
  583. }
  584. /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
  585. static int __noreturn rcu_tasks_kthread(void *arg)
  586. {
  587. unsigned long flags;
  588. struct task_struct *g, *t;
  589. unsigned long lastreport;
  590. struct rcu_head *list;
  591. struct rcu_head *next;
  592. LIST_HEAD(rcu_tasks_holdouts);
  593. /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
  594. housekeeping_affine(current);
  595. /*
  596. * Each pass through the following loop makes one check for
  597. * newly arrived callbacks, and, if there are some, waits for
  598. * one RCU-tasks grace period and then invokes the callbacks.
  599. * This loop is terminated by the system going down. ;-)
  600. */
  601. for (;;) {
  602. /* Pick up any new callbacks. */
  603. raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
  604. list = rcu_tasks_cbs_head;
  605. rcu_tasks_cbs_head = NULL;
  606. rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
  607. raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
  608. /* If there were none, wait a bit and start over. */
  609. if (!list) {
  610. wait_event_interruptible(rcu_tasks_cbs_wq,
  611. rcu_tasks_cbs_head);
  612. if (!rcu_tasks_cbs_head) {
  613. WARN_ON(signal_pending(current));
  614. schedule_timeout_interruptible(HZ/10);
  615. }
  616. continue;
  617. }
  618. /*
  619. * Wait for all pre-existing t->on_rq and t->nvcsw
  620. * transitions to complete. Invoking synchronize_sched()
  621. * suffices because all these transitions occur with
  622. * interrupts disabled. Without this synchronize_sched(),
  623. * a read-side critical section that started before the
  624. * grace period might be incorrectly seen as having started
  625. * after the grace period.
  626. *
  627. * This synchronize_sched() also dispenses with the
  628. * need for a memory barrier on the first store to
  629. * ->rcu_tasks_holdout, as it forces the store to happen
  630. * after the beginning of the grace period.
  631. */
  632. synchronize_sched();
  633. /*
  634. * There were callbacks, so we need to wait for an
  635. * RCU-tasks grace period. Start off by scanning
  636. * the task list for tasks that are not already
  637. * voluntarily blocked. Mark these tasks and make
  638. * a list of them in rcu_tasks_holdouts.
  639. */
  640. rcu_read_lock();
  641. for_each_process_thread(g, t) {
  642. if (t != current && READ_ONCE(t->on_rq) &&
  643. !is_idle_task(t)) {
  644. get_task_struct(t);
  645. t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
  646. WRITE_ONCE(t->rcu_tasks_holdout, true);
  647. list_add(&t->rcu_tasks_holdout_list,
  648. &rcu_tasks_holdouts);
  649. }
  650. }
  651. rcu_read_unlock();
  652. /*
  653. * Wait for tasks that are in the process of exiting.
  654. * This does only part of the job, ensuring that all
  655. * tasks that were previously exiting reach the point
  656. * where they have disabled preemption, allowing the
  657. * later synchronize_sched() to finish the job.
  658. */
  659. synchronize_srcu(&tasks_rcu_exit_srcu);
  660. /*
  661. * Each pass through the following loop scans the list
  662. * of holdout tasks, removing any that are no longer
  663. * holdouts. When the list is empty, we are done.
  664. */
  665. lastreport = jiffies;
  666. while (!list_empty(&rcu_tasks_holdouts)) {
  667. bool firstreport;
  668. bool needreport;
  669. int rtst;
  670. struct task_struct *t1;
  671. schedule_timeout_interruptible(HZ);
  672. rtst = READ_ONCE(rcu_task_stall_timeout);
  673. needreport = rtst > 0 &&
  674. time_after(jiffies, lastreport + rtst);
  675. if (needreport)
  676. lastreport = jiffies;
  677. firstreport = true;
  678. WARN_ON(signal_pending(current));
  679. list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
  680. rcu_tasks_holdout_list) {
  681. check_holdout_task(t, needreport, &firstreport);
  682. cond_resched();
  683. }
  684. }
  685. /*
  686. * Because ->on_rq and ->nvcsw are not guaranteed
  687. * to have a full memory barriers prior to them in the
  688. * schedule() path, memory reordering on other CPUs could
  689. * cause their RCU-tasks read-side critical sections to
  690. * extend past the end of the grace period. However,
  691. * because these ->nvcsw updates are carried out with
  692. * interrupts disabled, we can use synchronize_sched()
  693. * to force the needed ordering on all such CPUs.
  694. *
  695. * This synchronize_sched() also confines all
  696. * ->rcu_tasks_holdout accesses to be within the grace
  697. * period, avoiding the need for memory barriers for
  698. * ->rcu_tasks_holdout accesses.
  699. *
  700. * In addition, this synchronize_sched() waits for exiting
  701. * tasks to complete their final preempt_disable() region
  702. * of execution, cleaning up after the synchronize_srcu()
  703. * above.
  704. */
  705. synchronize_sched();
  706. /* Invoke the callbacks. */
  707. while (list) {
  708. next = list->next;
  709. local_bh_disable();
  710. list->func(list);
  711. local_bh_enable();
  712. list = next;
  713. cond_resched();
  714. }
  715. schedule_timeout_uninterruptible(HZ/10);
  716. }
  717. }
  718. /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
  719. static void rcu_spawn_tasks_kthread(void)
  720. {
  721. static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
  722. struct task_struct *t;
  723. if (READ_ONCE(rcu_tasks_kthread_ptr)) {
  724. smp_mb(); /* Ensure caller sees full kthread. */
  725. return;
  726. }
  727. mutex_lock(&rcu_tasks_kthread_mutex);
  728. if (rcu_tasks_kthread_ptr) {
  729. mutex_unlock(&rcu_tasks_kthread_mutex);
  730. return;
  731. }
  732. t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
  733. BUG_ON(IS_ERR(t));
  734. smp_mb(); /* Ensure others see full kthread. */
  735. WRITE_ONCE(rcu_tasks_kthread_ptr, t);
  736. mutex_unlock(&rcu_tasks_kthread_mutex);
  737. }
  738. #endif /* #ifdef CONFIG_TASKS_RCU */
  739. /*
  740. * Test each non-SRCU synchronous grace-period wait API. This is
  741. * useful just after a change in mode for these primitives, and
  742. * during early boot.
  743. */
  744. void rcu_test_sync_prims(void)
  745. {
  746. if (!IS_ENABLED(CONFIG_PROVE_RCU))
  747. return;
  748. synchronize_rcu();
  749. synchronize_rcu_bh();
  750. synchronize_sched();
  751. synchronize_rcu_expedited();
  752. synchronize_rcu_bh_expedited();
  753. synchronize_sched_expedited();
  754. }
  755. #ifdef CONFIG_PROVE_RCU
  756. /*
  757. * Early boot self test parameters, one for each flavor
  758. */
  759. static bool rcu_self_test;
  760. static bool rcu_self_test_bh;
  761. static bool rcu_self_test_sched;
  762. module_param(rcu_self_test, bool, 0444);
  763. module_param(rcu_self_test_bh, bool, 0444);
  764. module_param(rcu_self_test_sched, bool, 0444);
  765. static int rcu_self_test_counter;
  766. static void test_callback(struct rcu_head *r)
  767. {
  768. rcu_self_test_counter++;
  769. pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
  770. }
  771. static void early_boot_test_call_rcu(void)
  772. {
  773. static struct rcu_head head;
  774. call_rcu(&head, test_callback);
  775. }
  776. static void early_boot_test_call_rcu_bh(void)
  777. {
  778. static struct rcu_head head;
  779. call_rcu_bh(&head, test_callback);
  780. }
  781. static void early_boot_test_call_rcu_sched(void)
  782. {
  783. static struct rcu_head head;
  784. call_rcu_sched(&head, test_callback);
  785. }
  786. void rcu_early_boot_tests(void)
  787. {
  788. pr_info("Running RCU self tests\n");
  789. if (rcu_self_test)
  790. early_boot_test_call_rcu();
  791. if (rcu_self_test_bh)
  792. early_boot_test_call_rcu_bh();
  793. if (rcu_self_test_sched)
  794. early_boot_test_call_rcu_sched();
  795. rcu_test_sync_prims();
  796. }
  797. static int rcu_verify_early_boot_tests(void)
  798. {
  799. int ret = 0;
  800. int early_boot_test_counter = 0;
  801. if (rcu_self_test) {
  802. early_boot_test_counter++;
  803. rcu_barrier();
  804. }
  805. if (rcu_self_test_bh) {
  806. early_boot_test_counter++;
  807. rcu_barrier_bh();
  808. }
  809. if (rcu_self_test_sched) {
  810. early_boot_test_counter++;
  811. rcu_barrier_sched();
  812. }
  813. if (rcu_self_test_counter != early_boot_test_counter) {
  814. WARN_ON(1);
  815. ret = -1;
  816. }
  817. return ret;
  818. }
  819. late_initcall(rcu_verify_early_boot_tests);
  820. #else
  821. void rcu_early_boot_tests(void) {}
  822. #endif /* CONFIG_PROVE_RCU */