12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166 |
- /*
- * Read-Copy Update mechanism for mutual exclusion
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, you can access it online at
- * http://www.gnu.org/licenses/gpl-2.0.html.
- *
- * Copyright IBM Corporation, 2001
- *
- * Author: Dipankar Sarma <dipankar@in.ibm.com>
- *
- * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
- * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
- * Papers:
- * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
- * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
- *
- * For detailed explanation of Read-Copy Update mechanism see -
- * http://lse.sourceforge.net/locking/rcupdate.html
- *
- */
- #ifndef __LINUX_RCUPDATE_H
- #define __LINUX_RCUPDATE_H
- #include <linux/types.h>
- #include <linux/cache.h>
- #include <linux/spinlock.h>
- #include <linux/threads.h>
- #include <linux/cpumask.h>
- #include <linux/seqlock.h>
- #include <linux/lockdep.h>
- #include <linux/completion.h>
- #include <linux/debugobjects.h>
- #include <linux/bug.h>
- #include <linux/compiler.h>
- #include <linux/ktime.h>
- #include <linux/irqflags.h>
- #include <asm/barrier.h>
- #ifndef CONFIG_TINY_RCU
- extern int rcu_expedited; /* for sysctl */
- extern int rcu_normal; /* also for sysctl */
- #endif /* #ifndef CONFIG_TINY_RCU */
- #ifdef CONFIG_TINY_RCU
- /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
- static inline bool rcu_gp_is_normal(void) /* Internal RCU use. */
- {
- return true;
- }
- static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */
- {
- return false;
- }
- static inline void rcu_expedite_gp(void)
- {
- }
- static inline void rcu_unexpedite_gp(void)
- {
- }
- #else /* #ifdef CONFIG_TINY_RCU */
- bool rcu_gp_is_normal(void); /* Internal RCU use. */
- bool rcu_gp_is_expedited(void); /* Internal RCU use. */
- void rcu_expedite_gp(void);
- void rcu_unexpedite_gp(void);
- #endif /* #else #ifdef CONFIG_TINY_RCU */
- enum rcutorture_type {
- RCU_FLAVOR,
- RCU_BH_FLAVOR,
- RCU_SCHED_FLAVOR,
- RCU_TASKS_FLAVOR,
- SRCU_FLAVOR,
- INVALID_RCU_FLAVOR
- };
- #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
- void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
- unsigned long *gpnum, unsigned long *completed);
- void rcutorture_record_test_transition(void);
- void rcutorture_record_progress(unsigned long vernum);
- void do_trace_rcu_torture_read(const char *rcutorturename,
- struct rcu_head *rhp,
- unsigned long secs,
- unsigned long c_old,
- unsigned long c);
- #else
- static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
- int *flags,
- unsigned long *gpnum,
- unsigned long *completed)
- {
- *flags = 0;
- *gpnum = 0;
- *completed = 0;
- }
- static inline void rcutorture_record_test_transition(void)
- {
- }
- static inline void rcutorture_record_progress(unsigned long vernum)
- {
- }
- #ifdef CONFIG_RCU_TRACE
- void do_trace_rcu_torture_read(const char *rcutorturename,
- struct rcu_head *rhp,
- unsigned long secs,
- unsigned long c_old,
- unsigned long c);
- #else
- #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
- do { } while (0)
- #endif
- #endif
- #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
- #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
- #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
- #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
- #define ulong2long(a) (*(long *)(&(a)))
- /* Exported common interfaces */
- #ifdef CONFIG_PREEMPT_RCU
- /**
- * call_rcu() - Queue an RCU callback for invocation after a grace period.
- * @head: structure to be used for queueing the RCU updates.
- * @func: actual callback function to be invoked after the grace period
- *
- * The callback function will be invoked some time after a full grace
- * period elapses, in other words after all pre-existing RCU read-side
- * critical sections have completed. However, the callback function
- * might well execute concurrently with RCU read-side critical sections
- * that started after call_rcu() was invoked. RCU read-side critical
- * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
- * and may be nested.
- *
- * Note that all CPUs must agree that the grace period extended beyond
- * all pre-existing RCU read-side critical section. On systems with more
- * than one CPU, this means that when "func()" is invoked, each CPU is
- * guaranteed to have executed a full memory barrier since the end of its
- * last RCU read-side critical section whose beginning preceded the call
- * to call_rcu(). It also means that each CPU executing an RCU read-side
- * critical section that continues beyond the start of "func()" must have
- * executed a memory barrier after the call_rcu() but before the beginning
- * of that RCU read-side critical section. Note that these guarantees
- * include CPUs that are offline, idle, or executing in user mode, as
- * well as CPUs that are executing in the kernel.
- *
- * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
- * resulting RCU callback function "func()", then both CPU A and CPU B are
- * guaranteed to execute a full memory barrier during the time interval
- * between the call to call_rcu() and the invocation of "func()" -- even
- * if CPU A and CPU B are the same CPU (but again only if the system has
- * more than one CPU).
- */
- void call_rcu(struct rcu_head *head,
- rcu_callback_t func);
- #else /* #ifdef CONFIG_PREEMPT_RCU */
- /* In classic RCU, call_rcu() is just call_rcu_sched(). */
- #define call_rcu call_rcu_sched
- #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
- /**
- * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
- * @head: structure to be used for queueing the RCU updates.
- * @func: actual callback function to be invoked after the grace period
- *
- * The callback function will be invoked some time after a full grace
- * period elapses, in other words after all currently executing RCU
- * read-side critical sections have completed. call_rcu_bh() assumes
- * that the read-side critical sections end on completion of a softirq
- * handler. This means that read-side critical sections in process
- * context must not be interrupted by softirqs. This interface is to be
- * used when most of the read-side critical sections are in softirq context.
- * RCU read-side critical sections are delimited by :
- * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
- * OR
- * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
- * These may be nested.
- *
- * See the description of call_rcu() for more detailed information on
- * memory ordering guarantees.
- */
- void call_rcu_bh(struct rcu_head *head,
- rcu_callback_t func);
- /**
- * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
- * @head: structure to be used for queueing the RCU updates.
- * @func: actual callback function to be invoked after the grace period
- *
- * The callback function will be invoked some time after a full grace
- * period elapses, in other words after all currently executing RCU
- * read-side critical sections have completed. call_rcu_sched() assumes
- * that the read-side critical sections end on enabling of preemption
- * or on voluntary preemption.
- * RCU read-side critical sections are delimited by :
- * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
- * OR
- * anything that disables preemption.
- * These may be nested.
- *
- * See the description of call_rcu() for more detailed information on
- * memory ordering guarantees.
- */
- void call_rcu_sched(struct rcu_head *head,
- rcu_callback_t func);
- void synchronize_sched(void);
- /*
- * Structure allowing asynchronous waiting on RCU.
- */
- struct rcu_synchronize {
- struct rcu_head head;
- struct completion completion;
- };
- void wakeme_after_rcu(struct rcu_head *head);
- void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
- struct rcu_synchronize *rs_array);
- #define _wait_rcu_gp(checktiny, ...) \
- do { \
- call_rcu_func_t __crcu_array[] = { __VA_ARGS__ }; \
- struct rcu_synchronize __rs_array[ARRAY_SIZE(__crcu_array)]; \
- __wait_rcu_gp(checktiny, ARRAY_SIZE(__crcu_array), \
- __crcu_array, __rs_array); \
- } while (0)
- #define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__)
- /**
- * synchronize_rcu_mult - Wait concurrently for multiple grace periods
- * @...: List of call_rcu() functions for the flavors to wait on.
- *
- * This macro waits concurrently for multiple flavors of RCU grace periods.
- * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait
- * on concurrent RCU and RCU-bh grace periods. Waiting on a give SRCU
- * domain requires you to write a wrapper function for that SRCU domain's
- * call_srcu() function, supplying the corresponding srcu_struct.
- *
- * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU
- * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called
- * is automatically a grace period.
- */
- #define synchronize_rcu_mult(...) \
- _wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__)
- /**
- * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
- * @head: structure to be used for queueing the RCU updates.
- * @func: actual callback function to be invoked after the grace period
- *
- * The callback function will be invoked some time after a full grace
- * period elapses, in other words after all currently executing RCU
- * read-side critical sections have completed. call_rcu_tasks() assumes
- * that the read-side critical sections end at a voluntary context
- * switch (not a preemption!), entry into idle, or transition to usermode
- * execution. As such, there are no read-side primitives analogous to
- * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
- * to determine that all tasks have passed through a safe state, not so
- * much for data-strcuture synchronization.
- *
- * See the description of call_rcu() for more detailed information on
- * memory ordering guarantees.
- */
- void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
- void synchronize_rcu_tasks(void);
- void rcu_barrier_tasks(void);
- #ifdef CONFIG_PREEMPT_RCU
- void __rcu_read_lock(void);
- void __rcu_read_unlock(void);
- void rcu_read_unlock_special(struct task_struct *t);
- void synchronize_rcu(void);
- /*
- * Defined as a macro as it is a very low level header included from
- * areas that don't even know about current. This gives the rcu_read_lock()
- * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
- * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
- */
- #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
- #else /* #ifdef CONFIG_PREEMPT_RCU */
- static inline void __rcu_read_lock(void)
- {
- if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
- preempt_disable();
- }
- static inline void __rcu_read_unlock(void)
- {
- if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
- preempt_enable();
- }
- static inline void synchronize_rcu(void)
- {
- synchronize_sched();
- }
- static inline int rcu_preempt_depth(void)
- {
- return 0;
- }
- #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
- /* Internal to kernel */
- void rcu_init(void);
- void rcu_sched_qs(void);
- void rcu_bh_qs(void);
- void rcu_check_callbacks(int user);
- void rcu_report_dead(unsigned int cpu);
- void rcu_cpu_starting(unsigned int cpu);
- #ifndef CONFIG_TINY_RCU
- void rcu_end_inkernel_boot(void);
- #else /* #ifndef CONFIG_TINY_RCU */
- static inline void rcu_end_inkernel_boot(void) { }
- #endif /* #ifndef CONFIG_TINY_RCU */
- #ifdef CONFIG_RCU_STALL_COMMON
- void rcu_sysrq_start(void);
- void rcu_sysrq_end(void);
- #else /* #ifdef CONFIG_RCU_STALL_COMMON */
- static inline void rcu_sysrq_start(void)
- {
- }
- static inline void rcu_sysrq_end(void)
- {
- }
- #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
- #ifdef CONFIG_NO_HZ_FULL
- void rcu_user_enter(void);
- void rcu_user_exit(void);
- #else
- static inline void rcu_user_enter(void) { }
- static inline void rcu_user_exit(void) { }
- #endif /* CONFIG_NO_HZ_FULL */
- #ifdef CONFIG_RCU_NOCB_CPU
- void rcu_init_nohz(void);
- #else /* #ifdef CONFIG_RCU_NOCB_CPU */
- static inline void rcu_init_nohz(void)
- {
- }
- #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
- /**
- * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
- * @a: Code that RCU needs to pay attention to.
- *
- * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
- * in the inner idle loop, that is, between the rcu_idle_enter() and
- * the rcu_idle_exit() -- RCU will happily ignore any such read-side
- * critical sections. However, things like powertop need tracepoints
- * in the inner idle loop.
- *
- * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
- * will tell RCU that it needs to pay attention, invoke its argument
- * (in this example, calling the do_something_with_RCU() function),
- * and then tell RCU to go back to ignoring this CPU. It is permissible
- * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
- * on the order of a million or so, even on 32-bit systems). It is
- * not legal to block within RCU_NONIDLE(), nor is it permissible to
- * transfer control either into or out of RCU_NONIDLE()'s statement.
- */
- #define RCU_NONIDLE(a) \
- do { \
- rcu_irq_enter_irqson(); \
- do { a; } while (0); \
- rcu_irq_exit_irqson(); \
- } while (0)
- /*
- * Note a voluntary context switch for RCU-tasks benefit. This is a
- * macro rather than an inline function to avoid #include hell.
- */
- #ifdef CONFIG_TASKS_RCU
- #define TASKS_RCU(x) x
- extern struct srcu_struct tasks_rcu_exit_srcu;
- #define rcu_note_voluntary_context_switch(t) \
- do { \
- rcu_all_qs(); \
- if (READ_ONCE((t)->rcu_tasks_holdout)) \
- WRITE_ONCE((t)->rcu_tasks_holdout, false); \
- } while (0)
- #else /* #ifdef CONFIG_TASKS_RCU */
- #define TASKS_RCU(x) do { } while (0)
- #define rcu_note_voluntary_context_switch(t) rcu_all_qs()
- #endif /* #else #ifdef CONFIG_TASKS_RCU */
- /**
- * cond_resched_rcu_qs - Report potential quiescent states to RCU
- *
- * This macro resembles cond_resched(), except that it is defined to
- * report potential quiescent states to RCU-tasks even if the cond_resched()
- * machinery were to be shut off, as some advocate for PREEMPT kernels.
- */
- #define cond_resched_rcu_qs() \
- do { \
- if (!cond_resched()) \
- rcu_note_voluntary_context_switch(current); \
- } while (0)
- #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
- bool __rcu_is_watching(void);
- #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
- /*
- * Infrastructure to implement the synchronize_() primitives in
- * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
- */
- #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
- #include <linux/rcutree.h>
- #elif defined(CONFIG_TINY_RCU)
- #include <linux/rcutiny.h>
- #else
- #error "Unknown RCU implementation specified to kernel configuration"
- #endif
- #define RCU_SCHEDULER_INACTIVE 0
- #define RCU_SCHEDULER_INIT 1
- #define RCU_SCHEDULER_RUNNING 2
- /*
- * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
- * initialization and destruction of rcu_head on the stack. rcu_head structures
- * allocated dynamically in the heap or defined statically don't need any
- * initialization.
- */
- #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
- void init_rcu_head(struct rcu_head *head);
- void destroy_rcu_head(struct rcu_head *head);
- void init_rcu_head_on_stack(struct rcu_head *head);
- void destroy_rcu_head_on_stack(struct rcu_head *head);
- #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
- static inline void init_rcu_head(struct rcu_head *head)
- {
- }
- static inline void destroy_rcu_head(struct rcu_head *head)
- {
- }
- static inline void init_rcu_head_on_stack(struct rcu_head *head)
- {
- }
- static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
- {
- }
- #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
- #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
- bool rcu_lockdep_current_cpu_online(void);
- #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
- static inline bool rcu_lockdep_current_cpu_online(void)
- {
- return true;
- }
- #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
- #ifdef CONFIG_DEBUG_LOCK_ALLOC
- static inline void rcu_lock_acquire(struct lockdep_map *map)
- {
- lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
- }
- static inline void rcu_lock_release(struct lockdep_map *map)
- {
- lock_release(map, 1, _THIS_IP_);
- }
- extern struct lockdep_map rcu_lock_map;
- extern struct lockdep_map rcu_bh_lock_map;
- extern struct lockdep_map rcu_sched_lock_map;
- extern struct lockdep_map rcu_callback_map;
- int debug_lockdep_rcu_enabled(void);
- int rcu_read_lock_held(void);
- int rcu_read_lock_bh_held(void);
- /**
- * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
- *
- * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
- * RCU-sched read-side critical section. In absence of
- * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
- * critical section unless it can prove otherwise.
- */
- int rcu_read_lock_sched_held(void);
- #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
- # define rcu_lock_acquire(a) do { } while (0)
- # define rcu_lock_release(a) do { } while (0)
- static inline int rcu_read_lock_held(void)
- {
- return 1;
- }
- static inline int rcu_read_lock_bh_held(void)
- {
- return 1;
- }
- static inline int rcu_read_lock_sched_held(void)
- {
- return !preemptible();
- }
- #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
- #ifdef CONFIG_PROVE_RCU
- /**
- * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
- * @c: condition to check
- * @s: informative message
- */
- #define RCU_LOCKDEP_WARN(c, s) \
- do { \
- static bool __section(.data.unlikely) __warned; \
- if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
- __warned = true; \
- lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
- } \
- } while (0)
- #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
- static inline void rcu_preempt_sleep_check(void)
- {
- RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
- "Illegal context switch in RCU read-side critical section");
- }
- #else /* #ifdef CONFIG_PROVE_RCU */
- static inline void rcu_preempt_sleep_check(void)
- {
- }
- #endif /* #else #ifdef CONFIG_PROVE_RCU */
- #define rcu_sleep_check() \
- do { \
- rcu_preempt_sleep_check(); \
- RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
- "Illegal context switch in RCU-bh read-side critical section"); \
- RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
- "Illegal context switch in RCU-sched read-side critical section"); \
- } while (0)
- #else /* #ifdef CONFIG_PROVE_RCU */
- #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
- #define rcu_sleep_check() do { } while (0)
- #endif /* #else #ifdef CONFIG_PROVE_RCU */
- /*
- * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
- * and rcu_assign_pointer(). Some of these could be folded into their
- * callers, but they are left separate in order to ease introduction of
- * multiple flavors of pointers to match the multiple flavors of RCU
- * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
- * the future.
- */
- #ifdef __CHECKER__
- #define rcu_dereference_sparse(p, space) \
- ((void)(((typeof(*p) space *)p) == p))
- #else /* #ifdef __CHECKER__ */
- #define rcu_dereference_sparse(p, space)
- #endif /* #else #ifdef __CHECKER__ */
- #define __rcu_access_pointer(p, space) \
- ({ \
- typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
- rcu_dereference_sparse(p, space); \
- ((typeof(*p) __force __kernel *)(_________p1)); \
- })
- #define __rcu_dereference_check(p, c, space) \
- ({ \
- /* Dependency order vs. p above. */ \
- typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
- RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
- rcu_dereference_sparse(p, space); \
- ((typeof(*p) __force __kernel *)(________p1)); \
- })
- #define __rcu_dereference_protected(p, c, space) \
- ({ \
- RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
- rcu_dereference_sparse(p, space); \
- ((typeof(*p) __force __kernel *)(p)); \
- })
- #define rcu_dereference_raw(p) \
- ({ \
- /* Dependency order vs. p above. */ \
- typeof(p) ________p1 = lockless_dereference(p); \
- ((typeof(*p) __force __kernel *)(________p1)); \
- })
- /**
- * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
- * @v: The value to statically initialize with.
- */
- #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
- /**
- * rcu_assign_pointer() - assign to RCU-protected pointer
- * @p: pointer to assign to
- * @v: value to assign (publish)
- *
- * Assigns the specified value to the specified RCU-protected
- * pointer, ensuring that any concurrent RCU readers will see
- * any prior initialization.
- *
- * Inserts memory barriers on architectures that require them
- * (which is most of them), and also prevents the compiler from
- * reordering the code that initializes the structure after the pointer
- * assignment. More importantly, this call documents which pointers
- * will be dereferenced by RCU read-side code.
- *
- * In some special cases, you may use RCU_INIT_POINTER() instead
- * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
- * to the fact that it does not constrain either the CPU or the compiler.
- * That said, using RCU_INIT_POINTER() when you should have used
- * rcu_assign_pointer() is a very bad thing that results in
- * impossible-to-diagnose memory corruption. So please be careful.
- * See the RCU_INIT_POINTER() comment header for details.
- *
- * Note that rcu_assign_pointer() evaluates each of its arguments only
- * once, appearances notwithstanding. One of the "extra" evaluations
- * is in typeof() and the other visible only to sparse (__CHECKER__),
- * neither of which actually execute the argument. As with most cpp
- * macros, this execute-arguments-only-once property is important, so
- * please be careful when making changes to rcu_assign_pointer() and the
- * other macros that it invokes.
- */
- #define rcu_assign_pointer(p, v) \
- ({ \
- uintptr_t _r_a_p__v = (uintptr_t)(v); \
- \
- if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
- WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
- else \
- smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
- _r_a_p__v; \
- })
- /**
- * rcu_access_pointer() - fetch RCU pointer with no dereferencing
- * @p: The pointer to read
- *
- * Return the value of the specified RCU-protected pointer, but omit the
- * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful
- * when the value of this pointer is accessed, but the pointer is not
- * dereferenced, for example, when testing an RCU-protected pointer against
- * NULL. Although rcu_access_pointer() may also be used in cases where
- * update-side locks prevent the value of the pointer from changing, you
- * should instead use rcu_dereference_protected() for this use case.
- *
- * It is also permissible to use rcu_access_pointer() when read-side
- * access to the pointer was removed at least one grace period ago, as
- * is the case in the context of the RCU callback that is freeing up
- * the data, or after a synchronize_rcu() returns. This can be useful
- * when tearing down multi-linked structures after a grace period
- * has elapsed.
- */
- #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
- /**
- * rcu_dereference_check() - rcu_dereference with debug checking
- * @p: The pointer to read, prior to dereferencing
- * @c: The conditions under which the dereference will take place
- *
- * Do an rcu_dereference(), but check that the conditions under which the
- * dereference will take place are correct. Typically the conditions
- * indicate the various locking conditions that should be held at that
- * point. The check should return true if the conditions are satisfied.
- * An implicit check for being in an RCU read-side critical section
- * (rcu_read_lock()) is included.
- *
- * For example:
- *
- * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
- *
- * could be used to indicate to lockdep that foo->bar may only be dereferenced
- * if either rcu_read_lock() is held, or that the lock required to replace
- * the bar struct at foo->bar is held.
- *
- * Note that the list of conditions may also include indications of when a lock
- * need not be held, for example during initialisation or destruction of the
- * target struct:
- *
- * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
- * atomic_read(&foo->usage) == 0);
- *
- * Inserts memory barriers on architectures that require them
- * (currently only the Alpha), prevents the compiler from refetching
- * (and from merging fetches), and, more importantly, documents exactly
- * which pointers are protected by RCU and checks that the pointer is
- * annotated as __rcu.
- */
- #define rcu_dereference_check(p, c) \
- __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
- /**
- * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
- * @p: The pointer to read, prior to dereferencing
- * @c: The conditions under which the dereference will take place
- *
- * This is the RCU-bh counterpart to rcu_dereference_check().
- */
- #define rcu_dereference_bh_check(p, c) \
- __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
- /**
- * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
- * @p: The pointer to read, prior to dereferencing
- * @c: The conditions under which the dereference will take place
- *
- * This is the RCU-sched counterpart to rcu_dereference_check().
- */
- #define rcu_dereference_sched_check(p, c) \
- __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
- __rcu)
- /*
- * The tracing infrastructure traces RCU (we want that), but unfortunately
- * some of the RCU checks causes tracing to lock up the system.
- *
- * The no-tracing version of rcu_dereference_raw() must not call
- * rcu_read_lock_held().
- */
- #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
- /**
- * rcu_dereference_protected() - fetch RCU pointer when updates prevented
- * @p: The pointer to read, prior to dereferencing
- * @c: The conditions under which the dereference will take place
- *
- * Return the value of the specified RCU-protected pointer, but omit
- * both the smp_read_barrier_depends() and the READ_ONCE(). This
- * is useful in cases where update-side locks prevent the value of the
- * pointer from changing. Please note that this primitive does -not-
- * prevent the compiler from repeating this reference or combining it
- * with other references, so it should not be used without protection
- * of appropriate locks.
- *
- * This function is only for update-side use. Using this function
- * when protected only by rcu_read_lock() will result in infrequent
- * but very ugly failures.
- */
- #define rcu_dereference_protected(p, c) \
- __rcu_dereference_protected((p), (c), __rcu)
- /**
- * rcu_dereference() - fetch RCU-protected pointer for dereferencing
- * @p: The pointer to read, prior to dereferencing
- *
- * This is a simple wrapper around rcu_dereference_check().
- */
- #define rcu_dereference(p) rcu_dereference_check(p, 0)
- /**
- * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
- * @p: The pointer to read, prior to dereferencing
- *
- * Makes rcu_dereference_check() do the dirty work.
- */
- #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
- /**
- * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
- * @p: The pointer to read, prior to dereferencing
- *
- * Makes rcu_dereference_check() do the dirty work.
- */
- #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
- /**
- * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
- * @p: The pointer to hand off
- *
- * This is simply an identity function, but it documents where a pointer
- * is handed off from RCU to some other synchronization mechanism, for
- * example, reference counting or locking. In C11, it would map to
- * kill_dependency(). It could be used as follows:
- *
- * rcu_read_lock();
- * p = rcu_dereference(gp);
- * long_lived = is_long_lived(p);
- * if (long_lived) {
- * if (!atomic_inc_not_zero(p->refcnt))
- * long_lived = false;
- * else
- * p = rcu_pointer_handoff(p);
- * }
- * rcu_read_unlock();
- */
- #define rcu_pointer_handoff(p) (p)
- /**
- * rcu_read_lock() - mark the beginning of an RCU read-side critical section
- *
- * When synchronize_rcu() is invoked on one CPU while other CPUs
- * are within RCU read-side critical sections, then the
- * synchronize_rcu() is guaranteed to block until after all the other
- * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
- * on one CPU while other CPUs are within RCU read-side critical
- * sections, invocation of the corresponding RCU callback is deferred
- * until after the all the other CPUs exit their critical sections.
- *
- * Note, however, that RCU callbacks are permitted to run concurrently
- * with new RCU read-side critical sections. One way that this can happen
- * is via the following sequence of events: (1) CPU 0 enters an RCU
- * read-side critical section, (2) CPU 1 invokes call_rcu() to register
- * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
- * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
- * callback is invoked. This is legal, because the RCU read-side critical
- * section that was running concurrently with the call_rcu() (and which
- * therefore might be referencing something that the corresponding RCU
- * callback would free up) has completed before the corresponding
- * RCU callback is invoked.
- *
- * RCU read-side critical sections may be nested. Any deferred actions
- * will be deferred until the outermost RCU read-side critical section
- * completes.
- *
- * You can avoid reading and understanding the next paragraph by
- * following this rule: don't put anything in an rcu_read_lock() RCU
- * read-side critical section that would block in a !PREEMPT kernel.
- * But if you want the full story, read on!
- *
- * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
- * it is illegal to block while in an RCU read-side critical section.
- * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
- * kernel builds, RCU read-side critical sections may be preempted,
- * but explicit blocking is illegal. Finally, in preemptible RCU
- * implementations in real-time (with -rt patchset) kernel builds, RCU
- * read-side critical sections may be preempted and they may also block, but
- * only when acquiring spinlocks that are subject to priority inheritance.
- */
- static inline void rcu_read_lock(void)
- {
- __rcu_read_lock();
- __acquire(RCU);
- rcu_lock_acquire(&rcu_lock_map);
- RCU_LOCKDEP_WARN(!rcu_is_watching(),
- "rcu_read_lock() used illegally while idle");
- }
- /*
- * So where is rcu_write_lock()? It does not exist, as there is no
- * way for writers to lock out RCU readers. This is a feature, not
- * a bug -- this property is what provides RCU's performance benefits.
- * Of course, writers must coordinate with each other. The normal
- * spinlock primitives work well for this, but any other technique may be
- * used as well. RCU does not care how the writers keep out of each
- * others' way, as long as they do so.
- */
- /**
- * rcu_read_unlock() - marks the end of an RCU read-side critical section.
- *
- * In most situations, rcu_read_unlock() is immune from deadlock.
- * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
- * is responsible for deboosting, which it does via rt_mutex_unlock().
- * Unfortunately, this function acquires the scheduler's runqueue and
- * priority-inheritance spinlocks. This means that deadlock could result
- * if the caller of rcu_read_unlock() already holds one of these locks or
- * any lock that is ever acquired while holding them; or any lock which
- * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
- * does not disable irqs while taking ->wait_lock.
- *
- * That said, RCU readers are never priority boosted unless they were
- * preempted. Therefore, one way to avoid deadlock is to make sure
- * that preemption never happens within any RCU read-side critical
- * section whose outermost rcu_read_unlock() is called with one of
- * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
- * a number of ways, for example, by invoking preempt_disable() before
- * critical section's outermost rcu_read_lock().
- *
- * Given that the set of locks acquired by rt_mutex_unlock() might change
- * at any time, a somewhat more future-proofed approach is to make sure
- * that that preemption never happens within any RCU read-side critical
- * section whose outermost rcu_read_unlock() is called with irqs disabled.
- * This approach relies on the fact that rt_mutex_unlock() currently only
- * acquires irq-disabled locks.
- *
- * The second of these two approaches is best in most situations,
- * however, the first approach can also be useful, at least to those
- * developers willing to keep abreast of the set of locks acquired by
- * rt_mutex_unlock().
- *
- * See rcu_read_lock() for more information.
- */
- static inline void rcu_read_unlock(void)
- {
- RCU_LOCKDEP_WARN(!rcu_is_watching(),
- "rcu_read_unlock() used illegally while idle");
- __release(RCU);
- __rcu_read_unlock();
- rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
- }
- /**
- * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
- *
- * This is equivalent of rcu_read_lock(), but to be used when updates
- * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
- * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
- * softirq handler to be a quiescent state, a process in RCU read-side
- * critical section must be protected by disabling softirqs. Read-side
- * critical sections in interrupt context can use just rcu_read_lock(),
- * though this should at least be commented to avoid confusing people
- * reading the code.
- *
- * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
- * must occur in the same context, for example, it is illegal to invoke
- * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
- * was invoked from some other task.
- */
- static inline void rcu_read_lock_bh(void)
- {
- local_bh_disable();
- __acquire(RCU_BH);
- rcu_lock_acquire(&rcu_bh_lock_map);
- RCU_LOCKDEP_WARN(!rcu_is_watching(),
- "rcu_read_lock_bh() used illegally while idle");
- }
- /*
- * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
- *
- * See rcu_read_lock_bh() for more information.
- */
- static inline void rcu_read_unlock_bh(void)
- {
- RCU_LOCKDEP_WARN(!rcu_is_watching(),
- "rcu_read_unlock_bh() used illegally while idle");
- rcu_lock_release(&rcu_bh_lock_map);
- __release(RCU_BH);
- local_bh_enable();
- }
- /**
- * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
- *
- * This is equivalent of rcu_read_lock(), but to be used when updates
- * are being done using call_rcu_sched() or synchronize_rcu_sched().
- * Read-side critical sections can also be introduced by anything that
- * disables preemption, including local_irq_disable() and friends.
- *
- * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
- * must occur in the same context, for example, it is illegal to invoke
- * rcu_read_unlock_sched() from process context if the matching
- * rcu_read_lock_sched() was invoked from an NMI handler.
- */
- static inline void rcu_read_lock_sched(void)
- {
- preempt_disable();
- __acquire(RCU_SCHED);
- rcu_lock_acquire(&rcu_sched_lock_map);
- RCU_LOCKDEP_WARN(!rcu_is_watching(),
- "rcu_read_lock_sched() used illegally while idle");
- }
- /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
- static inline notrace void rcu_read_lock_sched_notrace(void)
- {
- preempt_disable_notrace();
- __acquire(RCU_SCHED);
- }
- /*
- * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
- *
- * See rcu_read_lock_sched for more information.
- */
- static inline void rcu_read_unlock_sched(void)
- {
- RCU_LOCKDEP_WARN(!rcu_is_watching(),
- "rcu_read_unlock_sched() used illegally while idle");
- rcu_lock_release(&rcu_sched_lock_map);
- __release(RCU_SCHED);
- preempt_enable();
- }
- /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
- static inline notrace void rcu_read_unlock_sched_notrace(void)
- {
- __release(RCU_SCHED);
- preempt_enable_notrace();
- }
- /**
- * RCU_INIT_POINTER() - initialize an RCU protected pointer
- *
- * Initialize an RCU-protected pointer in special cases where readers
- * do not need ordering constraints on the CPU or the compiler. These
- * special cases are:
- *
- * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
- * 2. The caller has taken whatever steps are required to prevent
- * RCU readers from concurrently accessing this pointer -or-
- * 3. The referenced data structure has already been exposed to
- * readers either at compile time or via rcu_assign_pointer() -and-
- * a. You have not made -any- reader-visible changes to
- * this structure since then -or-
- * b. It is OK for readers accessing this structure from its
- * new location to see the old state of the structure. (For
- * example, the changes were to statistical counters or to
- * other state where exact synchronization is not required.)
- *
- * Failure to follow these rules governing use of RCU_INIT_POINTER() will
- * result in impossible-to-diagnose memory corruption. As in the structures
- * will look OK in crash dumps, but any concurrent RCU readers might
- * see pre-initialized values of the referenced data structure. So
- * please be very careful how you use RCU_INIT_POINTER()!!!
- *
- * If you are creating an RCU-protected linked structure that is accessed
- * by a single external-to-structure RCU-protected pointer, then you may
- * use RCU_INIT_POINTER() to initialize the internal RCU-protected
- * pointers, but you must use rcu_assign_pointer() to initialize the
- * external-to-structure pointer -after- you have completely initialized
- * the reader-accessible portions of the linked structure.
- *
- * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
- * ordering guarantees for either the CPU or the compiler.
- */
- #define RCU_INIT_POINTER(p, v) \
- do { \
- rcu_dereference_sparse(p, __rcu); \
- WRITE_ONCE(p, RCU_INITIALIZER(v)); \
- } while (0)
- /**
- * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
- *
- * GCC-style initialization for an RCU-protected pointer in a structure field.
- */
- #define RCU_POINTER_INITIALIZER(p, v) \
- .p = RCU_INITIALIZER(v)
- /*
- * Does the specified offset indicate that the corresponding rcu_head
- * structure can be handled by kfree_rcu()?
- */
- #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
- /*
- * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
- */
- #define __kfree_rcu(head, offset) \
- do { \
- BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
- kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
- } while (0)
- /**
- * kfree_rcu() - kfree an object after a grace period.
- * @ptr: pointer to kfree
- * @rcu_head: the name of the struct rcu_head within the type of @ptr.
- *
- * Many rcu callbacks functions just call kfree() on the base structure.
- * These functions are trivial, but their size adds up, and furthermore
- * when they are used in a kernel module, that module must invoke the
- * high-latency rcu_barrier() function at module-unload time.
- *
- * The kfree_rcu() function handles this issue. Rather than encoding a
- * function address in the embedded rcu_head structure, kfree_rcu() instead
- * encodes the offset of the rcu_head structure within the base structure.
- * Because the functions are not allowed in the low-order 4096 bytes of
- * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
- * If the offset is larger than 4095 bytes, a compile-time error will
- * be generated in __kfree_rcu(). If this error is triggered, you can
- * either fall back to use of call_rcu() or rearrange the structure to
- * position the rcu_head structure into the first 4096 bytes.
- *
- * Note that the allowable offset might decrease in the future, for example,
- * to allow something like kmem_cache_free_rcu().
- *
- * The BUILD_BUG_ON check must not involve any function calls, hence the
- * checks are done in macros here.
- */
- #define kfree_rcu(ptr, rcu_head) \
- __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
- #ifdef CONFIG_TINY_RCU
- static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
- {
- *nextevt = KTIME_MAX;
- return 0;
- }
- #endif /* #ifdef CONFIG_TINY_RCU */
- #if defined(CONFIG_RCU_NOCB_CPU_ALL)
- static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
- #elif defined(CONFIG_RCU_NOCB_CPU)
- bool rcu_is_nocb_cpu(int cpu);
- #else
- static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
- #endif
- /* Only for use by adaptive-ticks code. */
- #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
- bool rcu_sys_is_idle(void);
- void rcu_sysidle_force_exit(void);
- #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
- static inline bool rcu_sys_is_idle(void)
- {
- return false;
- }
- static inline void rcu_sysidle_force_exit(void)
- {
- }
- #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
- /*
- * Dump the ftrace buffer, but only one time per callsite per boot.
- */
- #define rcu_ftrace_dump(oops_dump_mode) \
- do { \
- static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
- \
- if (!atomic_read(&___rfd_beenhere) && \
- !atomic_xchg(&___rfd_beenhere, 1)) \
- ftrace_dump(oops_dump_mode); \
- } while (0)
- #endif /* __LINUX_RCUPDATE_H */
|