123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- #ifndef _LINUX_HASH_H
- #define _LINUX_HASH_H
- /* Fast hashing routine for ints, longs and pointers.
- (C) 2002 Nadia Yvette Chambers, IBM */
- #include <asm/types.h>
- #include <linux/compiler.h>
- /*
- * The "GOLDEN_RATIO_PRIME" is used in ifs/btrfs/brtfs_inode.h and
- * fs/inode.c. It's not actually prime any more (the previous primes
- * were actively bad for hashing), but the name remains.
- */
- #if BITS_PER_LONG == 32
- #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_32
- #define hash_long(val, bits) hash_32(val, bits)
- #elif BITS_PER_LONG == 64
- #define hash_long(val, bits) hash_64(val, bits)
- #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_64
- #else
- #error Wordsize not 32 or 64
- #endif
- /*
- * This hash multiplies the input by a large odd number and takes the
- * high bits. Since multiplication propagates changes to the most
- * significant end only, it is essential that the high bits of the
- * product be used for the hash value.
- *
- * Chuck Lever verified the effectiveness of this technique:
- * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf
- *
- * Although a random odd number will do, it turns out that the golden
- * ratio phi = (sqrt(5)-1)/2, or its negative, has particularly nice
- * properties. (See Knuth vol 3, section 6.4, exercise 9.)
- *
- * These are the negative, (1 - phi) = phi**2 = (3 - sqrt(5))/2,
- * which is very slightly easier to multiply by and makes no
- * difference to the hash distribution.
- */
- #define GOLDEN_RATIO_32 0x61C88647
- #define GOLDEN_RATIO_64 0x61C8864680B583EBull
- #ifdef CONFIG_HAVE_ARCH_HASH
- /* This header may use the GOLDEN_RATIO_xx constants */
- #include <asm/hash.h>
- #endif
- /*
- * The _generic versions exist only so lib/test_hash.c can compare
- * the arch-optimized versions with the generic.
- *
- * Note that if you change these, any <asm/hash.h> that aren't updated
- * to match need to have their HAVE_ARCH_* define values updated so the
- * self-test will not false-positive.
- */
- #ifndef HAVE_ARCH__HASH_32
- #define __hash_32 __hash_32_generic
- #endif
- static inline u32 __hash_32_generic(u32 val)
- {
- return val * GOLDEN_RATIO_32;
- }
- #ifndef HAVE_ARCH_HASH_32
- #define hash_32 hash_32_generic
- #endif
- static inline u32 hash_32_generic(u32 val, unsigned int bits)
- {
- /* High bits are more random, so use them. */
- return __hash_32(val) >> (32 - bits);
- }
- #ifndef HAVE_ARCH_HASH_64
- #define hash_64 hash_64_generic
- #endif
- static __always_inline u32 hash_64_generic(u64 val, unsigned int bits)
- {
- #if BITS_PER_LONG == 64
- /* 64x64-bit multiply is efficient on all 64-bit processors */
- return val * GOLDEN_RATIO_64 >> (64 - bits);
- #else
- /* Hash 64 bits using only 32x32-bit multiply. */
- return hash_32((u32)val ^ __hash_32(val >> 32), bits);
- #endif
- }
- static inline u32 hash_ptr(const void *ptr, unsigned int bits)
- {
- return hash_long((unsigned long)ptr, bits);
- }
- /* This really should be called fold32_ptr; it does no hashing to speak of. */
- static inline u32 hash32_ptr(const void *ptr)
- {
- unsigned long val = (unsigned long)ptr;
- #if BITS_PER_LONG == 64
- val ^= (val >> 32);
- #endif
- return (u32)val;
- }
- #endif /* _LINUX_HASH_H */
|