eeprom_93xx46.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. /*
  2. * Driver for 93xx46 EEPROMs
  3. *
  4. * (C) 2011 DENX Software Engineering, Anatolij Gustschin <agust@denx.de>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/delay.h>
  11. #include <linux/device.h>
  12. #include <linux/gpio/consumer.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/mutex.h>
  16. #include <linux/of.h>
  17. #include <linux/of_device.h>
  18. #include <linux/of_gpio.h>
  19. #include <linux/slab.h>
  20. #include <linux/spi/spi.h>
  21. #include <linux/nvmem-provider.h>
  22. #include <linux/eeprom_93xx46.h>
  23. #define OP_START 0x4
  24. #define OP_WRITE (OP_START | 0x1)
  25. #define OP_READ (OP_START | 0x2)
  26. #define ADDR_EWDS 0x00
  27. #define ADDR_ERAL 0x20
  28. #define ADDR_EWEN 0x30
  29. struct eeprom_93xx46_devtype_data {
  30. unsigned int quirks;
  31. };
  32. static const struct eeprom_93xx46_devtype_data atmel_at93c46d_data = {
  33. .quirks = EEPROM_93XX46_QUIRK_SINGLE_WORD_READ |
  34. EEPROM_93XX46_QUIRK_INSTRUCTION_LENGTH,
  35. };
  36. struct eeprom_93xx46_dev {
  37. struct spi_device *spi;
  38. struct eeprom_93xx46_platform_data *pdata;
  39. struct mutex lock;
  40. struct nvmem_config nvmem_config;
  41. struct nvmem_device *nvmem;
  42. int addrlen;
  43. int size;
  44. };
  45. static inline bool has_quirk_single_word_read(struct eeprom_93xx46_dev *edev)
  46. {
  47. return edev->pdata->quirks & EEPROM_93XX46_QUIRK_SINGLE_WORD_READ;
  48. }
  49. static inline bool has_quirk_instruction_length(struct eeprom_93xx46_dev *edev)
  50. {
  51. return edev->pdata->quirks & EEPROM_93XX46_QUIRK_INSTRUCTION_LENGTH;
  52. }
  53. static int eeprom_93xx46_read(void *priv, unsigned int off,
  54. void *val, size_t count)
  55. {
  56. struct eeprom_93xx46_dev *edev = priv;
  57. char *buf = val;
  58. int err = 0;
  59. if (unlikely(off >= edev->size))
  60. return 0;
  61. if ((off + count) > edev->size)
  62. count = edev->size - off;
  63. if (unlikely(!count))
  64. return count;
  65. mutex_lock(&edev->lock);
  66. if (edev->pdata->prepare)
  67. edev->pdata->prepare(edev);
  68. while (count) {
  69. struct spi_message m;
  70. struct spi_transfer t[2] = { { 0 } };
  71. u16 cmd_addr = OP_READ << edev->addrlen;
  72. size_t nbytes = count;
  73. int bits;
  74. if (edev->addrlen == 7) {
  75. cmd_addr |= off & 0x7f;
  76. bits = 10;
  77. if (has_quirk_single_word_read(edev))
  78. nbytes = 1;
  79. } else {
  80. cmd_addr |= (off >> 1) & 0x3f;
  81. bits = 9;
  82. if (has_quirk_single_word_read(edev))
  83. nbytes = 2;
  84. }
  85. dev_dbg(&edev->spi->dev, "read cmd 0x%x, %d Hz\n",
  86. cmd_addr, edev->spi->max_speed_hz);
  87. spi_message_init(&m);
  88. t[0].tx_buf = (char *)&cmd_addr;
  89. t[0].len = 2;
  90. t[0].bits_per_word = bits;
  91. spi_message_add_tail(&t[0], &m);
  92. t[1].rx_buf = buf;
  93. t[1].len = count;
  94. t[1].bits_per_word = 8;
  95. spi_message_add_tail(&t[1], &m);
  96. err = spi_sync(edev->spi, &m);
  97. /* have to wait at least Tcsl ns */
  98. ndelay(250);
  99. if (err) {
  100. dev_err(&edev->spi->dev, "read %zu bytes at %d: err. %d\n",
  101. nbytes, (int)off, err);
  102. break;
  103. }
  104. buf += nbytes;
  105. off += nbytes;
  106. count -= nbytes;
  107. }
  108. if (edev->pdata->finish)
  109. edev->pdata->finish(edev);
  110. mutex_unlock(&edev->lock);
  111. return err;
  112. }
  113. static int eeprom_93xx46_ew(struct eeprom_93xx46_dev *edev, int is_on)
  114. {
  115. struct spi_message m;
  116. struct spi_transfer t;
  117. int bits, ret;
  118. u16 cmd_addr;
  119. cmd_addr = OP_START << edev->addrlen;
  120. if (edev->addrlen == 7) {
  121. cmd_addr |= (is_on ? ADDR_EWEN : ADDR_EWDS) << 1;
  122. bits = 10;
  123. } else {
  124. cmd_addr |= (is_on ? ADDR_EWEN : ADDR_EWDS);
  125. bits = 9;
  126. }
  127. if (has_quirk_instruction_length(edev)) {
  128. cmd_addr <<= 2;
  129. bits += 2;
  130. }
  131. dev_dbg(&edev->spi->dev, "ew%s cmd 0x%04x, %d bits\n",
  132. is_on ? "en" : "ds", cmd_addr, bits);
  133. spi_message_init(&m);
  134. memset(&t, 0, sizeof(t));
  135. t.tx_buf = &cmd_addr;
  136. t.len = 2;
  137. t.bits_per_word = bits;
  138. spi_message_add_tail(&t, &m);
  139. mutex_lock(&edev->lock);
  140. if (edev->pdata->prepare)
  141. edev->pdata->prepare(edev);
  142. ret = spi_sync(edev->spi, &m);
  143. /* have to wait at least Tcsl ns */
  144. ndelay(250);
  145. if (ret)
  146. dev_err(&edev->spi->dev, "erase/write %sable error %d\n",
  147. is_on ? "en" : "dis", ret);
  148. if (edev->pdata->finish)
  149. edev->pdata->finish(edev);
  150. mutex_unlock(&edev->lock);
  151. return ret;
  152. }
  153. static ssize_t
  154. eeprom_93xx46_write_word(struct eeprom_93xx46_dev *edev,
  155. const char *buf, unsigned off)
  156. {
  157. struct spi_message m;
  158. struct spi_transfer t[2];
  159. int bits, data_len, ret;
  160. u16 cmd_addr;
  161. cmd_addr = OP_WRITE << edev->addrlen;
  162. if (edev->addrlen == 7) {
  163. cmd_addr |= off & 0x7f;
  164. bits = 10;
  165. data_len = 1;
  166. } else {
  167. cmd_addr |= (off >> 1) & 0x3f;
  168. bits = 9;
  169. data_len = 2;
  170. }
  171. dev_dbg(&edev->spi->dev, "write cmd 0x%x\n", cmd_addr);
  172. spi_message_init(&m);
  173. memset(t, 0, sizeof(t));
  174. t[0].tx_buf = (char *)&cmd_addr;
  175. t[0].len = 2;
  176. t[0].bits_per_word = bits;
  177. spi_message_add_tail(&t[0], &m);
  178. t[1].tx_buf = buf;
  179. t[1].len = data_len;
  180. t[1].bits_per_word = 8;
  181. spi_message_add_tail(&t[1], &m);
  182. ret = spi_sync(edev->spi, &m);
  183. /* have to wait program cycle time Twc ms */
  184. mdelay(6);
  185. return ret;
  186. }
  187. static int eeprom_93xx46_write(void *priv, unsigned int off,
  188. void *val, size_t count)
  189. {
  190. struct eeprom_93xx46_dev *edev = priv;
  191. char *buf = val;
  192. int i, ret, step = 1;
  193. if (unlikely(off >= edev->size))
  194. return -EFBIG;
  195. if ((off + count) > edev->size)
  196. count = edev->size - off;
  197. if (unlikely(!count))
  198. return count;
  199. /* only write even number of bytes on 16-bit devices */
  200. if (edev->addrlen == 6) {
  201. step = 2;
  202. count &= ~1;
  203. }
  204. /* erase/write enable */
  205. ret = eeprom_93xx46_ew(edev, 1);
  206. if (ret)
  207. return ret;
  208. mutex_lock(&edev->lock);
  209. if (edev->pdata->prepare)
  210. edev->pdata->prepare(edev);
  211. for (i = 0; i < count; i += step) {
  212. ret = eeprom_93xx46_write_word(edev, &buf[i], off + i);
  213. if (ret) {
  214. dev_err(&edev->spi->dev, "write failed at %d: %d\n",
  215. (int)off + i, ret);
  216. break;
  217. }
  218. }
  219. if (edev->pdata->finish)
  220. edev->pdata->finish(edev);
  221. mutex_unlock(&edev->lock);
  222. /* erase/write disable */
  223. eeprom_93xx46_ew(edev, 0);
  224. return ret;
  225. }
  226. static int eeprom_93xx46_eral(struct eeprom_93xx46_dev *edev)
  227. {
  228. struct eeprom_93xx46_platform_data *pd = edev->pdata;
  229. struct spi_message m;
  230. struct spi_transfer t;
  231. int bits, ret;
  232. u16 cmd_addr;
  233. cmd_addr = OP_START << edev->addrlen;
  234. if (edev->addrlen == 7) {
  235. cmd_addr |= ADDR_ERAL << 1;
  236. bits = 10;
  237. } else {
  238. cmd_addr |= ADDR_ERAL;
  239. bits = 9;
  240. }
  241. if (has_quirk_instruction_length(edev)) {
  242. cmd_addr <<= 2;
  243. bits += 2;
  244. }
  245. dev_dbg(&edev->spi->dev, "eral cmd 0x%04x, %d bits\n", cmd_addr, bits);
  246. spi_message_init(&m);
  247. memset(&t, 0, sizeof(t));
  248. t.tx_buf = &cmd_addr;
  249. t.len = 2;
  250. t.bits_per_word = bits;
  251. spi_message_add_tail(&t, &m);
  252. mutex_lock(&edev->lock);
  253. if (edev->pdata->prepare)
  254. edev->pdata->prepare(edev);
  255. ret = spi_sync(edev->spi, &m);
  256. if (ret)
  257. dev_err(&edev->spi->dev, "erase error %d\n", ret);
  258. /* have to wait erase cycle time Tec ms */
  259. mdelay(6);
  260. if (pd->finish)
  261. pd->finish(edev);
  262. mutex_unlock(&edev->lock);
  263. return ret;
  264. }
  265. static ssize_t eeprom_93xx46_store_erase(struct device *dev,
  266. struct device_attribute *attr,
  267. const char *buf, size_t count)
  268. {
  269. struct eeprom_93xx46_dev *edev = dev_get_drvdata(dev);
  270. int erase = 0, ret;
  271. sscanf(buf, "%d", &erase);
  272. if (erase) {
  273. ret = eeprom_93xx46_ew(edev, 1);
  274. if (ret)
  275. return ret;
  276. ret = eeprom_93xx46_eral(edev);
  277. if (ret)
  278. return ret;
  279. ret = eeprom_93xx46_ew(edev, 0);
  280. if (ret)
  281. return ret;
  282. }
  283. return count;
  284. }
  285. static DEVICE_ATTR(erase, S_IWUSR, NULL, eeprom_93xx46_store_erase);
  286. static void select_assert(void *context)
  287. {
  288. struct eeprom_93xx46_dev *edev = context;
  289. gpiod_set_value_cansleep(edev->pdata->select, 1);
  290. }
  291. static void select_deassert(void *context)
  292. {
  293. struct eeprom_93xx46_dev *edev = context;
  294. gpiod_set_value_cansleep(edev->pdata->select, 0);
  295. }
  296. static const struct of_device_id eeprom_93xx46_of_table[] = {
  297. { .compatible = "eeprom-93xx46", },
  298. { .compatible = "atmel,at93c46d", .data = &atmel_at93c46d_data, },
  299. {}
  300. };
  301. MODULE_DEVICE_TABLE(of, eeprom_93xx46_of_table);
  302. static int eeprom_93xx46_probe_dt(struct spi_device *spi)
  303. {
  304. const struct of_device_id *of_id =
  305. of_match_device(eeprom_93xx46_of_table, &spi->dev);
  306. struct device_node *np = spi->dev.of_node;
  307. struct eeprom_93xx46_platform_data *pd;
  308. u32 tmp;
  309. int gpio;
  310. enum of_gpio_flags of_flags;
  311. int ret;
  312. pd = devm_kzalloc(&spi->dev, sizeof(*pd), GFP_KERNEL);
  313. if (!pd)
  314. return -ENOMEM;
  315. ret = of_property_read_u32(np, "data-size", &tmp);
  316. if (ret < 0) {
  317. dev_err(&spi->dev, "data-size property not found\n");
  318. return ret;
  319. }
  320. if (tmp == 8) {
  321. pd->flags |= EE_ADDR8;
  322. } else if (tmp == 16) {
  323. pd->flags |= EE_ADDR16;
  324. } else {
  325. dev_err(&spi->dev, "invalid data-size (%d)\n", tmp);
  326. return -EINVAL;
  327. }
  328. if (of_property_read_bool(np, "read-only"))
  329. pd->flags |= EE_READONLY;
  330. gpio = of_get_named_gpio_flags(np, "select-gpios", 0, &of_flags);
  331. if (gpio_is_valid(gpio)) {
  332. unsigned long flags =
  333. of_flags == OF_GPIO_ACTIVE_LOW ? GPIOF_ACTIVE_LOW : 0;
  334. ret = devm_gpio_request_one(&spi->dev, gpio, flags,
  335. "eeprom_93xx46_select");
  336. if (ret)
  337. return ret;
  338. pd->select = gpio_to_desc(gpio);
  339. pd->prepare = select_assert;
  340. pd->finish = select_deassert;
  341. gpiod_direction_output(pd->select, 0);
  342. }
  343. if (of_id->data) {
  344. const struct eeprom_93xx46_devtype_data *data = of_id->data;
  345. pd->quirks = data->quirks;
  346. }
  347. spi->dev.platform_data = pd;
  348. return 0;
  349. }
  350. static int eeprom_93xx46_probe(struct spi_device *spi)
  351. {
  352. struct eeprom_93xx46_platform_data *pd;
  353. struct eeprom_93xx46_dev *edev;
  354. int err;
  355. if (spi->dev.of_node) {
  356. err = eeprom_93xx46_probe_dt(spi);
  357. if (err < 0)
  358. return err;
  359. }
  360. pd = spi->dev.platform_data;
  361. if (!pd) {
  362. dev_err(&spi->dev, "missing platform data\n");
  363. return -ENODEV;
  364. }
  365. edev = kzalloc(sizeof(*edev), GFP_KERNEL);
  366. if (!edev)
  367. return -ENOMEM;
  368. if (pd->flags & EE_ADDR8)
  369. edev->addrlen = 7;
  370. else if (pd->flags & EE_ADDR16)
  371. edev->addrlen = 6;
  372. else {
  373. dev_err(&spi->dev, "unspecified address type\n");
  374. err = -EINVAL;
  375. goto fail;
  376. }
  377. mutex_init(&edev->lock);
  378. edev->spi = spi;
  379. edev->pdata = pd;
  380. edev->size = 128;
  381. edev->nvmem_config.name = dev_name(&spi->dev);
  382. edev->nvmem_config.dev = &spi->dev;
  383. edev->nvmem_config.read_only = pd->flags & EE_READONLY;
  384. edev->nvmem_config.root_only = true;
  385. edev->nvmem_config.owner = THIS_MODULE;
  386. edev->nvmem_config.compat = true;
  387. edev->nvmem_config.base_dev = &spi->dev;
  388. edev->nvmem_config.reg_read = eeprom_93xx46_read;
  389. edev->nvmem_config.reg_write = eeprom_93xx46_write;
  390. edev->nvmem_config.priv = edev;
  391. edev->nvmem_config.stride = 4;
  392. edev->nvmem_config.word_size = 1;
  393. edev->nvmem_config.size = edev->size;
  394. edev->nvmem = nvmem_register(&edev->nvmem_config);
  395. if (IS_ERR(edev->nvmem)) {
  396. err = PTR_ERR(edev->nvmem);
  397. goto fail;
  398. }
  399. dev_info(&spi->dev, "%d-bit eeprom %s\n",
  400. (pd->flags & EE_ADDR8) ? 8 : 16,
  401. (pd->flags & EE_READONLY) ? "(readonly)" : "");
  402. if (!(pd->flags & EE_READONLY)) {
  403. if (device_create_file(&spi->dev, &dev_attr_erase))
  404. dev_err(&spi->dev, "can't create erase interface\n");
  405. }
  406. spi_set_drvdata(spi, edev);
  407. return 0;
  408. fail:
  409. kfree(edev);
  410. return err;
  411. }
  412. static int eeprom_93xx46_remove(struct spi_device *spi)
  413. {
  414. struct eeprom_93xx46_dev *edev = spi_get_drvdata(spi);
  415. nvmem_unregister(edev->nvmem);
  416. if (!(edev->pdata->flags & EE_READONLY))
  417. device_remove_file(&spi->dev, &dev_attr_erase);
  418. kfree(edev);
  419. return 0;
  420. }
  421. static struct spi_driver eeprom_93xx46_driver = {
  422. .driver = {
  423. .name = "93xx46",
  424. .of_match_table = of_match_ptr(eeprom_93xx46_of_table),
  425. },
  426. .probe = eeprom_93xx46_probe,
  427. .remove = eeprom_93xx46_remove,
  428. };
  429. module_spi_driver(eeprom_93xx46_driver);
  430. MODULE_LICENSE("GPL");
  431. MODULE_DESCRIPTION("Driver for 93xx46 EEPROMs");
  432. MODULE_AUTHOR("Anatolij Gustschin <agust@denx.de>");
  433. MODULE_ALIAS("spi:93xx46");