123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403 |
- /*
- * Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
- *
- * Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- *
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
- */
- /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
- #include <linux/module.h>
- #include <linux/delay.h>
- #include <linux/dvb/frontend.h>
- #include <linux/i2c.h>
- #include <linux/slab.h>
- #include "dvb_frontend.h"
- #include "mt2060.h"
- #include "mt2060_priv.h"
- static int debug;
- module_param(debug, int, 0644);
- MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
- #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
- // Reads a single register
- static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
- {
- struct i2c_msg msg[2] = {
- { .addr = priv->cfg->i2c_address, .flags = 0, .buf = ®, .len = 1 },
- { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
- };
- if (i2c_transfer(priv->i2c, msg, 2) != 2) {
- printk(KERN_WARNING "mt2060 I2C read failed\n");
- return -EREMOTEIO;
- }
- return 0;
- }
- // Writes a single register
- static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
- {
- u8 buf[2] = { reg, val };
- struct i2c_msg msg = {
- .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2
- };
- if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
- printk(KERN_WARNING "mt2060 I2C write failed\n");
- return -EREMOTEIO;
- }
- return 0;
- }
- // Writes a set of consecutive registers
- static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
- {
- struct i2c_msg msg = {
- .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len
- };
- if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
- printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
- return -EREMOTEIO;
- }
- return 0;
- }
- // Initialisation sequences
- // LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
- static u8 mt2060_config1[] = {
- REG_LO1C1,
- 0x3F, 0x74, 0x00, 0x08, 0x93
- };
- // FMCG=2, GP2=0, GP1=0
- static u8 mt2060_config2[] = {
- REG_MISC_CTRL,
- 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
- };
- // VGAG=3, V1CSE=1
- #ifdef MT2060_SPURCHECK
- /* The function below calculates the frequency offset between the output frequency if2
- and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
- static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
- {
- int I,J;
- int dia,diamin,diff;
- diamin=1000000;
- for (I = 1; I < 10; I++) {
- J = ((2*I*lo1)/lo2+1)/2;
- diff = I*(int)lo1-J*(int)lo2;
- if (diff < 0) diff=-diff;
- dia = (diff-(int)if2);
- if (dia < 0) dia=-dia;
- if (diamin > dia) diamin=dia;
- }
- return diamin;
- }
- #define BANDWIDTH 4000 // kHz
- /* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
- static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
- {
- u32 Spur,Sp1,Sp2;
- int I,J;
- I=0;
- J=1000;
- Spur=mt2060_spurcalc(lo1,lo2,if2);
- if (Spur < BANDWIDTH) {
- /* Potential spurs detected */
- dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
- (int)lo1,(int)lo2);
- I=1000;
- Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
- Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
- if (Sp1 < Sp2) {
- J=-J; I=-I; Spur=Sp2;
- } else
- Spur=Sp1;
- while (Spur < BANDWIDTH) {
- I += J;
- Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
- }
- dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
- (int)(lo1+I),(int)(lo2+I));
- }
- return I;
- }
- #endif
- #define IF2 36150 // IF2 frequency = 36.150 MHz
- #define FREF 16000 // Quartz oscillator 16 MHz
- static int mt2060_set_params(struct dvb_frontend *fe)
- {
- struct dtv_frontend_properties *c = &fe->dtv_property_cache;
- struct mt2060_priv *priv;
- int i=0;
- u32 freq;
- u8 lnaband;
- u32 f_lo1,f_lo2;
- u32 div1,num1,div2,num2;
- u8 b[8];
- u32 if1;
- priv = fe->tuner_priv;
- if1 = priv->if1_freq;
- b[0] = REG_LO1B1;
- b[1] = 0xFF;
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
- mt2060_writeregs(priv,b,2);
- freq = c->frequency / 1000; /* Hz -> kHz */
- f_lo1 = freq + if1 * 1000;
- f_lo1 = (f_lo1 / 250) * 250;
- f_lo2 = f_lo1 - freq - IF2;
- // From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
- f_lo2 = ((f_lo2 + 25) / 50) * 50;
- priv->frequency = (f_lo1 - f_lo2 - IF2) * 1000,
- #ifdef MT2060_SPURCHECK
- // LO-related spurs detection and correction
- num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
- f_lo1 += num1;
- f_lo2 += num1;
- #endif
- //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
- num1 = f_lo1 / (FREF / 64);
- div1 = num1 / 64;
- num1 &= 0x3f;
- // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
- num2 = f_lo2 * 64 / (FREF / 128);
- div2 = num2 / 8192;
- num2 &= 0x1fff;
- if (freq <= 95000) lnaband = 0xB0; else
- if (freq <= 180000) lnaband = 0xA0; else
- if (freq <= 260000) lnaband = 0x90; else
- if (freq <= 335000) lnaband = 0x80; else
- if (freq <= 425000) lnaband = 0x70; else
- if (freq <= 480000) lnaband = 0x60; else
- if (freq <= 570000) lnaband = 0x50; else
- if (freq <= 645000) lnaband = 0x40; else
- if (freq <= 730000) lnaband = 0x30; else
- if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
- b[0] = REG_LO1C1;
- b[1] = lnaband | ((num1 >>2) & 0x0F);
- b[2] = div1;
- b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
- b[4] = num2 >> 4;
- b[5] = ((num2 >>12) & 1) | (div2 << 1);
- dprintk("IF1: %dMHz",(int)if1);
- dprintk("PLL freq=%dkHz f_lo1=%dkHz f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
- dprintk("PLL div1=%d num1=%d div2=%d num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
- dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
- mt2060_writeregs(priv,b,6);
- //Waits for pll lock or timeout
- i = 0;
- do {
- mt2060_readreg(priv,REG_LO_STATUS,b);
- if ((b[0] & 0x88)==0x88)
- break;
- msleep(4);
- i++;
- } while (i<10);
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
- return 0;
- }
- static void mt2060_calibrate(struct mt2060_priv *priv)
- {
- u8 b = 0;
- int i = 0;
- if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
- return;
- if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
- return;
- /* initialize the clock output */
- mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
- do {
- b |= (1 << 6); // FM1SS;
- mt2060_writereg(priv, REG_LO2C1,b);
- msleep(20);
- if (i == 0) {
- b |= (1 << 7); // FM1CA;
- mt2060_writereg(priv, REG_LO2C1,b);
- b &= ~(1 << 7); // FM1CA;
- msleep(20);
- }
- b &= ~(1 << 6); // FM1SS
- mt2060_writereg(priv, REG_LO2C1,b);
- msleep(20);
- i++;
- } while (i < 9);
- i = 0;
- while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
- msleep(20);
- if (i <= 10) {
- mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
- dprintk("calibration was successful: %d", (int)priv->fmfreq);
- } else
- dprintk("FMCAL timed out");
- }
- static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
- {
- struct mt2060_priv *priv = fe->tuner_priv;
- *frequency = priv->frequency;
- return 0;
- }
- static int mt2060_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
- {
- *frequency = IF2 * 1000;
- return 0;
- }
- static int mt2060_init(struct dvb_frontend *fe)
- {
- struct mt2060_priv *priv = fe->tuner_priv;
- int ret;
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
- ret = mt2060_writereg(priv, REG_VGAG,
- (priv->cfg->clock_out << 6) | 0x33);
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
- return ret;
- }
- static int mt2060_sleep(struct dvb_frontend *fe)
- {
- struct mt2060_priv *priv = fe->tuner_priv;
- int ret;
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
- ret = mt2060_writereg(priv, REG_VGAG,
- (priv->cfg->clock_out << 6) | 0x30);
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
- return ret;
- }
- static int mt2060_release(struct dvb_frontend *fe)
- {
- kfree(fe->tuner_priv);
- fe->tuner_priv = NULL;
- return 0;
- }
- static const struct dvb_tuner_ops mt2060_tuner_ops = {
- .info = {
- .name = "Microtune MT2060",
- .frequency_min = 48000000,
- .frequency_max = 860000000,
- .frequency_step = 50000,
- },
- .release = mt2060_release,
- .init = mt2060_init,
- .sleep = mt2060_sleep,
- .set_params = mt2060_set_params,
- .get_frequency = mt2060_get_frequency,
- .get_if_frequency = mt2060_get_if_frequency,
- };
- /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
- struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
- {
- struct mt2060_priv *priv = NULL;
- u8 id = 0;
- priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
- if (priv == NULL)
- return NULL;
- priv->cfg = cfg;
- priv->i2c = i2c;
- priv->if1_freq = if1;
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
- if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
- kfree(priv);
- return NULL;
- }
- if (id != PART_REV) {
- kfree(priv);
- return NULL;
- }
- printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
- memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
- fe->tuner_priv = priv;
- mt2060_calibrate(priv);
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
- return fe;
- }
- EXPORT_SYMBOL(mt2060_attach);
- MODULE_AUTHOR("Olivier DANET");
- MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
- MODULE_LICENSE("GPL");
|