verbs.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096
  1. /*
  2. * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
  3. * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
  4. * Copyright (c) 2004 Intel Corporation. All rights reserved.
  5. * Copyright (c) 2004 Topspin Corporation. All rights reserved.
  6. * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
  7. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
  8. * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
  9. *
  10. * This software is available to you under a choice of one of two
  11. * licenses. You may choose to be licensed under the terms of the GNU
  12. * General Public License (GPL) Version 2, available from the file
  13. * COPYING in the main directory of this source tree, or the
  14. * OpenIB.org BSD license below:
  15. *
  16. * Redistribution and use in source and binary forms, with or
  17. * without modification, are permitted provided that the following
  18. * conditions are met:
  19. *
  20. * - Redistributions of source code must retain the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer.
  23. *
  24. * - Redistributions in binary form must reproduce the above
  25. * copyright notice, this list of conditions and the following
  26. * disclaimer in the documentation and/or other materials
  27. * provided with the distribution.
  28. *
  29. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36. * SOFTWARE.
  37. */
  38. #include <linux/errno.h>
  39. #include <linux/err.h>
  40. #include <linux/export.h>
  41. #include <linux/string.h>
  42. #include <linux/slab.h>
  43. #include <linux/in.h>
  44. #include <linux/in6.h>
  45. #include <net/addrconf.h>
  46. #include <rdma/ib_verbs.h>
  47. #include <rdma/ib_cache.h>
  48. #include <rdma/ib_addr.h>
  49. #include <rdma/rw.h>
  50. #include "core_priv.h"
  51. static const char * const ib_events[] = {
  52. [IB_EVENT_CQ_ERR] = "CQ error",
  53. [IB_EVENT_QP_FATAL] = "QP fatal error",
  54. [IB_EVENT_QP_REQ_ERR] = "QP request error",
  55. [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
  56. [IB_EVENT_COMM_EST] = "communication established",
  57. [IB_EVENT_SQ_DRAINED] = "send queue drained",
  58. [IB_EVENT_PATH_MIG] = "path migration successful",
  59. [IB_EVENT_PATH_MIG_ERR] = "path migration error",
  60. [IB_EVENT_DEVICE_FATAL] = "device fatal error",
  61. [IB_EVENT_PORT_ACTIVE] = "port active",
  62. [IB_EVENT_PORT_ERR] = "port error",
  63. [IB_EVENT_LID_CHANGE] = "LID change",
  64. [IB_EVENT_PKEY_CHANGE] = "P_key change",
  65. [IB_EVENT_SM_CHANGE] = "SM change",
  66. [IB_EVENT_SRQ_ERR] = "SRQ error",
  67. [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
  68. [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
  69. [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
  70. [IB_EVENT_GID_CHANGE] = "GID changed",
  71. };
  72. const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  73. {
  74. size_t index = event;
  75. return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  76. ib_events[index] : "unrecognized event";
  77. }
  78. EXPORT_SYMBOL(ib_event_msg);
  79. static const char * const wc_statuses[] = {
  80. [IB_WC_SUCCESS] = "success",
  81. [IB_WC_LOC_LEN_ERR] = "local length error",
  82. [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
  83. [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
  84. [IB_WC_LOC_PROT_ERR] = "local protection error",
  85. [IB_WC_WR_FLUSH_ERR] = "WR flushed",
  86. [IB_WC_MW_BIND_ERR] = "memory management operation error",
  87. [IB_WC_BAD_RESP_ERR] = "bad response error",
  88. [IB_WC_LOC_ACCESS_ERR] = "local access error",
  89. [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
  90. [IB_WC_REM_ACCESS_ERR] = "remote access error",
  91. [IB_WC_REM_OP_ERR] = "remote operation error",
  92. [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
  93. [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
  94. [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
  95. [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
  96. [IB_WC_REM_ABORT_ERR] = "operation aborted",
  97. [IB_WC_INV_EECN_ERR] = "invalid EE context number",
  98. [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
  99. [IB_WC_FATAL_ERR] = "fatal error",
  100. [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
  101. [IB_WC_GENERAL_ERR] = "general error",
  102. };
  103. const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
  104. {
  105. size_t index = status;
  106. return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
  107. wc_statuses[index] : "unrecognized status";
  108. }
  109. EXPORT_SYMBOL(ib_wc_status_msg);
  110. __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
  111. {
  112. switch (rate) {
  113. case IB_RATE_2_5_GBPS: return 1;
  114. case IB_RATE_5_GBPS: return 2;
  115. case IB_RATE_10_GBPS: return 4;
  116. case IB_RATE_20_GBPS: return 8;
  117. case IB_RATE_30_GBPS: return 12;
  118. case IB_RATE_40_GBPS: return 16;
  119. case IB_RATE_60_GBPS: return 24;
  120. case IB_RATE_80_GBPS: return 32;
  121. case IB_RATE_120_GBPS: return 48;
  122. default: return -1;
  123. }
  124. }
  125. EXPORT_SYMBOL(ib_rate_to_mult);
  126. __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
  127. {
  128. switch (mult) {
  129. case 1: return IB_RATE_2_5_GBPS;
  130. case 2: return IB_RATE_5_GBPS;
  131. case 4: return IB_RATE_10_GBPS;
  132. case 8: return IB_RATE_20_GBPS;
  133. case 12: return IB_RATE_30_GBPS;
  134. case 16: return IB_RATE_40_GBPS;
  135. case 24: return IB_RATE_60_GBPS;
  136. case 32: return IB_RATE_80_GBPS;
  137. case 48: return IB_RATE_120_GBPS;
  138. default: return IB_RATE_PORT_CURRENT;
  139. }
  140. }
  141. EXPORT_SYMBOL(mult_to_ib_rate);
  142. __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
  143. {
  144. switch (rate) {
  145. case IB_RATE_2_5_GBPS: return 2500;
  146. case IB_RATE_5_GBPS: return 5000;
  147. case IB_RATE_10_GBPS: return 10000;
  148. case IB_RATE_20_GBPS: return 20000;
  149. case IB_RATE_30_GBPS: return 30000;
  150. case IB_RATE_40_GBPS: return 40000;
  151. case IB_RATE_60_GBPS: return 60000;
  152. case IB_RATE_80_GBPS: return 80000;
  153. case IB_RATE_120_GBPS: return 120000;
  154. case IB_RATE_14_GBPS: return 14062;
  155. case IB_RATE_56_GBPS: return 56250;
  156. case IB_RATE_112_GBPS: return 112500;
  157. case IB_RATE_168_GBPS: return 168750;
  158. case IB_RATE_25_GBPS: return 25781;
  159. case IB_RATE_100_GBPS: return 103125;
  160. case IB_RATE_200_GBPS: return 206250;
  161. case IB_RATE_300_GBPS: return 309375;
  162. default: return -1;
  163. }
  164. }
  165. EXPORT_SYMBOL(ib_rate_to_mbps);
  166. __attribute_const__ enum rdma_transport_type
  167. rdma_node_get_transport(enum rdma_node_type node_type)
  168. {
  169. switch (node_type) {
  170. case RDMA_NODE_IB_CA:
  171. case RDMA_NODE_IB_SWITCH:
  172. case RDMA_NODE_IB_ROUTER:
  173. return RDMA_TRANSPORT_IB;
  174. case RDMA_NODE_RNIC:
  175. return RDMA_TRANSPORT_IWARP;
  176. case RDMA_NODE_USNIC:
  177. return RDMA_TRANSPORT_USNIC;
  178. case RDMA_NODE_USNIC_UDP:
  179. return RDMA_TRANSPORT_USNIC_UDP;
  180. default:
  181. BUG();
  182. return 0;
  183. }
  184. }
  185. EXPORT_SYMBOL(rdma_node_get_transport);
  186. enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
  187. {
  188. if (device->get_link_layer)
  189. return device->get_link_layer(device, port_num);
  190. switch (rdma_node_get_transport(device->node_type)) {
  191. case RDMA_TRANSPORT_IB:
  192. return IB_LINK_LAYER_INFINIBAND;
  193. case RDMA_TRANSPORT_IWARP:
  194. case RDMA_TRANSPORT_USNIC:
  195. case RDMA_TRANSPORT_USNIC_UDP:
  196. return IB_LINK_LAYER_ETHERNET;
  197. default:
  198. return IB_LINK_LAYER_UNSPECIFIED;
  199. }
  200. }
  201. EXPORT_SYMBOL(rdma_port_get_link_layer);
  202. /* Protection domains */
  203. /**
  204. * ib_alloc_pd - Allocates an unused protection domain.
  205. * @device: The device on which to allocate the protection domain.
  206. *
  207. * A protection domain object provides an association between QPs, shared
  208. * receive queues, address handles, memory regions, and memory windows.
  209. *
  210. * Every PD has a local_dma_lkey which can be used as the lkey value for local
  211. * memory operations.
  212. */
  213. struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
  214. const char *caller)
  215. {
  216. struct ib_pd *pd;
  217. int mr_access_flags = 0;
  218. pd = device->alloc_pd(device, NULL, NULL);
  219. if (IS_ERR(pd))
  220. return pd;
  221. pd->device = device;
  222. pd->uobject = NULL;
  223. pd->__internal_mr = NULL;
  224. atomic_set(&pd->usecnt, 0);
  225. pd->flags = flags;
  226. if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
  227. pd->local_dma_lkey = device->local_dma_lkey;
  228. else
  229. mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
  230. if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
  231. pr_warn("%s: enabling unsafe global rkey\n", caller);
  232. mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
  233. }
  234. if (mr_access_flags) {
  235. struct ib_mr *mr;
  236. mr = pd->device->get_dma_mr(pd, mr_access_flags);
  237. if (IS_ERR(mr)) {
  238. ib_dealloc_pd(pd);
  239. return ERR_CAST(mr);
  240. }
  241. mr->device = pd->device;
  242. mr->pd = pd;
  243. mr->uobject = NULL;
  244. mr->need_inval = false;
  245. pd->__internal_mr = mr;
  246. if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
  247. pd->local_dma_lkey = pd->__internal_mr->lkey;
  248. if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
  249. pd->unsafe_global_rkey = pd->__internal_mr->rkey;
  250. }
  251. return pd;
  252. }
  253. EXPORT_SYMBOL(__ib_alloc_pd);
  254. /**
  255. * ib_dealloc_pd - Deallocates a protection domain.
  256. * @pd: The protection domain to deallocate.
  257. *
  258. * It is an error to call this function while any resources in the pd still
  259. * exist. The caller is responsible to synchronously destroy them and
  260. * guarantee no new allocations will happen.
  261. */
  262. void ib_dealloc_pd(struct ib_pd *pd)
  263. {
  264. int ret;
  265. if (pd->__internal_mr) {
  266. ret = pd->device->dereg_mr(pd->__internal_mr);
  267. WARN_ON(ret);
  268. pd->__internal_mr = NULL;
  269. }
  270. /* uverbs manipulates usecnt with proper locking, while the kabi
  271. requires the caller to guarantee we can't race here. */
  272. WARN_ON(atomic_read(&pd->usecnt));
  273. /* Making delalloc_pd a void return is a WIP, no driver should return
  274. an error here. */
  275. ret = pd->device->dealloc_pd(pd);
  276. WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
  277. }
  278. EXPORT_SYMBOL(ib_dealloc_pd);
  279. /* Address handles */
  280. struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
  281. {
  282. struct ib_ah *ah;
  283. ah = pd->device->create_ah(pd, ah_attr);
  284. if (!IS_ERR(ah)) {
  285. ah->device = pd->device;
  286. ah->pd = pd;
  287. ah->uobject = NULL;
  288. atomic_inc(&pd->usecnt);
  289. }
  290. return ah;
  291. }
  292. EXPORT_SYMBOL(ib_create_ah);
  293. static int ib_get_header_version(const union rdma_network_hdr *hdr)
  294. {
  295. const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
  296. struct iphdr ip4h_checked;
  297. const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
  298. /* If it's IPv6, the version must be 6, otherwise, the first
  299. * 20 bytes (before the IPv4 header) are garbled.
  300. */
  301. if (ip6h->version != 6)
  302. return (ip4h->version == 4) ? 4 : 0;
  303. /* version may be 6 or 4 because the first 20 bytes could be garbled */
  304. /* RoCE v2 requires no options, thus header length
  305. * must be 5 words
  306. */
  307. if (ip4h->ihl != 5)
  308. return 6;
  309. /* Verify checksum.
  310. * We can't write on scattered buffers so we need to copy to
  311. * temp buffer.
  312. */
  313. memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
  314. ip4h_checked.check = 0;
  315. ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
  316. /* if IPv4 header checksum is OK, believe it */
  317. if (ip4h->check == ip4h_checked.check)
  318. return 4;
  319. return 6;
  320. }
  321. static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
  322. u8 port_num,
  323. const struct ib_grh *grh)
  324. {
  325. int grh_version;
  326. if (rdma_protocol_ib(device, port_num))
  327. return RDMA_NETWORK_IB;
  328. grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
  329. if (grh_version == 4)
  330. return RDMA_NETWORK_IPV4;
  331. if (grh->next_hdr == IPPROTO_UDP)
  332. return RDMA_NETWORK_IPV6;
  333. return RDMA_NETWORK_ROCE_V1;
  334. }
  335. struct find_gid_index_context {
  336. u16 vlan_id;
  337. enum ib_gid_type gid_type;
  338. };
  339. static bool find_gid_index(const union ib_gid *gid,
  340. const struct ib_gid_attr *gid_attr,
  341. void *context)
  342. {
  343. struct find_gid_index_context *ctx =
  344. (struct find_gid_index_context *)context;
  345. if (ctx->gid_type != gid_attr->gid_type)
  346. return false;
  347. if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
  348. (is_vlan_dev(gid_attr->ndev) &&
  349. vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
  350. return false;
  351. return true;
  352. }
  353. static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
  354. u16 vlan_id, const union ib_gid *sgid,
  355. enum ib_gid_type gid_type,
  356. u16 *gid_index)
  357. {
  358. struct find_gid_index_context context = {.vlan_id = vlan_id,
  359. .gid_type = gid_type};
  360. return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
  361. &context, gid_index);
  362. }
  363. static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
  364. enum rdma_network_type net_type,
  365. union ib_gid *sgid, union ib_gid *dgid)
  366. {
  367. struct sockaddr_in src_in;
  368. struct sockaddr_in dst_in;
  369. __be32 src_saddr, dst_saddr;
  370. if (!sgid || !dgid)
  371. return -EINVAL;
  372. if (net_type == RDMA_NETWORK_IPV4) {
  373. memcpy(&src_in.sin_addr.s_addr,
  374. &hdr->roce4grh.saddr, 4);
  375. memcpy(&dst_in.sin_addr.s_addr,
  376. &hdr->roce4grh.daddr, 4);
  377. src_saddr = src_in.sin_addr.s_addr;
  378. dst_saddr = dst_in.sin_addr.s_addr;
  379. ipv6_addr_set_v4mapped(src_saddr,
  380. (struct in6_addr *)sgid);
  381. ipv6_addr_set_v4mapped(dst_saddr,
  382. (struct in6_addr *)dgid);
  383. return 0;
  384. } else if (net_type == RDMA_NETWORK_IPV6 ||
  385. net_type == RDMA_NETWORK_IB) {
  386. *dgid = hdr->ibgrh.dgid;
  387. *sgid = hdr->ibgrh.sgid;
  388. return 0;
  389. } else {
  390. return -EINVAL;
  391. }
  392. }
  393. int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
  394. const struct ib_wc *wc, const struct ib_grh *grh,
  395. struct ib_ah_attr *ah_attr)
  396. {
  397. u32 flow_class;
  398. u16 gid_index;
  399. int ret;
  400. enum rdma_network_type net_type = RDMA_NETWORK_IB;
  401. enum ib_gid_type gid_type = IB_GID_TYPE_IB;
  402. int hoplimit = 0xff;
  403. union ib_gid dgid;
  404. union ib_gid sgid;
  405. memset(ah_attr, 0, sizeof *ah_attr);
  406. if (rdma_cap_eth_ah(device, port_num)) {
  407. if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
  408. net_type = wc->network_hdr_type;
  409. else
  410. net_type = ib_get_net_type_by_grh(device, port_num, grh);
  411. gid_type = ib_network_to_gid_type(net_type);
  412. }
  413. ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
  414. &sgid, &dgid);
  415. if (ret)
  416. return ret;
  417. if (rdma_protocol_roce(device, port_num)) {
  418. int if_index = 0;
  419. u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
  420. wc->vlan_id : 0xffff;
  421. struct net_device *idev;
  422. struct net_device *resolved_dev;
  423. if (!(wc->wc_flags & IB_WC_GRH))
  424. return -EPROTOTYPE;
  425. if (!device->get_netdev)
  426. return -EOPNOTSUPP;
  427. idev = device->get_netdev(device, port_num);
  428. if (!idev)
  429. return -ENODEV;
  430. ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
  431. ah_attr->dmac,
  432. wc->wc_flags & IB_WC_WITH_VLAN ?
  433. NULL : &vlan_id,
  434. &if_index, &hoplimit);
  435. if (ret) {
  436. dev_put(idev);
  437. return ret;
  438. }
  439. resolved_dev = dev_get_by_index(&init_net, if_index);
  440. if (resolved_dev->flags & IFF_LOOPBACK) {
  441. dev_put(resolved_dev);
  442. resolved_dev = idev;
  443. dev_hold(resolved_dev);
  444. }
  445. rcu_read_lock();
  446. if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
  447. resolved_dev))
  448. ret = -EHOSTUNREACH;
  449. rcu_read_unlock();
  450. dev_put(idev);
  451. dev_put(resolved_dev);
  452. if (ret)
  453. return ret;
  454. ret = get_sgid_index_from_eth(device, port_num, vlan_id,
  455. &dgid, gid_type, &gid_index);
  456. if (ret)
  457. return ret;
  458. }
  459. ah_attr->dlid = wc->slid;
  460. ah_attr->sl = wc->sl;
  461. ah_attr->src_path_bits = wc->dlid_path_bits;
  462. ah_attr->port_num = port_num;
  463. if (wc->wc_flags & IB_WC_GRH) {
  464. ah_attr->ah_flags = IB_AH_GRH;
  465. ah_attr->grh.dgid = sgid;
  466. if (!rdma_cap_eth_ah(device, port_num)) {
  467. if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
  468. ret = ib_find_cached_gid_by_port(device, &dgid,
  469. IB_GID_TYPE_IB,
  470. port_num, NULL,
  471. &gid_index);
  472. if (ret)
  473. return ret;
  474. } else {
  475. gid_index = 0;
  476. }
  477. }
  478. ah_attr->grh.sgid_index = (u8) gid_index;
  479. flow_class = be32_to_cpu(grh->version_tclass_flow);
  480. ah_attr->grh.flow_label = flow_class & 0xFFFFF;
  481. ah_attr->grh.hop_limit = hoplimit;
  482. ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
  483. }
  484. return 0;
  485. }
  486. EXPORT_SYMBOL(ib_init_ah_from_wc);
  487. struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
  488. const struct ib_grh *grh, u8 port_num)
  489. {
  490. struct ib_ah_attr ah_attr;
  491. int ret;
  492. ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
  493. if (ret)
  494. return ERR_PTR(ret);
  495. return ib_create_ah(pd, &ah_attr);
  496. }
  497. EXPORT_SYMBOL(ib_create_ah_from_wc);
  498. int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
  499. {
  500. return ah->device->modify_ah ?
  501. ah->device->modify_ah(ah, ah_attr) :
  502. -ENOSYS;
  503. }
  504. EXPORT_SYMBOL(ib_modify_ah);
  505. int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
  506. {
  507. return ah->device->query_ah ?
  508. ah->device->query_ah(ah, ah_attr) :
  509. -ENOSYS;
  510. }
  511. EXPORT_SYMBOL(ib_query_ah);
  512. int ib_destroy_ah(struct ib_ah *ah)
  513. {
  514. struct ib_pd *pd;
  515. int ret;
  516. pd = ah->pd;
  517. ret = ah->device->destroy_ah(ah);
  518. if (!ret)
  519. atomic_dec(&pd->usecnt);
  520. return ret;
  521. }
  522. EXPORT_SYMBOL(ib_destroy_ah);
  523. /* Shared receive queues */
  524. struct ib_srq *ib_create_srq(struct ib_pd *pd,
  525. struct ib_srq_init_attr *srq_init_attr)
  526. {
  527. struct ib_srq *srq;
  528. if (!pd->device->create_srq)
  529. return ERR_PTR(-ENOSYS);
  530. srq = pd->device->create_srq(pd, srq_init_attr, NULL);
  531. if (!IS_ERR(srq)) {
  532. srq->device = pd->device;
  533. srq->pd = pd;
  534. srq->uobject = NULL;
  535. srq->event_handler = srq_init_attr->event_handler;
  536. srq->srq_context = srq_init_attr->srq_context;
  537. srq->srq_type = srq_init_attr->srq_type;
  538. if (srq->srq_type == IB_SRQT_XRC) {
  539. srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
  540. srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
  541. atomic_inc(&srq->ext.xrc.xrcd->usecnt);
  542. atomic_inc(&srq->ext.xrc.cq->usecnt);
  543. }
  544. atomic_inc(&pd->usecnt);
  545. atomic_set(&srq->usecnt, 0);
  546. }
  547. return srq;
  548. }
  549. EXPORT_SYMBOL(ib_create_srq);
  550. int ib_modify_srq(struct ib_srq *srq,
  551. struct ib_srq_attr *srq_attr,
  552. enum ib_srq_attr_mask srq_attr_mask)
  553. {
  554. return srq->device->modify_srq ?
  555. srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
  556. -ENOSYS;
  557. }
  558. EXPORT_SYMBOL(ib_modify_srq);
  559. int ib_query_srq(struct ib_srq *srq,
  560. struct ib_srq_attr *srq_attr)
  561. {
  562. return srq->device->query_srq ?
  563. srq->device->query_srq(srq, srq_attr) : -ENOSYS;
  564. }
  565. EXPORT_SYMBOL(ib_query_srq);
  566. int ib_destroy_srq(struct ib_srq *srq)
  567. {
  568. struct ib_pd *pd;
  569. enum ib_srq_type srq_type;
  570. struct ib_xrcd *uninitialized_var(xrcd);
  571. struct ib_cq *uninitialized_var(cq);
  572. int ret;
  573. if (atomic_read(&srq->usecnt))
  574. return -EBUSY;
  575. pd = srq->pd;
  576. srq_type = srq->srq_type;
  577. if (srq_type == IB_SRQT_XRC) {
  578. xrcd = srq->ext.xrc.xrcd;
  579. cq = srq->ext.xrc.cq;
  580. }
  581. ret = srq->device->destroy_srq(srq);
  582. if (!ret) {
  583. atomic_dec(&pd->usecnt);
  584. if (srq_type == IB_SRQT_XRC) {
  585. atomic_dec(&xrcd->usecnt);
  586. atomic_dec(&cq->usecnt);
  587. }
  588. }
  589. return ret;
  590. }
  591. EXPORT_SYMBOL(ib_destroy_srq);
  592. /* Queue pairs */
  593. static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
  594. {
  595. struct ib_qp *qp = context;
  596. unsigned long flags;
  597. spin_lock_irqsave(&qp->device->event_handler_lock, flags);
  598. list_for_each_entry(event->element.qp, &qp->open_list, open_list)
  599. if (event->element.qp->event_handler)
  600. event->element.qp->event_handler(event, event->element.qp->qp_context);
  601. spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
  602. }
  603. static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
  604. {
  605. mutex_lock(&xrcd->tgt_qp_mutex);
  606. list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
  607. mutex_unlock(&xrcd->tgt_qp_mutex);
  608. }
  609. static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
  610. void (*event_handler)(struct ib_event *, void *),
  611. void *qp_context)
  612. {
  613. struct ib_qp *qp;
  614. unsigned long flags;
  615. qp = kzalloc(sizeof *qp, GFP_KERNEL);
  616. if (!qp)
  617. return ERR_PTR(-ENOMEM);
  618. qp->real_qp = real_qp;
  619. atomic_inc(&real_qp->usecnt);
  620. qp->device = real_qp->device;
  621. qp->event_handler = event_handler;
  622. qp->qp_context = qp_context;
  623. qp->qp_num = real_qp->qp_num;
  624. qp->qp_type = real_qp->qp_type;
  625. spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
  626. list_add(&qp->open_list, &real_qp->open_list);
  627. spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
  628. return qp;
  629. }
  630. struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
  631. struct ib_qp_open_attr *qp_open_attr)
  632. {
  633. struct ib_qp *qp, *real_qp;
  634. if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
  635. return ERR_PTR(-EINVAL);
  636. qp = ERR_PTR(-EINVAL);
  637. mutex_lock(&xrcd->tgt_qp_mutex);
  638. list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
  639. if (real_qp->qp_num == qp_open_attr->qp_num) {
  640. qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
  641. qp_open_attr->qp_context);
  642. break;
  643. }
  644. }
  645. mutex_unlock(&xrcd->tgt_qp_mutex);
  646. return qp;
  647. }
  648. EXPORT_SYMBOL(ib_open_qp);
  649. static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
  650. struct ib_qp_init_attr *qp_init_attr)
  651. {
  652. struct ib_qp *real_qp = qp;
  653. qp->event_handler = __ib_shared_qp_event_handler;
  654. qp->qp_context = qp;
  655. qp->pd = NULL;
  656. qp->send_cq = qp->recv_cq = NULL;
  657. qp->srq = NULL;
  658. qp->xrcd = qp_init_attr->xrcd;
  659. atomic_inc(&qp_init_attr->xrcd->usecnt);
  660. INIT_LIST_HEAD(&qp->open_list);
  661. qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
  662. qp_init_attr->qp_context);
  663. if (!IS_ERR(qp))
  664. __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
  665. else
  666. real_qp->device->destroy_qp(real_qp);
  667. return qp;
  668. }
  669. struct ib_qp *ib_create_qp(struct ib_pd *pd,
  670. struct ib_qp_init_attr *qp_init_attr)
  671. {
  672. struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
  673. struct ib_qp *qp;
  674. int ret;
  675. if (qp_init_attr->rwq_ind_tbl &&
  676. (qp_init_attr->recv_cq ||
  677. qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
  678. qp_init_attr->cap.max_recv_sge))
  679. return ERR_PTR(-EINVAL);
  680. /*
  681. * If the callers is using the RDMA API calculate the resources
  682. * needed for the RDMA READ/WRITE operations.
  683. *
  684. * Note that these callers need to pass in a port number.
  685. */
  686. if (qp_init_attr->cap.max_rdma_ctxs)
  687. rdma_rw_init_qp(device, qp_init_attr);
  688. qp = device->create_qp(pd, qp_init_attr, NULL);
  689. if (IS_ERR(qp))
  690. return qp;
  691. qp->device = device;
  692. qp->real_qp = qp;
  693. qp->uobject = NULL;
  694. qp->qp_type = qp_init_attr->qp_type;
  695. qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
  696. atomic_set(&qp->usecnt, 0);
  697. qp->mrs_used = 0;
  698. spin_lock_init(&qp->mr_lock);
  699. INIT_LIST_HEAD(&qp->rdma_mrs);
  700. INIT_LIST_HEAD(&qp->sig_mrs);
  701. if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
  702. return ib_create_xrc_qp(qp, qp_init_attr);
  703. qp->event_handler = qp_init_attr->event_handler;
  704. qp->qp_context = qp_init_attr->qp_context;
  705. if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
  706. qp->recv_cq = NULL;
  707. qp->srq = NULL;
  708. } else {
  709. qp->recv_cq = qp_init_attr->recv_cq;
  710. if (qp_init_attr->recv_cq)
  711. atomic_inc(&qp_init_attr->recv_cq->usecnt);
  712. qp->srq = qp_init_attr->srq;
  713. if (qp->srq)
  714. atomic_inc(&qp_init_attr->srq->usecnt);
  715. }
  716. qp->pd = pd;
  717. qp->send_cq = qp_init_attr->send_cq;
  718. qp->xrcd = NULL;
  719. atomic_inc(&pd->usecnt);
  720. if (qp_init_attr->send_cq)
  721. atomic_inc(&qp_init_attr->send_cq->usecnt);
  722. if (qp_init_attr->rwq_ind_tbl)
  723. atomic_inc(&qp->rwq_ind_tbl->usecnt);
  724. if (qp_init_attr->cap.max_rdma_ctxs) {
  725. ret = rdma_rw_init_mrs(qp, qp_init_attr);
  726. if (ret) {
  727. pr_err("failed to init MR pool ret= %d\n", ret);
  728. ib_destroy_qp(qp);
  729. return ERR_PTR(ret);
  730. }
  731. }
  732. /*
  733. * Note: all hw drivers guarantee that max_send_sge is lower than
  734. * the device RDMA WRITE SGE limit but not all hw drivers ensure that
  735. * max_send_sge <= max_sge_rd.
  736. */
  737. qp->max_write_sge = qp_init_attr->cap.max_send_sge;
  738. qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
  739. device->attrs.max_sge_rd);
  740. return qp;
  741. }
  742. EXPORT_SYMBOL(ib_create_qp);
  743. static const struct {
  744. int valid;
  745. enum ib_qp_attr_mask req_param[IB_QPT_MAX];
  746. enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
  747. } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
  748. [IB_QPS_RESET] = {
  749. [IB_QPS_RESET] = { .valid = 1 },
  750. [IB_QPS_INIT] = {
  751. .valid = 1,
  752. .req_param = {
  753. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  754. IB_QP_PORT |
  755. IB_QP_QKEY),
  756. [IB_QPT_RAW_PACKET] = IB_QP_PORT,
  757. [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
  758. IB_QP_PORT |
  759. IB_QP_ACCESS_FLAGS),
  760. [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
  761. IB_QP_PORT |
  762. IB_QP_ACCESS_FLAGS),
  763. [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
  764. IB_QP_PORT |
  765. IB_QP_ACCESS_FLAGS),
  766. [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
  767. IB_QP_PORT |
  768. IB_QP_ACCESS_FLAGS),
  769. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  770. IB_QP_QKEY),
  771. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  772. IB_QP_QKEY),
  773. }
  774. },
  775. },
  776. [IB_QPS_INIT] = {
  777. [IB_QPS_RESET] = { .valid = 1 },
  778. [IB_QPS_ERR] = { .valid = 1 },
  779. [IB_QPS_INIT] = {
  780. .valid = 1,
  781. .opt_param = {
  782. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  783. IB_QP_PORT |
  784. IB_QP_QKEY),
  785. [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
  786. IB_QP_PORT |
  787. IB_QP_ACCESS_FLAGS),
  788. [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
  789. IB_QP_PORT |
  790. IB_QP_ACCESS_FLAGS),
  791. [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
  792. IB_QP_PORT |
  793. IB_QP_ACCESS_FLAGS),
  794. [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
  795. IB_QP_PORT |
  796. IB_QP_ACCESS_FLAGS),
  797. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  798. IB_QP_QKEY),
  799. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  800. IB_QP_QKEY),
  801. }
  802. },
  803. [IB_QPS_RTR] = {
  804. .valid = 1,
  805. .req_param = {
  806. [IB_QPT_UC] = (IB_QP_AV |
  807. IB_QP_PATH_MTU |
  808. IB_QP_DEST_QPN |
  809. IB_QP_RQ_PSN),
  810. [IB_QPT_RC] = (IB_QP_AV |
  811. IB_QP_PATH_MTU |
  812. IB_QP_DEST_QPN |
  813. IB_QP_RQ_PSN |
  814. IB_QP_MAX_DEST_RD_ATOMIC |
  815. IB_QP_MIN_RNR_TIMER),
  816. [IB_QPT_XRC_INI] = (IB_QP_AV |
  817. IB_QP_PATH_MTU |
  818. IB_QP_DEST_QPN |
  819. IB_QP_RQ_PSN),
  820. [IB_QPT_XRC_TGT] = (IB_QP_AV |
  821. IB_QP_PATH_MTU |
  822. IB_QP_DEST_QPN |
  823. IB_QP_RQ_PSN |
  824. IB_QP_MAX_DEST_RD_ATOMIC |
  825. IB_QP_MIN_RNR_TIMER),
  826. },
  827. .opt_param = {
  828. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  829. IB_QP_QKEY),
  830. [IB_QPT_UC] = (IB_QP_ALT_PATH |
  831. IB_QP_ACCESS_FLAGS |
  832. IB_QP_PKEY_INDEX),
  833. [IB_QPT_RC] = (IB_QP_ALT_PATH |
  834. IB_QP_ACCESS_FLAGS |
  835. IB_QP_PKEY_INDEX),
  836. [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
  837. IB_QP_ACCESS_FLAGS |
  838. IB_QP_PKEY_INDEX),
  839. [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
  840. IB_QP_ACCESS_FLAGS |
  841. IB_QP_PKEY_INDEX),
  842. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  843. IB_QP_QKEY),
  844. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  845. IB_QP_QKEY),
  846. },
  847. },
  848. },
  849. [IB_QPS_RTR] = {
  850. [IB_QPS_RESET] = { .valid = 1 },
  851. [IB_QPS_ERR] = { .valid = 1 },
  852. [IB_QPS_RTS] = {
  853. .valid = 1,
  854. .req_param = {
  855. [IB_QPT_UD] = IB_QP_SQ_PSN,
  856. [IB_QPT_UC] = IB_QP_SQ_PSN,
  857. [IB_QPT_RC] = (IB_QP_TIMEOUT |
  858. IB_QP_RETRY_CNT |
  859. IB_QP_RNR_RETRY |
  860. IB_QP_SQ_PSN |
  861. IB_QP_MAX_QP_RD_ATOMIC),
  862. [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
  863. IB_QP_RETRY_CNT |
  864. IB_QP_RNR_RETRY |
  865. IB_QP_SQ_PSN |
  866. IB_QP_MAX_QP_RD_ATOMIC),
  867. [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
  868. IB_QP_SQ_PSN),
  869. [IB_QPT_SMI] = IB_QP_SQ_PSN,
  870. [IB_QPT_GSI] = IB_QP_SQ_PSN,
  871. },
  872. .opt_param = {
  873. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  874. IB_QP_QKEY),
  875. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  876. IB_QP_ALT_PATH |
  877. IB_QP_ACCESS_FLAGS |
  878. IB_QP_PATH_MIG_STATE),
  879. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  880. IB_QP_ALT_PATH |
  881. IB_QP_ACCESS_FLAGS |
  882. IB_QP_MIN_RNR_TIMER |
  883. IB_QP_PATH_MIG_STATE),
  884. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  885. IB_QP_ALT_PATH |
  886. IB_QP_ACCESS_FLAGS |
  887. IB_QP_PATH_MIG_STATE),
  888. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  889. IB_QP_ALT_PATH |
  890. IB_QP_ACCESS_FLAGS |
  891. IB_QP_MIN_RNR_TIMER |
  892. IB_QP_PATH_MIG_STATE),
  893. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  894. IB_QP_QKEY),
  895. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  896. IB_QP_QKEY),
  897. }
  898. }
  899. },
  900. [IB_QPS_RTS] = {
  901. [IB_QPS_RESET] = { .valid = 1 },
  902. [IB_QPS_ERR] = { .valid = 1 },
  903. [IB_QPS_RTS] = {
  904. .valid = 1,
  905. .opt_param = {
  906. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  907. IB_QP_QKEY),
  908. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  909. IB_QP_ACCESS_FLAGS |
  910. IB_QP_ALT_PATH |
  911. IB_QP_PATH_MIG_STATE),
  912. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  913. IB_QP_ACCESS_FLAGS |
  914. IB_QP_ALT_PATH |
  915. IB_QP_PATH_MIG_STATE |
  916. IB_QP_MIN_RNR_TIMER),
  917. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  918. IB_QP_ACCESS_FLAGS |
  919. IB_QP_ALT_PATH |
  920. IB_QP_PATH_MIG_STATE),
  921. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  922. IB_QP_ACCESS_FLAGS |
  923. IB_QP_ALT_PATH |
  924. IB_QP_PATH_MIG_STATE |
  925. IB_QP_MIN_RNR_TIMER),
  926. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  927. IB_QP_QKEY),
  928. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  929. IB_QP_QKEY),
  930. }
  931. },
  932. [IB_QPS_SQD] = {
  933. .valid = 1,
  934. .opt_param = {
  935. [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  936. [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  937. [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  938. [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  939. [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
  940. [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  941. [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
  942. }
  943. },
  944. },
  945. [IB_QPS_SQD] = {
  946. [IB_QPS_RESET] = { .valid = 1 },
  947. [IB_QPS_ERR] = { .valid = 1 },
  948. [IB_QPS_RTS] = {
  949. .valid = 1,
  950. .opt_param = {
  951. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  952. IB_QP_QKEY),
  953. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  954. IB_QP_ALT_PATH |
  955. IB_QP_ACCESS_FLAGS |
  956. IB_QP_PATH_MIG_STATE),
  957. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  958. IB_QP_ALT_PATH |
  959. IB_QP_ACCESS_FLAGS |
  960. IB_QP_MIN_RNR_TIMER |
  961. IB_QP_PATH_MIG_STATE),
  962. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  963. IB_QP_ALT_PATH |
  964. IB_QP_ACCESS_FLAGS |
  965. IB_QP_PATH_MIG_STATE),
  966. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  967. IB_QP_ALT_PATH |
  968. IB_QP_ACCESS_FLAGS |
  969. IB_QP_MIN_RNR_TIMER |
  970. IB_QP_PATH_MIG_STATE),
  971. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  972. IB_QP_QKEY),
  973. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  974. IB_QP_QKEY),
  975. }
  976. },
  977. [IB_QPS_SQD] = {
  978. .valid = 1,
  979. .opt_param = {
  980. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  981. IB_QP_QKEY),
  982. [IB_QPT_UC] = (IB_QP_AV |
  983. IB_QP_ALT_PATH |
  984. IB_QP_ACCESS_FLAGS |
  985. IB_QP_PKEY_INDEX |
  986. IB_QP_PATH_MIG_STATE),
  987. [IB_QPT_RC] = (IB_QP_PORT |
  988. IB_QP_AV |
  989. IB_QP_TIMEOUT |
  990. IB_QP_RETRY_CNT |
  991. IB_QP_RNR_RETRY |
  992. IB_QP_MAX_QP_RD_ATOMIC |
  993. IB_QP_MAX_DEST_RD_ATOMIC |
  994. IB_QP_ALT_PATH |
  995. IB_QP_ACCESS_FLAGS |
  996. IB_QP_PKEY_INDEX |
  997. IB_QP_MIN_RNR_TIMER |
  998. IB_QP_PATH_MIG_STATE),
  999. [IB_QPT_XRC_INI] = (IB_QP_PORT |
  1000. IB_QP_AV |
  1001. IB_QP_TIMEOUT |
  1002. IB_QP_RETRY_CNT |
  1003. IB_QP_RNR_RETRY |
  1004. IB_QP_MAX_QP_RD_ATOMIC |
  1005. IB_QP_ALT_PATH |
  1006. IB_QP_ACCESS_FLAGS |
  1007. IB_QP_PKEY_INDEX |
  1008. IB_QP_PATH_MIG_STATE),
  1009. [IB_QPT_XRC_TGT] = (IB_QP_PORT |
  1010. IB_QP_AV |
  1011. IB_QP_TIMEOUT |
  1012. IB_QP_MAX_DEST_RD_ATOMIC |
  1013. IB_QP_ALT_PATH |
  1014. IB_QP_ACCESS_FLAGS |
  1015. IB_QP_PKEY_INDEX |
  1016. IB_QP_MIN_RNR_TIMER |
  1017. IB_QP_PATH_MIG_STATE),
  1018. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  1019. IB_QP_QKEY),
  1020. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  1021. IB_QP_QKEY),
  1022. }
  1023. }
  1024. },
  1025. [IB_QPS_SQE] = {
  1026. [IB_QPS_RESET] = { .valid = 1 },
  1027. [IB_QPS_ERR] = { .valid = 1 },
  1028. [IB_QPS_RTS] = {
  1029. .valid = 1,
  1030. .opt_param = {
  1031. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  1032. IB_QP_QKEY),
  1033. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  1034. IB_QP_ACCESS_FLAGS),
  1035. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  1036. IB_QP_QKEY),
  1037. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  1038. IB_QP_QKEY),
  1039. }
  1040. }
  1041. },
  1042. [IB_QPS_ERR] = {
  1043. [IB_QPS_RESET] = { .valid = 1 },
  1044. [IB_QPS_ERR] = { .valid = 1 }
  1045. }
  1046. };
  1047. int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
  1048. enum ib_qp_type type, enum ib_qp_attr_mask mask,
  1049. enum rdma_link_layer ll)
  1050. {
  1051. enum ib_qp_attr_mask req_param, opt_param;
  1052. if (cur_state < 0 || cur_state > IB_QPS_ERR ||
  1053. next_state < 0 || next_state > IB_QPS_ERR)
  1054. return 0;
  1055. if (mask & IB_QP_CUR_STATE &&
  1056. cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
  1057. cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
  1058. return 0;
  1059. if (!qp_state_table[cur_state][next_state].valid)
  1060. return 0;
  1061. req_param = qp_state_table[cur_state][next_state].req_param[type];
  1062. opt_param = qp_state_table[cur_state][next_state].opt_param[type];
  1063. if ((mask & req_param) != req_param)
  1064. return 0;
  1065. if (mask & ~(req_param | opt_param | IB_QP_STATE))
  1066. return 0;
  1067. return 1;
  1068. }
  1069. EXPORT_SYMBOL(ib_modify_qp_is_ok);
  1070. int ib_resolve_eth_dmac(struct ib_qp *qp,
  1071. struct ib_qp_attr *qp_attr, int *qp_attr_mask)
  1072. {
  1073. int ret = 0;
  1074. if (*qp_attr_mask & IB_QP_AV) {
  1075. if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
  1076. qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
  1077. return -EINVAL;
  1078. if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
  1079. return 0;
  1080. if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
  1081. rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
  1082. qp_attr->ah_attr.dmac);
  1083. } else {
  1084. union ib_gid sgid;
  1085. struct ib_gid_attr sgid_attr;
  1086. int ifindex;
  1087. int hop_limit;
  1088. ret = ib_query_gid(qp->device,
  1089. qp_attr->ah_attr.port_num,
  1090. qp_attr->ah_attr.grh.sgid_index,
  1091. &sgid, &sgid_attr);
  1092. if (ret || !sgid_attr.ndev) {
  1093. if (!ret)
  1094. ret = -ENXIO;
  1095. goto out;
  1096. }
  1097. ifindex = sgid_attr.ndev->ifindex;
  1098. ret = rdma_addr_find_l2_eth_by_grh(&sgid,
  1099. &qp_attr->ah_attr.grh.dgid,
  1100. qp_attr->ah_attr.dmac,
  1101. NULL, &ifindex, &hop_limit);
  1102. dev_put(sgid_attr.ndev);
  1103. qp_attr->ah_attr.grh.hop_limit = hop_limit;
  1104. }
  1105. }
  1106. out:
  1107. return ret;
  1108. }
  1109. EXPORT_SYMBOL(ib_resolve_eth_dmac);
  1110. int ib_modify_qp(struct ib_qp *qp,
  1111. struct ib_qp_attr *qp_attr,
  1112. int qp_attr_mask)
  1113. {
  1114. int ret;
  1115. ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
  1116. if (ret)
  1117. return ret;
  1118. return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
  1119. }
  1120. EXPORT_SYMBOL(ib_modify_qp);
  1121. int ib_query_qp(struct ib_qp *qp,
  1122. struct ib_qp_attr *qp_attr,
  1123. int qp_attr_mask,
  1124. struct ib_qp_init_attr *qp_init_attr)
  1125. {
  1126. return qp->device->query_qp ?
  1127. qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
  1128. -ENOSYS;
  1129. }
  1130. EXPORT_SYMBOL(ib_query_qp);
  1131. int ib_close_qp(struct ib_qp *qp)
  1132. {
  1133. struct ib_qp *real_qp;
  1134. unsigned long flags;
  1135. real_qp = qp->real_qp;
  1136. if (real_qp == qp)
  1137. return -EINVAL;
  1138. spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
  1139. list_del(&qp->open_list);
  1140. spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
  1141. atomic_dec(&real_qp->usecnt);
  1142. kfree(qp);
  1143. return 0;
  1144. }
  1145. EXPORT_SYMBOL(ib_close_qp);
  1146. static int __ib_destroy_shared_qp(struct ib_qp *qp)
  1147. {
  1148. struct ib_xrcd *xrcd;
  1149. struct ib_qp *real_qp;
  1150. int ret;
  1151. real_qp = qp->real_qp;
  1152. xrcd = real_qp->xrcd;
  1153. mutex_lock(&xrcd->tgt_qp_mutex);
  1154. ib_close_qp(qp);
  1155. if (atomic_read(&real_qp->usecnt) == 0)
  1156. list_del(&real_qp->xrcd_list);
  1157. else
  1158. real_qp = NULL;
  1159. mutex_unlock(&xrcd->tgt_qp_mutex);
  1160. if (real_qp) {
  1161. ret = ib_destroy_qp(real_qp);
  1162. if (!ret)
  1163. atomic_dec(&xrcd->usecnt);
  1164. else
  1165. __ib_insert_xrcd_qp(xrcd, real_qp);
  1166. }
  1167. return 0;
  1168. }
  1169. int ib_destroy_qp(struct ib_qp *qp)
  1170. {
  1171. struct ib_pd *pd;
  1172. struct ib_cq *scq, *rcq;
  1173. struct ib_srq *srq;
  1174. struct ib_rwq_ind_table *ind_tbl;
  1175. int ret;
  1176. WARN_ON_ONCE(qp->mrs_used > 0);
  1177. if (atomic_read(&qp->usecnt))
  1178. return -EBUSY;
  1179. if (qp->real_qp != qp)
  1180. return __ib_destroy_shared_qp(qp);
  1181. pd = qp->pd;
  1182. scq = qp->send_cq;
  1183. rcq = qp->recv_cq;
  1184. srq = qp->srq;
  1185. ind_tbl = qp->rwq_ind_tbl;
  1186. if (!qp->uobject)
  1187. rdma_rw_cleanup_mrs(qp);
  1188. ret = qp->device->destroy_qp(qp);
  1189. if (!ret) {
  1190. if (pd)
  1191. atomic_dec(&pd->usecnt);
  1192. if (scq)
  1193. atomic_dec(&scq->usecnt);
  1194. if (rcq)
  1195. atomic_dec(&rcq->usecnt);
  1196. if (srq)
  1197. atomic_dec(&srq->usecnt);
  1198. if (ind_tbl)
  1199. atomic_dec(&ind_tbl->usecnt);
  1200. }
  1201. return ret;
  1202. }
  1203. EXPORT_SYMBOL(ib_destroy_qp);
  1204. /* Completion queues */
  1205. struct ib_cq *ib_create_cq(struct ib_device *device,
  1206. ib_comp_handler comp_handler,
  1207. void (*event_handler)(struct ib_event *, void *),
  1208. void *cq_context,
  1209. const struct ib_cq_init_attr *cq_attr)
  1210. {
  1211. struct ib_cq *cq;
  1212. cq = device->create_cq(device, cq_attr, NULL, NULL);
  1213. if (!IS_ERR(cq)) {
  1214. cq->device = device;
  1215. cq->uobject = NULL;
  1216. cq->comp_handler = comp_handler;
  1217. cq->event_handler = event_handler;
  1218. cq->cq_context = cq_context;
  1219. atomic_set(&cq->usecnt, 0);
  1220. }
  1221. return cq;
  1222. }
  1223. EXPORT_SYMBOL(ib_create_cq);
  1224. int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
  1225. {
  1226. return cq->device->modify_cq ?
  1227. cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
  1228. }
  1229. EXPORT_SYMBOL(ib_modify_cq);
  1230. int ib_destroy_cq(struct ib_cq *cq)
  1231. {
  1232. if (atomic_read(&cq->usecnt))
  1233. return -EBUSY;
  1234. return cq->device->destroy_cq(cq);
  1235. }
  1236. EXPORT_SYMBOL(ib_destroy_cq);
  1237. int ib_resize_cq(struct ib_cq *cq, int cqe)
  1238. {
  1239. return cq->device->resize_cq ?
  1240. cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
  1241. }
  1242. EXPORT_SYMBOL(ib_resize_cq);
  1243. /* Memory regions */
  1244. int ib_dereg_mr(struct ib_mr *mr)
  1245. {
  1246. struct ib_pd *pd = mr->pd;
  1247. int ret;
  1248. ret = mr->device->dereg_mr(mr);
  1249. if (!ret)
  1250. atomic_dec(&pd->usecnt);
  1251. return ret;
  1252. }
  1253. EXPORT_SYMBOL(ib_dereg_mr);
  1254. /**
  1255. * ib_alloc_mr() - Allocates a memory region
  1256. * @pd: protection domain associated with the region
  1257. * @mr_type: memory region type
  1258. * @max_num_sg: maximum sg entries available for registration.
  1259. *
  1260. * Notes:
  1261. * Memory registeration page/sg lists must not exceed max_num_sg.
  1262. * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
  1263. * max_num_sg * used_page_size.
  1264. *
  1265. */
  1266. struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
  1267. enum ib_mr_type mr_type,
  1268. u32 max_num_sg)
  1269. {
  1270. struct ib_mr *mr;
  1271. if (!pd->device->alloc_mr)
  1272. return ERR_PTR(-ENOSYS);
  1273. mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
  1274. if (!IS_ERR(mr)) {
  1275. mr->device = pd->device;
  1276. mr->pd = pd;
  1277. mr->uobject = NULL;
  1278. atomic_inc(&pd->usecnt);
  1279. mr->need_inval = false;
  1280. }
  1281. return mr;
  1282. }
  1283. EXPORT_SYMBOL(ib_alloc_mr);
  1284. /* "Fast" memory regions */
  1285. struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
  1286. int mr_access_flags,
  1287. struct ib_fmr_attr *fmr_attr)
  1288. {
  1289. struct ib_fmr *fmr;
  1290. if (!pd->device->alloc_fmr)
  1291. return ERR_PTR(-ENOSYS);
  1292. fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
  1293. if (!IS_ERR(fmr)) {
  1294. fmr->device = pd->device;
  1295. fmr->pd = pd;
  1296. atomic_inc(&pd->usecnt);
  1297. }
  1298. return fmr;
  1299. }
  1300. EXPORT_SYMBOL(ib_alloc_fmr);
  1301. int ib_unmap_fmr(struct list_head *fmr_list)
  1302. {
  1303. struct ib_fmr *fmr;
  1304. if (list_empty(fmr_list))
  1305. return 0;
  1306. fmr = list_entry(fmr_list->next, struct ib_fmr, list);
  1307. return fmr->device->unmap_fmr(fmr_list);
  1308. }
  1309. EXPORT_SYMBOL(ib_unmap_fmr);
  1310. int ib_dealloc_fmr(struct ib_fmr *fmr)
  1311. {
  1312. struct ib_pd *pd;
  1313. int ret;
  1314. pd = fmr->pd;
  1315. ret = fmr->device->dealloc_fmr(fmr);
  1316. if (!ret)
  1317. atomic_dec(&pd->usecnt);
  1318. return ret;
  1319. }
  1320. EXPORT_SYMBOL(ib_dealloc_fmr);
  1321. /* Multicast groups */
  1322. int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
  1323. {
  1324. int ret;
  1325. if (!qp->device->attach_mcast)
  1326. return -ENOSYS;
  1327. if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
  1328. lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
  1329. lid == be16_to_cpu(IB_LID_PERMISSIVE))
  1330. return -EINVAL;
  1331. ret = qp->device->attach_mcast(qp, gid, lid);
  1332. if (!ret)
  1333. atomic_inc(&qp->usecnt);
  1334. return ret;
  1335. }
  1336. EXPORT_SYMBOL(ib_attach_mcast);
  1337. int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
  1338. {
  1339. int ret;
  1340. if (!qp->device->detach_mcast)
  1341. return -ENOSYS;
  1342. if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
  1343. lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
  1344. lid == be16_to_cpu(IB_LID_PERMISSIVE))
  1345. return -EINVAL;
  1346. ret = qp->device->detach_mcast(qp, gid, lid);
  1347. if (!ret)
  1348. atomic_dec(&qp->usecnt);
  1349. return ret;
  1350. }
  1351. EXPORT_SYMBOL(ib_detach_mcast);
  1352. struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
  1353. {
  1354. struct ib_xrcd *xrcd;
  1355. if (!device->alloc_xrcd)
  1356. return ERR_PTR(-ENOSYS);
  1357. xrcd = device->alloc_xrcd(device, NULL, NULL);
  1358. if (!IS_ERR(xrcd)) {
  1359. xrcd->device = device;
  1360. xrcd->inode = NULL;
  1361. atomic_set(&xrcd->usecnt, 0);
  1362. mutex_init(&xrcd->tgt_qp_mutex);
  1363. INIT_LIST_HEAD(&xrcd->tgt_qp_list);
  1364. }
  1365. return xrcd;
  1366. }
  1367. EXPORT_SYMBOL(ib_alloc_xrcd);
  1368. int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
  1369. {
  1370. struct ib_qp *qp;
  1371. int ret;
  1372. if (atomic_read(&xrcd->usecnt))
  1373. return -EBUSY;
  1374. while (!list_empty(&xrcd->tgt_qp_list)) {
  1375. qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
  1376. ret = ib_destroy_qp(qp);
  1377. if (ret)
  1378. return ret;
  1379. }
  1380. return xrcd->device->dealloc_xrcd(xrcd);
  1381. }
  1382. EXPORT_SYMBOL(ib_dealloc_xrcd);
  1383. /**
  1384. * ib_create_wq - Creates a WQ associated with the specified protection
  1385. * domain.
  1386. * @pd: The protection domain associated with the WQ.
  1387. * @wq_init_attr: A list of initial attributes required to create the
  1388. * WQ. If WQ creation succeeds, then the attributes are updated to
  1389. * the actual capabilities of the created WQ.
  1390. *
  1391. * wq_init_attr->max_wr and wq_init_attr->max_sge determine
  1392. * the requested size of the WQ, and set to the actual values allocated
  1393. * on return.
  1394. * If ib_create_wq() succeeds, then max_wr and max_sge will always be
  1395. * at least as large as the requested values.
  1396. */
  1397. struct ib_wq *ib_create_wq(struct ib_pd *pd,
  1398. struct ib_wq_init_attr *wq_attr)
  1399. {
  1400. struct ib_wq *wq;
  1401. if (!pd->device->create_wq)
  1402. return ERR_PTR(-ENOSYS);
  1403. wq = pd->device->create_wq(pd, wq_attr, NULL);
  1404. if (!IS_ERR(wq)) {
  1405. wq->event_handler = wq_attr->event_handler;
  1406. wq->wq_context = wq_attr->wq_context;
  1407. wq->wq_type = wq_attr->wq_type;
  1408. wq->cq = wq_attr->cq;
  1409. wq->device = pd->device;
  1410. wq->pd = pd;
  1411. wq->uobject = NULL;
  1412. atomic_inc(&pd->usecnt);
  1413. atomic_inc(&wq_attr->cq->usecnt);
  1414. atomic_set(&wq->usecnt, 0);
  1415. }
  1416. return wq;
  1417. }
  1418. EXPORT_SYMBOL(ib_create_wq);
  1419. /**
  1420. * ib_destroy_wq - Destroys the specified WQ.
  1421. * @wq: The WQ to destroy.
  1422. */
  1423. int ib_destroy_wq(struct ib_wq *wq)
  1424. {
  1425. int err;
  1426. struct ib_cq *cq = wq->cq;
  1427. struct ib_pd *pd = wq->pd;
  1428. if (atomic_read(&wq->usecnt))
  1429. return -EBUSY;
  1430. err = wq->device->destroy_wq(wq);
  1431. if (!err) {
  1432. atomic_dec(&pd->usecnt);
  1433. atomic_dec(&cq->usecnt);
  1434. }
  1435. return err;
  1436. }
  1437. EXPORT_SYMBOL(ib_destroy_wq);
  1438. /**
  1439. * ib_modify_wq - Modifies the specified WQ.
  1440. * @wq: The WQ to modify.
  1441. * @wq_attr: On input, specifies the WQ attributes to modify.
  1442. * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
  1443. * are being modified.
  1444. * On output, the current values of selected WQ attributes are returned.
  1445. */
  1446. int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
  1447. u32 wq_attr_mask)
  1448. {
  1449. int err;
  1450. if (!wq->device->modify_wq)
  1451. return -ENOSYS;
  1452. err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
  1453. return err;
  1454. }
  1455. EXPORT_SYMBOL(ib_modify_wq);
  1456. /*
  1457. * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
  1458. * @device: The device on which to create the rwq indirection table.
  1459. * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
  1460. * create the Indirection Table.
  1461. *
  1462. * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
  1463. * than the created ib_rwq_ind_table object and the caller is responsible
  1464. * for its memory allocation/free.
  1465. */
  1466. struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
  1467. struct ib_rwq_ind_table_init_attr *init_attr)
  1468. {
  1469. struct ib_rwq_ind_table *rwq_ind_table;
  1470. int i;
  1471. u32 table_size;
  1472. if (!device->create_rwq_ind_table)
  1473. return ERR_PTR(-ENOSYS);
  1474. table_size = (1 << init_attr->log_ind_tbl_size);
  1475. rwq_ind_table = device->create_rwq_ind_table(device,
  1476. init_attr, NULL);
  1477. if (IS_ERR(rwq_ind_table))
  1478. return rwq_ind_table;
  1479. rwq_ind_table->ind_tbl = init_attr->ind_tbl;
  1480. rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
  1481. rwq_ind_table->device = device;
  1482. rwq_ind_table->uobject = NULL;
  1483. atomic_set(&rwq_ind_table->usecnt, 0);
  1484. for (i = 0; i < table_size; i++)
  1485. atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
  1486. return rwq_ind_table;
  1487. }
  1488. EXPORT_SYMBOL(ib_create_rwq_ind_table);
  1489. /*
  1490. * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
  1491. * @wq_ind_table: The Indirection Table to destroy.
  1492. */
  1493. int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
  1494. {
  1495. int err, i;
  1496. u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
  1497. struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
  1498. if (atomic_read(&rwq_ind_table->usecnt))
  1499. return -EBUSY;
  1500. err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
  1501. if (!err) {
  1502. for (i = 0; i < table_size; i++)
  1503. atomic_dec(&ind_tbl[i]->usecnt);
  1504. }
  1505. return err;
  1506. }
  1507. EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
  1508. struct ib_flow *ib_create_flow(struct ib_qp *qp,
  1509. struct ib_flow_attr *flow_attr,
  1510. int domain)
  1511. {
  1512. struct ib_flow *flow_id;
  1513. if (!qp->device->create_flow)
  1514. return ERR_PTR(-ENOSYS);
  1515. flow_id = qp->device->create_flow(qp, flow_attr, domain);
  1516. if (!IS_ERR(flow_id))
  1517. atomic_inc(&qp->usecnt);
  1518. return flow_id;
  1519. }
  1520. EXPORT_SYMBOL(ib_create_flow);
  1521. int ib_destroy_flow(struct ib_flow *flow_id)
  1522. {
  1523. int err;
  1524. struct ib_qp *qp = flow_id->qp;
  1525. err = qp->device->destroy_flow(flow_id);
  1526. if (!err)
  1527. atomic_dec(&qp->usecnt);
  1528. return err;
  1529. }
  1530. EXPORT_SYMBOL(ib_destroy_flow);
  1531. int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
  1532. struct ib_mr_status *mr_status)
  1533. {
  1534. return mr->device->check_mr_status ?
  1535. mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
  1536. }
  1537. EXPORT_SYMBOL(ib_check_mr_status);
  1538. int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
  1539. int state)
  1540. {
  1541. if (!device->set_vf_link_state)
  1542. return -ENOSYS;
  1543. return device->set_vf_link_state(device, vf, port, state);
  1544. }
  1545. EXPORT_SYMBOL(ib_set_vf_link_state);
  1546. int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
  1547. struct ifla_vf_info *info)
  1548. {
  1549. if (!device->get_vf_config)
  1550. return -ENOSYS;
  1551. return device->get_vf_config(device, vf, port, info);
  1552. }
  1553. EXPORT_SYMBOL(ib_get_vf_config);
  1554. int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
  1555. struct ifla_vf_stats *stats)
  1556. {
  1557. if (!device->get_vf_stats)
  1558. return -ENOSYS;
  1559. return device->get_vf_stats(device, vf, port, stats);
  1560. }
  1561. EXPORT_SYMBOL(ib_get_vf_stats);
  1562. int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
  1563. int type)
  1564. {
  1565. if (!device->set_vf_guid)
  1566. return -ENOSYS;
  1567. return device->set_vf_guid(device, vf, port, guid, type);
  1568. }
  1569. EXPORT_SYMBOL(ib_set_vf_guid);
  1570. /**
  1571. * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
  1572. * and set it the memory region.
  1573. * @mr: memory region
  1574. * @sg: dma mapped scatterlist
  1575. * @sg_nents: number of entries in sg
  1576. * @sg_offset: offset in bytes into sg
  1577. * @page_size: page vector desired page size
  1578. *
  1579. * Constraints:
  1580. * - The first sg element is allowed to have an offset.
  1581. * - Each sg element must either be aligned to page_size or virtually
  1582. * contiguous to the previous element. In case an sg element has a
  1583. * non-contiguous offset, the mapping prefix will not include it.
  1584. * - The last sg element is allowed to have length less than page_size.
  1585. * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
  1586. * then only max_num_sg entries will be mapped.
  1587. * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
  1588. * constraints holds and the page_size argument is ignored.
  1589. *
  1590. * Returns the number of sg elements that were mapped to the memory region.
  1591. *
  1592. * After this completes successfully, the memory region
  1593. * is ready for registration.
  1594. */
  1595. int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
  1596. unsigned int *sg_offset, unsigned int page_size)
  1597. {
  1598. if (unlikely(!mr->device->map_mr_sg))
  1599. return -ENOSYS;
  1600. mr->page_size = page_size;
  1601. return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
  1602. }
  1603. EXPORT_SYMBOL(ib_map_mr_sg);
  1604. /**
  1605. * ib_sg_to_pages() - Convert the largest prefix of a sg list
  1606. * to a page vector
  1607. * @mr: memory region
  1608. * @sgl: dma mapped scatterlist
  1609. * @sg_nents: number of entries in sg
  1610. * @sg_offset_p: IN: start offset in bytes into sg
  1611. * OUT: offset in bytes for element n of the sg of the first
  1612. * byte that has not been processed where n is the return
  1613. * value of this function.
  1614. * @set_page: driver page assignment function pointer
  1615. *
  1616. * Core service helper for drivers to convert the largest
  1617. * prefix of given sg list to a page vector. The sg list
  1618. * prefix converted is the prefix that meet the requirements
  1619. * of ib_map_mr_sg.
  1620. *
  1621. * Returns the number of sg elements that were assigned to
  1622. * a page vector.
  1623. */
  1624. int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
  1625. unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
  1626. {
  1627. struct scatterlist *sg;
  1628. u64 last_end_dma_addr = 0;
  1629. unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
  1630. unsigned int last_page_off = 0;
  1631. u64 page_mask = ~((u64)mr->page_size - 1);
  1632. int i, ret;
  1633. if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
  1634. return -EINVAL;
  1635. mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
  1636. mr->length = 0;
  1637. for_each_sg(sgl, sg, sg_nents, i) {
  1638. u64 dma_addr = sg_dma_address(sg) + sg_offset;
  1639. u64 prev_addr = dma_addr;
  1640. unsigned int dma_len = sg_dma_len(sg) - sg_offset;
  1641. u64 end_dma_addr = dma_addr + dma_len;
  1642. u64 page_addr = dma_addr & page_mask;
  1643. /*
  1644. * For the second and later elements, check whether either the
  1645. * end of element i-1 or the start of element i is not aligned
  1646. * on a page boundary.
  1647. */
  1648. if (i && (last_page_off != 0 || page_addr != dma_addr)) {
  1649. /* Stop mapping if there is a gap. */
  1650. if (last_end_dma_addr != dma_addr)
  1651. break;
  1652. /*
  1653. * Coalesce this element with the last. If it is small
  1654. * enough just update mr->length. Otherwise start
  1655. * mapping from the next page.
  1656. */
  1657. goto next_page;
  1658. }
  1659. do {
  1660. ret = set_page(mr, page_addr);
  1661. if (unlikely(ret < 0)) {
  1662. sg_offset = prev_addr - sg_dma_address(sg);
  1663. mr->length += prev_addr - dma_addr;
  1664. if (sg_offset_p)
  1665. *sg_offset_p = sg_offset;
  1666. return i || sg_offset ? i : ret;
  1667. }
  1668. prev_addr = page_addr;
  1669. next_page:
  1670. page_addr += mr->page_size;
  1671. } while (page_addr < end_dma_addr);
  1672. mr->length += dma_len;
  1673. last_end_dma_addr = end_dma_addr;
  1674. last_page_off = end_dma_addr & ~page_mask;
  1675. sg_offset = 0;
  1676. }
  1677. if (sg_offset_p)
  1678. *sg_offset_p = 0;
  1679. return i;
  1680. }
  1681. EXPORT_SYMBOL(ib_sg_to_pages);
  1682. struct ib_drain_cqe {
  1683. struct ib_cqe cqe;
  1684. struct completion done;
  1685. };
  1686. static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
  1687. {
  1688. struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
  1689. cqe);
  1690. complete(&cqe->done);
  1691. }
  1692. /*
  1693. * Post a WR and block until its completion is reaped for the SQ.
  1694. */
  1695. static void __ib_drain_sq(struct ib_qp *qp)
  1696. {
  1697. struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
  1698. struct ib_drain_cqe sdrain;
  1699. struct ib_send_wr swr = {}, *bad_swr;
  1700. int ret;
  1701. if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
  1702. WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
  1703. "IB_POLL_DIRECT poll_ctx not supported for drain\n");
  1704. return;
  1705. }
  1706. swr.wr_cqe = &sdrain.cqe;
  1707. sdrain.cqe.done = ib_drain_qp_done;
  1708. init_completion(&sdrain.done);
  1709. ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
  1710. if (ret) {
  1711. WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
  1712. return;
  1713. }
  1714. ret = ib_post_send(qp, &swr, &bad_swr);
  1715. if (ret) {
  1716. WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
  1717. return;
  1718. }
  1719. wait_for_completion(&sdrain.done);
  1720. }
  1721. /*
  1722. * Post a WR and block until its completion is reaped for the RQ.
  1723. */
  1724. static void __ib_drain_rq(struct ib_qp *qp)
  1725. {
  1726. struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
  1727. struct ib_drain_cqe rdrain;
  1728. struct ib_recv_wr rwr = {}, *bad_rwr;
  1729. int ret;
  1730. if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
  1731. WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
  1732. "IB_POLL_DIRECT poll_ctx not supported for drain\n");
  1733. return;
  1734. }
  1735. rwr.wr_cqe = &rdrain.cqe;
  1736. rdrain.cqe.done = ib_drain_qp_done;
  1737. init_completion(&rdrain.done);
  1738. ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
  1739. if (ret) {
  1740. WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
  1741. return;
  1742. }
  1743. ret = ib_post_recv(qp, &rwr, &bad_rwr);
  1744. if (ret) {
  1745. WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
  1746. return;
  1747. }
  1748. wait_for_completion(&rdrain.done);
  1749. }
  1750. /**
  1751. * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
  1752. * application.
  1753. * @qp: queue pair to drain
  1754. *
  1755. * If the device has a provider-specific drain function, then
  1756. * call that. Otherwise call the generic drain function
  1757. * __ib_drain_sq().
  1758. *
  1759. * The caller must:
  1760. *
  1761. * ensure there is room in the CQ and SQ for the drain work request and
  1762. * completion.
  1763. *
  1764. * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
  1765. * IB_POLL_DIRECT.
  1766. *
  1767. * ensure that there are no other contexts that are posting WRs concurrently.
  1768. * Otherwise the drain is not guaranteed.
  1769. */
  1770. void ib_drain_sq(struct ib_qp *qp)
  1771. {
  1772. if (qp->device->drain_sq)
  1773. qp->device->drain_sq(qp);
  1774. else
  1775. __ib_drain_sq(qp);
  1776. }
  1777. EXPORT_SYMBOL(ib_drain_sq);
  1778. /**
  1779. * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
  1780. * application.
  1781. * @qp: queue pair to drain
  1782. *
  1783. * If the device has a provider-specific drain function, then
  1784. * call that. Otherwise call the generic drain function
  1785. * __ib_drain_rq().
  1786. *
  1787. * The caller must:
  1788. *
  1789. * ensure there is room in the CQ and RQ for the drain work request and
  1790. * completion.
  1791. *
  1792. * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
  1793. * IB_POLL_DIRECT.
  1794. *
  1795. * ensure that there are no other contexts that are posting WRs concurrently.
  1796. * Otherwise the drain is not guaranteed.
  1797. */
  1798. void ib_drain_rq(struct ib_qp *qp)
  1799. {
  1800. if (qp->device->drain_rq)
  1801. qp->device->drain_rq(qp);
  1802. else
  1803. __ib_drain_rq(qp);
  1804. }
  1805. EXPORT_SYMBOL(ib_drain_rq);
  1806. /**
  1807. * ib_drain_qp() - Block until all CQEs have been consumed by the
  1808. * application on both the RQ and SQ.
  1809. * @qp: queue pair to drain
  1810. *
  1811. * The caller must:
  1812. *
  1813. * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
  1814. * and completions.
  1815. *
  1816. * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
  1817. * IB_POLL_DIRECT.
  1818. *
  1819. * ensure that there are no other contexts that are posting WRs concurrently.
  1820. * Otherwise the drain is not guaranteed.
  1821. */
  1822. void ib_drain_qp(struct ib_qp *qp)
  1823. {
  1824. ib_drain_sq(qp);
  1825. if (!qp->srq)
  1826. ib_drain_rq(qp);
  1827. }
  1828. EXPORT_SYMBOL(ib_drain_qp);