123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505 |
- #define pr_fmt(fmt) "efi: " fmt
- #include <linux/init.h>
- #include <linux/kernel.h>
- #include <linux/string.h>
- #include <linux/time.h>
- #include <linux/types.h>
- #include <linux/efi.h>
- #include <linux/slab.h>
- #include <linux/memblock.h>
- #include <linux/bootmem.h>
- #include <linux/acpi.h>
- #include <linux/dmi.h>
- #include <asm/efi.h>
- #include <asm/uv/uv.h>
- #define EFI_MIN_RESERVE 5120
- #define EFI_DUMMY_GUID \
- EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
- static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
- static bool efi_no_storage_paranoia;
- /*
- * Some firmware implementations refuse to boot if there's insufficient
- * space in the variable store. The implementation of garbage collection
- * in some FW versions causes stale (deleted) variables to take up space
- * longer than intended and space is only freed once the store becomes
- * almost completely full.
- *
- * Enabling this option disables the space checks in
- * efi_query_variable_store() and forces garbage collection.
- *
- * Only enable this option if deleting EFI variables does not free up
- * space in your variable store, e.g. if despite deleting variables
- * you're unable to create new ones.
- */
- static int __init setup_storage_paranoia(char *arg)
- {
- efi_no_storage_paranoia = true;
- return 0;
- }
- early_param("efi_no_storage_paranoia", setup_storage_paranoia);
- /*
- * Deleting the dummy variable which kicks off garbage collection
- */
- void efi_delete_dummy_variable(void)
- {
- efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
- EFI_VARIABLE_NON_VOLATILE |
- EFI_VARIABLE_BOOTSERVICE_ACCESS |
- EFI_VARIABLE_RUNTIME_ACCESS,
- 0, NULL);
- }
- /*
- * In the nonblocking case we do not attempt to perform garbage
- * collection if we do not have enough free space. Rather, we do the
- * bare minimum check and give up immediately if the available space
- * is below EFI_MIN_RESERVE.
- *
- * This function is intended to be small and simple because it is
- * invoked from crash handler paths.
- */
- static efi_status_t
- query_variable_store_nonblocking(u32 attributes, unsigned long size)
- {
- efi_status_t status;
- u64 storage_size, remaining_size, max_size;
- status = efi.query_variable_info_nonblocking(attributes, &storage_size,
- &remaining_size,
- &max_size);
- if (status != EFI_SUCCESS)
- return status;
- if (remaining_size - size < EFI_MIN_RESERVE)
- return EFI_OUT_OF_RESOURCES;
- return EFI_SUCCESS;
- }
- /*
- * Some firmware implementations refuse to boot if there's insufficient space
- * in the variable store. Ensure that we never use more than a safe limit.
- *
- * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
- * store.
- */
- efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
- bool nonblocking)
- {
- efi_status_t status;
- u64 storage_size, remaining_size, max_size;
- if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
- return 0;
- if (nonblocking)
- return query_variable_store_nonblocking(attributes, size);
- status = efi.query_variable_info(attributes, &storage_size,
- &remaining_size, &max_size);
- if (status != EFI_SUCCESS)
- return status;
- /*
- * We account for that by refusing the write if permitting it would
- * reduce the available space to under 5KB. This figure was provided by
- * Samsung, so should be safe.
- */
- if ((remaining_size - size < EFI_MIN_RESERVE) &&
- !efi_no_storage_paranoia) {
- /*
- * Triggering garbage collection may require that the firmware
- * generate a real EFI_OUT_OF_RESOURCES error. We can force
- * that by attempting to use more space than is available.
- */
- unsigned long dummy_size = remaining_size + 1024;
- void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
- if (!dummy)
- return EFI_OUT_OF_RESOURCES;
- status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
- EFI_VARIABLE_NON_VOLATILE |
- EFI_VARIABLE_BOOTSERVICE_ACCESS |
- EFI_VARIABLE_RUNTIME_ACCESS,
- dummy_size, dummy);
- if (status == EFI_SUCCESS) {
- /*
- * This should have failed, so if it didn't make sure
- * that we delete it...
- */
- efi_delete_dummy_variable();
- }
- kfree(dummy);
- /*
- * The runtime code may now have triggered a garbage collection
- * run, so check the variable info again
- */
- status = efi.query_variable_info(attributes, &storage_size,
- &remaining_size, &max_size);
- if (status != EFI_SUCCESS)
- return status;
- /*
- * There still isn't enough room, so return an error
- */
- if (remaining_size - size < EFI_MIN_RESERVE)
- return EFI_OUT_OF_RESOURCES;
- }
- return EFI_SUCCESS;
- }
- EXPORT_SYMBOL_GPL(efi_query_variable_store);
- /*
- * The UEFI specification makes it clear that the operating system is
- * free to do whatever it wants with boot services code after
- * ExitBootServices() has been called. Ignoring this recommendation a
- * significant bunch of EFI implementations continue calling into boot
- * services code (SetVirtualAddressMap). In order to work around such
- * buggy implementations we reserve boot services region during EFI
- * init and make sure it stays executable. Then, after
- * SetVirtualAddressMap(), it is discarded.
- *
- * However, some boot services regions contain data that is required
- * by drivers, so we need to track which memory ranges can never be
- * freed. This is done by tagging those regions with the
- * EFI_MEMORY_RUNTIME attribute.
- *
- * Any driver that wants to mark a region as reserved must use
- * efi_mem_reserve() which will insert a new EFI memory descriptor
- * into efi.memmap (splitting existing regions if necessary) and tag
- * it with EFI_MEMORY_RUNTIME.
- */
- void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
- {
- phys_addr_t new_phys, new_size;
- struct efi_mem_range mr;
- efi_memory_desc_t md;
- int num_entries;
- void *new;
- if (efi_mem_desc_lookup(addr, &md)) {
- pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
- return;
- }
- if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
- pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
- return;
- }
- /* No need to reserve regions that will never be freed. */
- if (md.attribute & EFI_MEMORY_RUNTIME)
- return;
- size += addr % EFI_PAGE_SIZE;
- size = round_up(size, EFI_PAGE_SIZE);
- addr = round_down(addr, EFI_PAGE_SIZE);
- mr.range.start = addr;
- mr.range.end = addr + size - 1;
- mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
- num_entries = efi_memmap_split_count(&md, &mr.range);
- num_entries += efi.memmap.nr_map;
- new_size = efi.memmap.desc_size * num_entries;
- new_phys = efi_memmap_alloc(num_entries);
- if (!new_phys) {
- pr_err("Could not allocate boot services memmap\n");
- return;
- }
- new = early_memremap(new_phys, new_size);
- if (!new) {
- pr_err("Failed to map new boot services memmap\n");
- return;
- }
- efi_memmap_insert(&efi.memmap, new, &mr);
- early_memunmap(new, new_size);
- efi_memmap_install(new_phys, num_entries);
- }
- /*
- * Helper function for efi_reserve_boot_services() to figure out if we
- * can free regions in efi_free_boot_services().
- *
- * Use this function to ensure we do not free regions owned by somebody
- * else. We must only reserve (and then free) regions:
- *
- * - Not within any part of the kernel
- * - Not the BIOS reserved area (E820_RESERVED, E820_NVS, etc)
- */
- static bool can_free_region(u64 start, u64 size)
- {
- if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
- return false;
- if (!e820_all_mapped(start, start+size, E820_RAM))
- return false;
- return true;
- }
- void __init efi_reserve_boot_services(void)
- {
- efi_memory_desc_t *md;
- for_each_efi_memory_desc(md) {
- u64 start = md->phys_addr;
- u64 size = md->num_pages << EFI_PAGE_SHIFT;
- bool already_reserved;
- if (md->type != EFI_BOOT_SERVICES_CODE &&
- md->type != EFI_BOOT_SERVICES_DATA)
- continue;
- already_reserved = memblock_is_region_reserved(start, size);
- /*
- * Because the following memblock_reserve() is paired
- * with free_bootmem_late() for this region in
- * efi_free_boot_services(), we must be extremely
- * careful not to reserve, and subsequently free,
- * critical regions of memory (like the kernel image) or
- * those regions that somebody else has already
- * reserved.
- *
- * A good example of a critical region that must not be
- * freed is page zero (first 4Kb of memory), which may
- * contain boot services code/data but is marked
- * E820_RESERVED by trim_bios_range().
- */
- if (!already_reserved) {
- memblock_reserve(start, size);
- /*
- * If we are the first to reserve the region, no
- * one else cares about it. We own it and can
- * free it later.
- */
- if (can_free_region(start, size))
- continue;
- }
- /*
- * We don't own the region. We must not free it.
- *
- * Setting this bit for a boot services region really
- * doesn't make sense as far as the firmware is
- * concerned, but it does provide us with a way to tag
- * those regions that must not be paired with
- * free_bootmem_late().
- */
- md->attribute |= EFI_MEMORY_RUNTIME;
- }
- }
- void __init efi_free_boot_services(void)
- {
- phys_addr_t new_phys, new_size;
- efi_memory_desc_t *md;
- int num_entries = 0;
- void *new, *new_md;
- for_each_efi_memory_desc(md) {
- unsigned long long start = md->phys_addr;
- unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
- size_t rm_size;
- if (md->type != EFI_BOOT_SERVICES_CODE &&
- md->type != EFI_BOOT_SERVICES_DATA) {
- num_entries++;
- continue;
- }
- /* Do not free, someone else owns it: */
- if (md->attribute & EFI_MEMORY_RUNTIME) {
- num_entries++;
- continue;
- }
- /*
- * Nasty quirk: if all sub-1MB memory is used for boot
- * services, we can get here without having allocated the
- * real mode trampoline. It's too late to hand boot services
- * memory back to the memblock allocator, so instead
- * try to manually allocate the trampoline if needed.
- *
- * I've seen this on a Dell XPS 13 9350 with firmware
- * 1.4.4 with SGX enabled booting Linux via Fedora 24's
- * grub2-efi on a hard disk. (And no, I don't know why
- * this happened, but Linux should still try to boot rather
- * panicing early.)
- */
- rm_size = real_mode_size_needed();
- if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
- set_real_mode_mem(start, rm_size);
- start += rm_size;
- size -= rm_size;
- }
- free_bootmem_late(start, size);
- }
- if (!num_entries)
- return;
- new_size = efi.memmap.desc_size * num_entries;
- new_phys = efi_memmap_alloc(num_entries);
- if (!new_phys) {
- pr_err("Failed to allocate new EFI memmap\n");
- return;
- }
- new = memremap(new_phys, new_size, MEMREMAP_WB);
- if (!new) {
- pr_err("Failed to map new EFI memmap\n");
- return;
- }
- /*
- * Build a new EFI memmap that excludes any boot services
- * regions that are not tagged EFI_MEMORY_RUNTIME, since those
- * regions have now been freed.
- */
- new_md = new;
- for_each_efi_memory_desc(md) {
- if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
- (md->type == EFI_BOOT_SERVICES_CODE ||
- md->type == EFI_BOOT_SERVICES_DATA))
- continue;
- memcpy(new_md, md, efi.memmap.desc_size);
- new_md += efi.memmap.desc_size;
- }
- memunmap(new);
- if (efi_memmap_install(new_phys, num_entries)) {
- pr_err("Could not install new EFI memmap\n");
- return;
- }
- }
- /*
- * A number of config table entries get remapped to virtual addresses
- * after entering EFI virtual mode. However, the kexec kernel requires
- * their physical addresses therefore we pass them via setup_data and
- * correct those entries to their respective physical addresses here.
- *
- * Currently only handles smbios which is necessary for some firmware
- * implementation.
- */
- int __init efi_reuse_config(u64 tables, int nr_tables)
- {
- int i, sz, ret = 0;
- void *p, *tablep;
- struct efi_setup_data *data;
- if (!efi_setup)
- return 0;
- if (!efi_enabled(EFI_64BIT))
- return 0;
- data = early_memremap(efi_setup, sizeof(*data));
- if (!data) {
- ret = -ENOMEM;
- goto out;
- }
- if (!data->smbios)
- goto out_memremap;
- sz = sizeof(efi_config_table_64_t);
- p = tablep = early_memremap(tables, nr_tables * sz);
- if (!p) {
- pr_err("Could not map Configuration table!\n");
- ret = -ENOMEM;
- goto out_memremap;
- }
- for (i = 0; i < efi.systab->nr_tables; i++) {
- efi_guid_t guid;
- guid = ((efi_config_table_64_t *)p)->guid;
- if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
- ((efi_config_table_64_t *)p)->table = data->smbios;
- p += sz;
- }
- early_memunmap(tablep, nr_tables * sz);
- out_memremap:
- early_memunmap(data, sizeof(*data));
- out:
- return ret;
- }
- static const struct dmi_system_id sgi_uv1_dmi[] = {
- { NULL, "SGI UV1",
- { DMI_MATCH(DMI_PRODUCT_NAME, "Stoutland Platform"),
- DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"),
- DMI_MATCH(DMI_BIOS_VENDOR, "SGI.COM"),
- }
- },
- { } /* NULL entry stops DMI scanning */
- };
- void __init efi_apply_memmap_quirks(void)
- {
- /*
- * Once setup is done earlier, unmap the EFI memory map on mismatched
- * firmware/kernel architectures since there is no support for runtime
- * services.
- */
- if (!efi_runtime_supported()) {
- pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
- efi_memmap_unmap();
- }
- /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */
- if (dmi_check_system(sgi_uv1_dmi))
- set_bit(EFI_OLD_MEMMAP, &efi.flags);
- }
- /*
- * For most modern platforms the preferred method of powering off is via
- * ACPI. However, there are some that are known to require the use of
- * EFI runtime services and for which ACPI does not work at all.
- *
- * Using EFI is a last resort, to be used only if no other option
- * exists.
- */
- bool efi_reboot_required(void)
- {
- if (!acpi_gbl_reduced_hardware)
- return false;
- efi_reboot_quirk_mode = EFI_RESET_WARM;
- return true;
- }
- bool efi_poweroff_required(void)
- {
- return acpi_gbl_reduced_hardware || acpi_no_s5;
- }
|