crc32be-vx.S 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211
  1. /*
  2. * Hardware-accelerated CRC-32 variants for Linux on z Systems
  3. *
  4. * Use the z/Architecture Vector Extension Facility to accelerate the
  5. * computing of CRC-32 checksums.
  6. *
  7. * This CRC-32 implementation algorithm processes the most-significant
  8. * bit first (BE).
  9. *
  10. * Copyright IBM Corp. 2015
  11. * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  12. */
  13. #include <linux/linkage.h>
  14. #include <asm/nospec-insn.h>
  15. #include <asm/vx-insn.h>
  16. /* Vector register range containing CRC-32 constants */
  17. #define CONST_R1R2 %v9
  18. #define CONST_R3R4 %v10
  19. #define CONST_R5 %v11
  20. #define CONST_R6 %v12
  21. #define CONST_RU_POLY %v13
  22. #define CONST_CRC_POLY %v14
  23. .data
  24. .align 8
  25. /*
  26. * The CRC-32 constant block contains reduction constants to fold and
  27. * process particular chunks of the input data stream in parallel.
  28. *
  29. * For the CRC-32 variants, the constants are precomputed according to
  30. * these defintions:
  31. *
  32. * R1 = x4*128+64 mod P(x)
  33. * R2 = x4*128 mod P(x)
  34. * R3 = x128+64 mod P(x)
  35. * R4 = x128 mod P(x)
  36. * R5 = x96 mod P(x)
  37. * R6 = x64 mod P(x)
  38. *
  39. * Barret reduction constant, u, is defined as floor(x**64 / P(x)).
  40. *
  41. * where P(x) is the polynomial in the normal domain and the P'(x) is the
  42. * polynomial in the reversed (bitreflected) domain.
  43. *
  44. * Note that the constant definitions below are extended in order to compute
  45. * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
  46. * The righmost doubleword can be 0 to prevent contribution to the result or
  47. * can be multiplied by 1 to perform an XOR without the need for a separate
  48. * VECTOR EXCLUSIVE OR instruction.
  49. *
  50. * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
  51. *
  52. * P(x) = 0x04C11DB7
  53. * P'(x) = 0xEDB88320
  54. */
  55. .Lconstants_CRC_32_BE:
  56. .quad 0x08833794c, 0x0e6228b11 # R1, R2
  57. .quad 0x0c5b9cd4c, 0x0e8a45605 # R3, R4
  58. .quad 0x0f200aa66, 1 << 32 # R5, x32
  59. .quad 0x0490d678d, 1 # R6, 1
  60. .quad 0x104d101df, 0 # u
  61. .quad 0x104C11DB7, 0 # P(x)
  62. .previous
  63. GEN_BR_THUNK %r14
  64. .text
  65. /*
  66. * The CRC-32 function(s) use these calling conventions:
  67. *
  68. * Parameters:
  69. *
  70. * %r2: Initial CRC value, typically ~0; and final CRC (return) value.
  71. * %r3: Input buffer pointer, performance might be improved if the
  72. * buffer is on a doubleword boundary.
  73. * %r4: Length of the buffer, must be 64 bytes or greater.
  74. *
  75. * Register usage:
  76. *
  77. * %r5: CRC-32 constant pool base pointer.
  78. * V0: Initial CRC value and intermediate constants and results.
  79. * V1..V4: Data for CRC computation.
  80. * V5..V8: Next data chunks that are fetched from the input buffer.
  81. *
  82. * V9..V14: CRC-32 constants.
  83. */
  84. ENTRY(crc32_be_vgfm_16)
  85. /* Load CRC-32 constants */
  86. larl %r5,.Lconstants_CRC_32_BE
  87. VLM CONST_R1R2,CONST_CRC_POLY,0,%r5
  88. /* Load the initial CRC value into the leftmost word of V0. */
  89. VZERO %v0
  90. VLVGF %v0,%r2,0
  91. /* Load a 64-byte data chunk and XOR with CRC */
  92. VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */
  93. VX %v1,%v0,%v1 /* V1 ^= CRC */
  94. aghi %r3,64 /* BUF = BUF + 64 */
  95. aghi %r4,-64 /* LEN = LEN - 64 */
  96. /* Check remaining buffer size and jump to proper folding method */
  97. cghi %r4,64
  98. jl .Lless_than_64bytes
  99. .Lfold_64bytes_loop:
  100. /* Load the next 64-byte data chunk into V5 to V8 */
  101. VLM %v5,%v8,0,%r3
  102. /*
  103. * Perform a GF(2) multiplication of the doublewords in V1 with
  104. * the reduction constants in V0. The intermediate result is
  105. * then folded (accumulated) with the next data chunk in V5 and
  106. * stored in V1. Repeat this step for the register contents
  107. * in V2, V3, and V4 respectively.
  108. */
  109. VGFMAG %v1,CONST_R1R2,%v1,%v5
  110. VGFMAG %v2,CONST_R1R2,%v2,%v6
  111. VGFMAG %v3,CONST_R1R2,%v3,%v7
  112. VGFMAG %v4,CONST_R1R2,%v4,%v8
  113. /* Adjust buffer pointer and length for next loop */
  114. aghi %r3,64 /* BUF = BUF + 64 */
  115. aghi %r4,-64 /* LEN = LEN - 64 */
  116. cghi %r4,64
  117. jnl .Lfold_64bytes_loop
  118. .Lless_than_64bytes:
  119. /* Fold V1 to V4 into a single 128-bit value in V1 */
  120. VGFMAG %v1,CONST_R3R4,%v1,%v2
  121. VGFMAG %v1,CONST_R3R4,%v1,%v3
  122. VGFMAG %v1,CONST_R3R4,%v1,%v4
  123. /* Check whether to continue with 64-bit folding */
  124. cghi %r4,16
  125. jl .Lfinal_fold
  126. .Lfold_16bytes_loop:
  127. VL %v2,0,,%r3 /* Load next data chunk */
  128. VGFMAG %v1,CONST_R3R4,%v1,%v2 /* Fold next data chunk */
  129. /* Adjust buffer pointer and size for folding next data chunk */
  130. aghi %r3,16
  131. aghi %r4,-16
  132. /* Process remaining data chunks */
  133. cghi %r4,16
  134. jnl .Lfold_16bytes_loop
  135. .Lfinal_fold:
  136. /*
  137. * The R5 constant is used to fold a 128-bit value into an 96-bit value
  138. * that is XORed with the next 96-bit input data chunk. To use a single
  139. * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
  140. * form an intermediate 96-bit value (with appended zeros) which is then
  141. * XORed with the intermediate reduction result.
  142. */
  143. VGFMG %v1,CONST_R5,%v1
  144. /*
  145. * Further reduce the remaining 96-bit value to a 64-bit value using a
  146. * single VGFMG, the rightmost doubleword is multiplied with 0x1. The
  147. * intermediate result is then XORed with the product of the leftmost
  148. * doubleword with R6. The result is a 64-bit value and is subject to
  149. * the Barret reduction.
  150. */
  151. VGFMG %v1,CONST_R6,%v1
  152. /*
  153. * The input values to the Barret reduction are the degree-63 polynomial
  154. * in V1 (R(x)), degree-32 generator polynomial, and the reduction
  155. * constant u. The Barret reduction result is the CRC value of R(x) mod
  156. * P(x).
  157. *
  158. * The Barret reduction algorithm is defined as:
  159. *
  160. * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
  161. * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
  162. * 3. C(x) = R(x) XOR T2(x) mod x^32
  163. *
  164. * Note: To compensate the division by x^32, use the vector unpack
  165. * instruction to move the leftmost word into the leftmost doubleword
  166. * of the vector register. The rightmost doubleword is multiplied
  167. * with zero to not contribute to the intermedate results.
  168. */
  169. /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
  170. VUPLLF %v2,%v1
  171. VGFMG %v2,CONST_RU_POLY,%v2
  172. /*
  173. * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
  174. * V2 and XOR the intermediate result, T2(x), with the value in V1.
  175. * The final result is in the rightmost word of V2.
  176. */
  177. VUPLLF %v2,%v2
  178. VGFMAG %v2,CONST_CRC_POLY,%v2,%v1
  179. .Ldone:
  180. VLGVF %r2,%v2,3
  181. BR_EX %r14
  182. .previous