123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211 |
- /*
- * Hardware-accelerated CRC-32 variants for Linux on z Systems
- *
- * Use the z/Architecture Vector Extension Facility to accelerate the
- * computing of CRC-32 checksums.
- *
- * This CRC-32 implementation algorithm processes the most-significant
- * bit first (BE).
- *
- * Copyright IBM Corp. 2015
- * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
- */
- #include <linux/linkage.h>
- #include <asm/nospec-insn.h>
- #include <asm/vx-insn.h>
- /* Vector register range containing CRC-32 constants */
- #define CONST_R1R2 %v9
- #define CONST_R3R4 %v10
- #define CONST_R5 %v11
- #define CONST_R6 %v12
- #define CONST_RU_POLY %v13
- #define CONST_CRC_POLY %v14
- .data
- .align 8
- /*
- * The CRC-32 constant block contains reduction constants to fold and
- * process particular chunks of the input data stream in parallel.
- *
- * For the CRC-32 variants, the constants are precomputed according to
- * these defintions:
- *
- * R1 = x4*128+64 mod P(x)
- * R2 = x4*128 mod P(x)
- * R3 = x128+64 mod P(x)
- * R4 = x128 mod P(x)
- * R5 = x96 mod P(x)
- * R6 = x64 mod P(x)
- *
- * Barret reduction constant, u, is defined as floor(x**64 / P(x)).
- *
- * where P(x) is the polynomial in the normal domain and the P'(x) is the
- * polynomial in the reversed (bitreflected) domain.
- *
- * Note that the constant definitions below are extended in order to compute
- * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
- * The righmost doubleword can be 0 to prevent contribution to the result or
- * can be multiplied by 1 to perform an XOR without the need for a separate
- * VECTOR EXCLUSIVE OR instruction.
- *
- * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
- *
- * P(x) = 0x04C11DB7
- * P'(x) = 0xEDB88320
- */
- .Lconstants_CRC_32_BE:
- .quad 0x08833794c, 0x0e6228b11 # R1, R2
- .quad 0x0c5b9cd4c, 0x0e8a45605 # R3, R4
- .quad 0x0f200aa66, 1 << 32 # R5, x32
- .quad 0x0490d678d, 1 # R6, 1
- .quad 0x104d101df, 0 # u
- .quad 0x104C11DB7, 0 # P(x)
- .previous
- GEN_BR_THUNK %r14
- .text
- /*
- * The CRC-32 function(s) use these calling conventions:
- *
- * Parameters:
- *
- * %r2: Initial CRC value, typically ~0; and final CRC (return) value.
- * %r3: Input buffer pointer, performance might be improved if the
- * buffer is on a doubleword boundary.
- * %r4: Length of the buffer, must be 64 bytes or greater.
- *
- * Register usage:
- *
- * %r5: CRC-32 constant pool base pointer.
- * V0: Initial CRC value and intermediate constants and results.
- * V1..V4: Data for CRC computation.
- * V5..V8: Next data chunks that are fetched from the input buffer.
- *
- * V9..V14: CRC-32 constants.
- */
- ENTRY(crc32_be_vgfm_16)
- /* Load CRC-32 constants */
- larl %r5,.Lconstants_CRC_32_BE
- VLM CONST_R1R2,CONST_CRC_POLY,0,%r5
- /* Load the initial CRC value into the leftmost word of V0. */
- VZERO %v0
- VLVGF %v0,%r2,0
- /* Load a 64-byte data chunk and XOR with CRC */
- VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */
- VX %v1,%v0,%v1 /* V1 ^= CRC */
- aghi %r3,64 /* BUF = BUF + 64 */
- aghi %r4,-64 /* LEN = LEN - 64 */
- /* Check remaining buffer size and jump to proper folding method */
- cghi %r4,64
- jl .Lless_than_64bytes
- .Lfold_64bytes_loop:
- /* Load the next 64-byte data chunk into V5 to V8 */
- VLM %v5,%v8,0,%r3
- /*
- * Perform a GF(2) multiplication of the doublewords in V1 with
- * the reduction constants in V0. The intermediate result is
- * then folded (accumulated) with the next data chunk in V5 and
- * stored in V1. Repeat this step for the register contents
- * in V2, V3, and V4 respectively.
- */
- VGFMAG %v1,CONST_R1R2,%v1,%v5
- VGFMAG %v2,CONST_R1R2,%v2,%v6
- VGFMAG %v3,CONST_R1R2,%v3,%v7
- VGFMAG %v4,CONST_R1R2,%v4,%v8
- /* Adjust buffer pointer and length for next loop */
- aghi %r3,64 /* BUF = BUF + 64 */
- aghi %r4,-64 /* LEN = LEN - 64 */
- cghi %r4,64
- jnl .Lfold_64bytes_loop
- .Lless_than_64bytes:
- /* Fold V1 to V4 into a single 128-bit value in V1 */
- VGFMAG %v1,CONST_R3R4,%v1,%v2
- VGFMAG %v1,CONST_R3R4,%v1,%v3
- VGFMAG %v1,CONST_R3R4,%v1,%v4
- /* Check whether to continue with 64-bit folding */
- cghi %r4,16
- jl .Lfinal_fold
- .Lfold_16bytes_loop:
- VL %v2,0,,%r3 /* Load next data chunk */
- VGFMAG %v1,CONST_R3R4,%v1,%v2 /* Fold next data chunk */
- /* Adjust buffer pointer and size for folding next data chunk */
- aghi %r3,16
- aghi %r4,-16
- /* Process remaining data chunks */
- cghi %r4,16
- jnl .Lfold_16bytes_loop
- .Lfinal_fold:
- /*
- * The R5 constant is used to fold a 128-bit value into an 96-bit value
- * that is XORed with the next 96-bit input data chunk. To use a single
- * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
- * form an intermediate 96-bit value (with appended zeros) which is then
- * XORed with the intermediate reduction result.
- */
- VGFMG %v1,CONST_R5,%v1
- /*
- * Further reduce the remaining 96-bit value to a 64-bit value using a
- * single VGFMG, the rightmost doubleword is multiplied with 0x1. The
- * intermediate result is then XORed with the product of the leftmost
- * doubleword with R6. The result is a 64-bit value and is subject to
- * the Barret reduction.
- */
- VGFMG %v1,CONST_R6,%v1
- /*
- * The input values to the Barret reduction are the degree-63 polynomial
- * in V1 (R(x)), degree-32 generator polynomial, and the reduction
- * constant u. The Barret reduction result is the CRC value of R(x) mod
- * P(x).
- *
- * The Barret reduction algorithm is defined as:
- *
- * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
- * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
- * 3. C(x) = R(x) XOR T2(x) mod x^32
- *
- * Note: To compensate the division by x^32, use the vector unpack
- * instruction to move the leftmost word into the leftmost doubleword
- * of the vector register. The rightmost doubleword is multiplied
- * with zero to not contribute to the intermedate results.
- */
- /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
- VUPLLF %v2,%v1
- VGFMG %v2,CONST_RU_POLY,%v2
- /*
- * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
- * V2 and XOR the intermediate result, T2(x), with the value in V1.
- * The final result is in the rightmost word of V2.
- */
- VUPLLF %v2,%v2
- VGFMAG %v2,CONST_CRC_POLY,%v2,%v1
- .Ldone:
- VLGVF %r2,%v2,3
- BR_EX %r14
- .previous
|