123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- /*
- * Cell Broadband Engine OProfile Support
- *
- * (C) Copyright IBM Corporation 2006
- *
- * Authors: Maynard Johnson <maynardj@us.ibm.com>
- * Carl Love <carll@us.ibm.com>
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
- #include <linux/hrtimer.h>
- #include <linux/smp.h>
- #include <linux/slab.h>
- #include <asm/cell-pmu.h>
- #include <asm/time.h>
- #include "pr_util.h"
- #define SCALE_SHIFT 14
- static u32 *samples;
- /* spu_prof_running is a flag used to indicate if spu profiling is enabled
- * or not. It is set by the routines start_spu_profiling_cycles() and
- * start_spu_profiling_events(). The flag is cleared by the routines
- * stop_spu_profiling_cycles() and stop_spu_profiling_events(). These
- * routines are called via global_start() and global_stop() which are called in
- * op_powerpc_start() and op_powerpc_stop(). These routines are called once
- * per system as a result of the user starting/stopping oprofile. Hence, only
- * one CPU per user at a time will be changing the value of spu_prof_running.
- * In general, OProfile does not protect against multiple users trying to run
- * OProfile at a time.
- */
- int spu_prof_running;
- static unsigned int profiling_interval;
- #define NUM_SPU_BITS_TRBUF 16
- #define SPUS_PER_TB_ENTRY 4
- #define SPU_PC_MASK 0xFFFF
- DEFINE_SPINLOCK(oprof_spu_smpl_arry_lck);
- static unsigned long oprof_spu_smpl_arry_lck_flags;
- void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset)
- {
- unsigned long ns_per_cyc;
- if (!freq_khz)
- freq_khz = ppc_proc_freq/1000;
- /* To calculate a timeout in nanoseconds, the basic
- * formula is ns = cycles_reset * (NSEC_PER_SEC / cpu frequency).
- * To avoid floating point math, we use the scale math
- * technique as described in linux/jiffies.h. We use
- * a scale factor of SCALE_SHIFT, which provides 4 decimal places
- * of precision. This is close enough for the purpose at hand.
- *
- * The value of the timeout should be small enough that the hw
- * trace buffer will not get more than about 1/3 full for the
- * maximum user specified (the LFSR value) hw sampling frequency.
- * This is to ensure the trace buffer will never fill even if the
- * kernel thread scheduling varies under a heavy system load.
- */
- ns_per_cyc = (USEC_PER_SEC << SCALE_SHIFT)/freq_khz;
- profiling_interval = (ns_per_cyc * cycles_reset) >> SCALE_SHIFT;
- }
- /*
- * Extract SPU PC from trace buffer entry
- */
- static void spu_pc_extract(int cpu, int entry)
- {
- /* the trace buffer is 128 bits */
- u64 trace_buffer[2];
- u64 spu_mask;
- int spu;
- spu_mask = SPU_PC_MASK;
- /* Each SPU PC is 16 bits; hence, four spus in each of
- * the two 64-bit buffer entries that make up the
- * 128-bit trace_buffer entry. Process two 64-bit values
- * simultaneously.
- * trace[0] SPU PC contents are: 0 1 2 3
- * trace[1] SPU PC contents are: 4 5 6 7
- */
- cbe_read_trace_buffer(cpu, trace_buffer);
- for (spu = SPUS_PER_TB_ENTRY-1; spu >= 0; spu--) {
- /* spu PC trace entry is upper 16 bits of the
- * 18 bit SPU program counter
- */
- samples[spu * TRACE_ARRAY_SIZE + entry]
- = (spu_mask & trace_buffer[0]) << 2;
- samples[(spu + SPUS_PER_TB_ENTRY) * TRACE_ARRAY_SIZE + entry]
- = (spu_mask & trace_buffer[1]) << 2;
- trace_buffer[0] = trace_buffer[0] >> NUM_SPU_BITS_TRBUF;
- trace_buffer[1] = trace_buffer[1] >> NUM_SPU_BITS_TRBUF;
- }
- }
- static int cell_spu_pc_collection(int cpu)
- {
- u32 trace_addr;
- int entry;
- /* process the collected SPU PC for the node */
- entry = 0;
- trace_addr = cbe_read_pm(cpu, trace_address);
- while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
- /* there is data in the trace buffer to process */
- spu_pc_extract(cpu, entry);
- entry++;
- if (entry >= TRACE_ARRAY_SIZE)
- /* spu_samples is full */
- break;
- trace_addr = cbe_read_pm(cpu, trace_address);
- }
- return entry;
- }
- static enum hrtimer_restart profile_spus(struct hrtimer *timer)
- {
- ktime_t kt;
- int cpu, node, k, num_samples, spu_num;
- if (!spu_prof_running)
- goto stop;
- for_each_online_cpu(cpu) {
- if (cbe_get_hw_thread_id(cpu))
- continue;
- node = cbe_cpu_to_node(cpu);
- /* There should only be one kernel thread at a time processing
- * the samples. In the very unlikely case that the processing
- * is taking a very long time and multiple kernel threads are
- * started to process the samples. Make sure only one kernel
- * thread is working on the samples array at a time. The
- * sample array must be loaded and then processed for a given
- * cpu. The sample array is not per cpu.
- */
- spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
- oprof_spu_smpl_arry_lck_flags);
- num_samples = cell_spu_pc_collection(cpu);
- if (num_samples == 0) {
- spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
- oprof_spu_smpl_arry_lck_flags);
- continue;
- }
- for (k = 0; k < SPUS_PER_NODE; k++) {
- spu_num = k + (node * SPUS_PER_NODE);
- spu_sync_buffer(spu_num,
- samples + (k * TRACE_ARRAY_SIZE),
- num_samples);
- }
- spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
- oprof_spu_smpl_arry_lck_flags);
- }
- smp_wmb(); /* insure spu event buffer updates are written */
- /* don't want events intermingled... */
- kt = ktime_set(0, profiling_interval);
- if (!spu_prof_running)
- goto stop;
- hrtimer_forward(timer, timer->base->get_time(), kt);
- return HRTIMER_RESTART;
- stop:
- printk(KERN_INFO "SPU_PROF: spu-prof timer ending\n");
- return HRTIMER_NORESTART;
- }
- static struct hrtimer timer;
- /*
- * Entry point for SPU cycle profiling.
- * NOTE: SPU profiling is done system-wide, not per-CPU.
- *
- * cycles_reset is the count value specified by the user when
- * setting up OProfile to count SPU_CYCLES.
- */
- int start_spu_profiling_cycles(unsigned int cycles_reset)
- {
- ktime_t kt;
- pr_debug("timer resolution: %lu\n", TICK_NSEC);
- kt = ktime_set(0, profiling_interval);
- hrtimer_init(&timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- hrtimer_set_expires(&timer, kt);
- timer.function = profile_spus;
- /* Allocate arrays for collecting SPU PC samples */
- samples = kzalloc(SPUS_PER_NODE *
- TRACE_ARRAY_SIZE * sizeof(u32), GFP_KERNEL);
- if (!samples)
- return -ENOMEM;
- spu_prof_running = 1;
- hrtimer_start(&timer, kt, HRTIMER_MODE_REL);
- schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
- return 0;
- }
- /*
- * Entry point for SPU event profiling.
- * NOTE: SPU profiling is done system-wide, not per-CPU.
- *
- * cycles_reset is the count value specified by the user when
- * setting up OProfile to count SPU_CYCLES.
- */
- void start_spu_profiling_events(void)
- {
- spu_prof_running = 1;
- schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
- return;
- }
- void stop_spu_profiling_cycles(void)
- {
- spu_prof_running = 0;
- hrtimer_cancel(&timer);
- kfree(samples);
- pr_debug("SPU_PROF: stop_spu_profiling_cycles issued\n");
- }
- void stop_spu_profiling_events(void)
- {
- spu_prof_running = 0;
- }
|