mips.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/bitops.h>
  12. #include <linux/errno.h>
  13. #include <linux/err.h>
  14. #include <linux/kdebug.h>
  15. #include <linux/module.h>
  16. #include <linux/uaccess.h>
  17. #include <linux/vmalloc.h>
  18. #include <linux/fs.h>
  19. #include <linux/bootmem.h>
  20. #include <asm/fpu.h>
  21. #include <asm/page.h>
  22. #include <asm/cacheflush.h>
  23. #include <asm/mmu_context.h>
  24. #include <asm/pgtable.h>
  25. #include <linux/kvm_host.h>
  26. #include "interrupt.h"
  27. #include "commpage.h"
  28. #define CREATE_TRACE_POINTS
  29. #include "trace.h"
  30. #ifndef VECTORSPACING
  31. #define VECTORSPACING 0x100 /* for EI/VI mode */
  32. #endif
  33. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  34. struct kvm_stats_debugfs_item debugfs_entries[] = {
  35. { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
  36. { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
  37. { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
  38. { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
  39. { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  40. { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
  41. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
  42. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
  43. { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
  44. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
  45. { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
  46. { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
  47. { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
  48. { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
  49. { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
  50. { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
  51. { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  52. { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  53. { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  54. { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  55. { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
  56. { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
  57. {NULL}
  58. };
  59. static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  60. {
  61. int i;
  62. for_each_possible_cpu(i) {
  63. vcpu->arch.guest_kernel_asid[i] = 0;
  64. vcpu->arch.guest_user_asid[i] = 0;
  65. }
  66. return 0;
  67. }
  68. /*
  69. * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  70. * Config7, so we are "runnable" if interrupts are pending
  71. */
  72. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  73. {
  74. return !!(vcpu->arch.pending_exceptions);
  75. }
  76. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  77. {
  78. return 1;
  79. }
  80. int kvm_arch_hardware_enable(void)
  81. {
  82. return 0;
  83. }
  84. int kvm_arch_hardware_setup(void)
  85. {
  86. return 0;
  87. }
  88. void kvm_arch_check_processor_compat(void *rtn)
  89. {
  90. *(int *)rtn = 0;
  91. }
  92. static void kvm_mips_init_tlbs(struct kvm *kvm)
  93. {
  94. unsigned long wired;
  95. /*
  96. * Add a wired entry to the TLB, it is used to map the commpage to
  97. * the Guest kernel
  98. */
  99. wired = read_c0_wired();
  100. write_c0_wired(wired + 1);
  101. mtc0_tlbw_hazard();
  102. kvm->arch.commpage_tlb = wired;
  103. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  104. kvm->arch.commpage_tlb);
  105. }
  106. static void kvm_mips_init_vm_percpu(void *arg)
  107. {
  108. struct kvm *kvm = (struct kvm *)arg;
  109. kvm_mips_init_tlbs(kvm);
  110. kvm_mips_callbacks->vm_init(kvm);
  111. }
  112. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  113. {
  114. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  115. kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
  116. __func__);
  117. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  118. }
  119. return 0;
  120. }
  121. bool kvm_arch_has_vcpu_debugfs(void)
  122. {
  123. return false;
  124. }
  125. int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
  126. {
  127. return 0;
  128. }
  129. void kvm_mips_free_vcpus(struct kvm *kvm)
  130. {
  131. unsigned int i;
  132. struct kvm_vcpu *vcpu;
  133. /* Put the pages we reserved for the guest pmap */
  134. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  135. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  136. kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
  137. }
  138. kfree(kvm->arch.guest_pmap);
  139. kvm_for_each_vcpu(i, vcpu, kvm) {
  140. kvm_arch_vcpu_free(vcpu);
  141. }
  142. mutex_lock(&kvm->lock);
  143. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  144. kvm->vcpus[i] = NULL;
  145. atomic_set(&kvm->online_vcpus, 0);
  146. mutex_unlock(&kvm->lock);
  147. }
  148. static void kvm_mips_uninit_tlbs(void *arg)
  149. {
  150. /* Restore wired count */
  151. write_c0_wired(0);
  152. mtc0_tlbw_hazard();
  153. /* Clear out all the TLBs */
  154. kvm_local_flush_tlb_all();
  155. }
  156. void kvm_arch_destroy_vm(struct kvm *kvm)
  157. {
  158. kvm_mips_free_vcpus(kvm);
  159. /* If this is the last instance, restore wired count */
  160. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  161. kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
  162. __func__);
  163. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  164. }
  165. }
  166. long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
  167. unsigned long arg)
  168. {
  169. return -ENOIOCTLCMD;
  170. }
  171. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  172. unsigned long npages)
  173. {
  174. return 0;
  175. }
  176. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  177. struct kvm_memory_slot *memslot,
  178. const struct kvm_userspace_memory_region *mem,
  179. enum kvm_mr_change change)
  180. {
  181. return 0;
  182. }
  183. void kvm_arch_commit_memory_region(struct kvm *kvm,
  184. const struct kvm_userspace_memory_region *mem,
  185. const struct kvm_memory_slot *old,
  186. const struct kvm_memory_slot *new,
  187. enum kvm_mr_change change)
  188. {
  189. unsigned long npages = 0;
  190. int i;
  191. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  192. __func__, kvm, mem->slot, mem->guest_phys_addr,
  193. mem->memory_size, mem->userspace_addr);
  194. /* Setup Guest PMAP table */
  195. if (!kvm->arch.guest_pmap) {
  196. if (mem->slot == 0)
  197. npages = mem->memory_size >> PAGE_SHIFT;
  198. if (npages) {
  199. kvm->arch.guest_pmap_npages = npages;
  200. kvm->arch.guest_pmap =
  201. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  202. if (!kvm->arch.guest_pmap) {
  203. kvm_err("Failed to allocate guest PMAP\n");
  204. return;
  205. }
  206. kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  207. npages, kvm->arch.guest_pmap);
  208. /* Now setup the page table */
  209. for (i = 0; i < npages; i++)
  210. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  211. }
  212. }
  213. }
  214. static inline void dump_handler(const char *symbol, void *start, void *end)
  215. {
  216. u32 *p;
  217. pr_debug("LEAF(%s)\n", symbol);
  218. pr_debug("\t.set push\n");
  219. pr_debug("\t.set noreorder\n");
  220. for (p = start; p < (u32 *)end; ++p)
  221. pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
  222. pr_debug("\t.set\tpop\n");
  223. pr_debug("\tEND(%s)\n", symbol);
  224. }
  225. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  226. {
  227. int err, size;
  228. void *gebase, *p, *handler;
  229. int i;
  230. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  231. if (!vcpu) {
  232. err = -ENOMEM;
  233. goto out;
  234. }
  235. err = kvm_vcpu_init(vcpu, kvm, id);
  236. if (err)
  237. goto out_free_cpu;
  238. kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  239. /*
  240. * Allocate space for host mode exception handlers that handle
  241. * guest mode exits
  242. */
  243. if (cpu_has_veic || cpu_has_vint)
  244. size = 0x200 + VECTORSPACING * 64;
  245. else
  246. size = 0x4000;
  247. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  248. if (!gebase) {
  249. err = -ENOMEM;
  250. goto out_uninit_cpu;
  251. }
  252. kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  253. ALIGN(size, PAGE_SIZE), gebase);
  254. /*
  255. * Check new ebase actually fits in CP0_EBase. The lack of a write gate
  256. * limits us to the low 512MB of physical address space. If the memory
  257. * we allocate is out of range, just give up now.
  258. */
  259. if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
  260. kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
  261. gebase);
  262. err = -ENOMEM;
  263. goto out_free_gebase;
  264. }
  265. /* Save new ebase */
  266. vcpu->arch.guest_ebase = gebase;
  267. /* Build guest exception vectors dynamically in unmapped memory */
  268. handler = gebase + 0x2000;
  269. /* TLB Refill, EXL = 0 */
  270. kvm_mips_build_exception(gebase, handler);
  271. /* General Exception Entry point */
  272. kvm_mips_build_exception(gebase + 0x180, handler);
  273. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  274. for (i = 0; i < 8; i++) {
  275. kvm_debug("L1 Vectored handler @ %p\n",
  276. gebase + 0x200 + (i * VECTORSPACING));
  277. kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
  278. handler);
  279. }
  280. /* General exit handler */
  281. p = handler;
  282. p = kvm_mips_build_exit(p);
  283. /* Guest entry routine */
  284. vcpu->arch.vcpu_run = p;
  285. p = kvm_mips_build_vcpu_run(p);
  286. /* Dump the generated code */
  287. pr_debug("#include <asm/asm.h>\n");
  288. pr_debug("#include <asm/regdef.h>\n");
  289. pr_debug("\n");
  290. dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
  291. dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
  292. dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
  293. /* Invalidate the icache for these ranges */
  294. flush_icache_range((unsigned long)gebase,
  295. (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
  296. /*
  297. * Allocate comm page for guest kernel, a TLB will be reserved for
  298. * mapping GVA @ 0xFFFF8000 to this page
  299. */
  300. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  301. if (!vcpu->arch.kseg0_commpage) {
  302. err = -ENOMEM;
  303. goto out_free_gebase;
  304. }
  305. kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  306. kvm_mips_commpage_init(vcpu);
  307. /* Init */
  308. vcpu->arch.last_sched_cpu = -1;
  309. /* Start off the timer */
  310. kvm_mips_init_count(vcpu);
  311. return vcpu;
  312. out_free_gebase:
  313. kfree(gebase);
  314. out_uninit_cpu:
  315. kvm_vcpu_uninit(vcpu);
  316. out_free_cpu:
  317. kfree(vcpu);
  318. out:
  319. return ERR_PTR(err);
  320. }
  321. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  322. {
  323. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  324. kvm_vcpu_uninit(vcpu);
  325. kvm_mips_dump_stats(vcpu);
  326. kfree(vcpu->arch.guest_ebase);
  327. kfree(vcpu->arch.kseg0_commpage);
  328. kfree(vcpu);
  329. }
  330. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  331. {
  332. kvm_arch_vcpu_free(vcpu);
  333. }
  334. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  335. struct kvm_guest_debug *dbg)
  336. {
  337. return -ENOIOCTLCMD;
  338. }
  339. /* Must be called with preemption disabled, just before entering guest */
  340. static void kvm_mips_check_asids(struct kvm_vcpu *vcpu)
  341. {
  342. struct mips_coproc *cop0 = vcpu->arch.cop0;
  343. int i, cpu = smp_processor_id();
  344. unsigned int gasid;
  345. /*
  346. * Lazy host ASID regeneration for guest user mode.
  347. * If the guest ASID has changed since the last guest usermode
  348. * execution, regenerate the host ASID so as to invalidate stale TLB
  349. * entries.
  350. */
  351. if (!KVM_GUEST_KERNEL_MODE(vcpu)) {
  352. gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID;
  353. if (gasid != vcpu->arch.last_user_gasid) {
  354. kvm_get_new_mmu_context(&vcpu->arch.guest_user_mm, cpu,
  355. vcpu);
  356. vcpu->arch.guest_user_asid[cpu] =
  357. vcpu->arch.guest_user_mm.context.asid[cpu];
  358. for_each_possible_cpu(i)
  359. if (i != cpu)
  360. vcpu->arch.guest_user_asid[cpu] = 0;
  361. vcpu->arch.last_user_gasid = gasid;
  362. }
  363. }
  364. }
  365. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  366. {
  367. int r = 0;
  368. sigset_t sigsaved;
  369. if (vcpu->sigset_active)
  370. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  371. if (vcpu->mmio_needed) {
  372. if (!vcpu->mmio_is_write)
  373. kvm_mips_complete_mmio_load(vcpu, run);
  374. vcpu->mmio_needed = 0;
  375. }
  376. lose_fpu(1);
  377. local_irq_disable();
  378. /* Check if we have any exceptions/interrupts pending */
  379. kvm_mips_deliver_interrupts(vcpu,
  380. kvm_read_c0_guest_cause(vcpu->arch.cop0));
  381. guest_enter_irqoff();
  382. /* Disable hardware page table walking while in guest */
  383. htw_stop();
  384. trace_kvm_enter(vcpu);
  385. kvm_mips_check_asids(vcpu);
  386. r = vcpu->arch.vcpu_run(run, vcpu);
  387. trace_kvm_out(vcpu);
  388. /* Re-enable HTW before enabling interrupts */
  389. htw_start();
  390. guest_exit_irqoff();
  391. local_irq_enable();
  392. if (vcpu->sigset_active)
  393. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  394. return r;
  395. }
  396. int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  397. struct kvm_mips_interrupt *irq)
  398. {
  399. int intr = (int)irq->irq;
  400. struct kvm_vcpu *dvcpu = NULL;
  401. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  402. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  403. (int)intr);
  404. if (irq->cpu == -1)
  405. dvcpu = vcpu;
  406. else
  407. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  408. if (intr == 2 || intr == 3 || intr == 4) {
  409. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  410. } else if (intr == -2 || intr == -3 || intr == -4) {
  411. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  412. } else {
  413. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  414. irq->cpu, irq->irq);
  415. return -EINVAL;
  416. }
  417. dvcpu->arch.wait = 0;
  418. if (swait_active(&dvcpu->wq))
  419. swake_up(&dvcpu->wq);
  420. return 0;
  421. }
  422. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  423. struct kvm_mp_state *mp_state)
  424. {
  425. return -ENOIOCTLCMD;
  426. }
  427. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  428. struct kvm_mp_state *mp_state)
  429. {
  430. return -ENOIOCTLCMD;
  431. }
  432. static u64 kvm_mips_get_one_regs[] = {
  433. KVM_REG_MIPS_R0,
  434. KVM_REG_MIPS_R1,
  435. KVM_REG_MIPS_R2,
  436. KVM_REG_MIPS_R3,
  437. KVM_REG_MIPS_R4,
  438. KVM_REG_MIPS_R5,
  439. KVM_REG_MIPS_R6,
  440. KVM_REG_MIPS_R7,
  441. KVM_REG_MIPS_R8,
  442. KVM_REG_MIPS_R9,
  443. KVM_REG_MIPS_R10,
  444. KVM_REG_MIPS_R11,
  445. KVM_REG_MIPS_R12,
  446. KVM_REG_MIPS_R13,
  447. KVM_REG_MIPS_R14,
  448. KVM_REG_MIPS_R15,
  449. KVM_REG_MIPS_R16,
  450. KVM_REG_MIPS_R17,
  451. KVM_REG_MIPS_R18,
  452. KVM_REG_MIPS_R19,
  453. KVM_REG_MIPS_R20,
  454. KVM_REG_MIPS_R21,
  455. KVM_REG_MIPS_R22,
  456. KVM_REG_MIPS_R23,
  457. KVM_REG_MIPS_R24,
  458. KVM_REG_MIPS_R25,
  459. KVM_REG_MIPS_R26,
  460. KVM_REG_MIPS_R27,
  461. KVM_REG_MIPS_R28,
  462. KVM_REG_MIPS_R29,
  463. KVM_REG_MIPS_R30,
  464. KVM_REG_MIPS_R31,
  465. #ifndef CONFIG_CPU_MIPSR6
  466. KVM_REG_MIPS_HI,
  467. KVM_REG_MIPS_LO,
  468. #endif
  469. KVM_REG_MIPS_PC,
  470. KVM_REG_MIPS_CP0_INDEX,
  471. KVM_REG_MIPS_CP0_CONTEXT,
  472. KVM_REG_MIPS_CP0_USERLOCAL,
  473. KVM_REG_MIPS_CP0_PAGEMASK,
  474. KVM_REG_MIPS_CP0_WIRED,
  475. KVM_REG_MIPS_CP0_HWRENA,
  476. KVM_REG_MIPS_CP0_BADVADDR,
  477. KVM_REG_MIPS_CP0_COUNT,
  478. KVM_REG_MIPS_CP0_ENTRYHI,
  479. KVM_REG_MIPS_CP0_COMPARE,
  480. KVM_REG_MIPS_CP0_STATUS,
  481. KVM_REG_MIPS_CP0_CAUSE,
  482. KVM_REG_MIPS_CP0_EPC,
  483. KVM_REG_MIPS_CP0_PRID,
  484. KVM_REG_MIPS_CP0_CONFIG,
  485. KVM_REG_MIPS_CP0_CONFIG1,
  486. KVM_REG_MIPS_CP0_CONFIG2,
  487. KVM_REG_MIPS_CP0_CONFIG3,
  488. KVM_REG_MIPS_CP0_CONFIG4,
  489. KVM_REG_MIPS_CP0_CONFIG5,
  490. KVM_REG_MIPS_CP0_CONFIG7,
  491. KVM_REG_MIPS_CP0_ERROREPC,
  492. KVM_REG_MIPS_COUNT_CTL,
  493. KVM_REG_MIPS_COUNT_RESUME,
  494. KVM_REG_MIPS_COUNT_HZ,
  495. };
  496. static u64 kvm_mips_get_one_regs_fpu[] = {
  497. KVM_REG_MIPS_FCR_IR,
  498. KVM_REG_MIPS_FCR_CSR,
  499. };
  500. static u64 kvm_mips_get_one_regs_msa[] = {
  501. KVM_REG_MIPS_MSA_IR,
  502. KVM_REG_MIPS_MSA_CSR,
  503. };
  504. static u64 kvm_mips_get_one_regs_kscratch[] = {
  505. KVM_REG_MIPS_CP0_KSCRATCH1,
  506. KVM_REG_MIPS_CP0_KSCRATCH2,
  507. KVM_REG_MIPS_CP0_KSCRATCH3,
  508. KVM_REG_MIPS_CP0_KSCRATCH4,
  509. KVM_REG_MIPS_CP0_KSCRATCH5,
  510. KVM_REG_MIPS_CP0_KSCRATCH6,
  511. };
  512. static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
  513. {
  514. unsigned long ret;
  515. ret = ARRAY_SIZE(kvm_mips_get_one_regs);
  516. if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
  517. ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
  518. /* odd doubles */
  519. if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
  520. ret += 16;
  521. }
  522. if (kvm_mips_guest_can_have_msa(&vcpu->arch))
  523. ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
  524. ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
  525. ret += kvm_mips_callbacks->num_regs(vcpu);
  526. return ret;
  527. }
  528. static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
  529. {
  530. u64 index;
  531. unsigned int i;
  532. if (copy_to_user(indices, kvm_mips_get_one_regs,
  533. sizeof(kvm_mips_get_one_regs)))
  534. return -EFAULT;
  535. indices += ARRAY_SIZE(kvm_mips_get_one_regs);
  536. if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
  537. if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
  538. sizeof(kvm_mips_get_one_regs_fpu)))
  539. return -EFAULT;
  540. indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
  541. for (i = 0; i < 32; ++i) {
  542. index = KVM_REG_MIPS_FPR_32(i);
  543. if (copy_to_user(indices, &index, sizeof(index)))
  544. return -EFAULT;
  545. ++indices;
  546. /* skip odd doubles if no F64 */
  547. if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
  548. continue;
  549. index = KVM_REG_MIPS_FPR_64(i);
  550. if (copy_to_user(indices, &index, sizeof(index)))
  551. return -EFAULT;
  552. ++indices;
  553. }
  554. }
  555. if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
  556. if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
  557. sizeof(kvm_mips_get_one_regs_msa)))
  558. return -EFAULT;
  559. indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
  560. for (i = 0; i < 32; ++i) {
  561. index = KVM_REG_MIPS_VEC_128(i);
  562. if (copy_to_user(indices, &index, sizeof(index)))
  563. return -EFAULT;
  564. ++indices;
  565. }
  566. }
  567. for (i = 0; i < 6; ++i) {
  568. if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
  569. continue;
  570. if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
  571. sizeof(kvm_mips_get_one_regs_kscratch[i])))
  572. return -EFAULT;
  573. ++indices;
  574. }
  575. return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
  576. }
  577. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  578. const struct kvm_one_reg *reg)
  579. {
  580. struct mips_coproc *cop0 = vcpu->arch.cop0;
  581. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  582. int ret;
  583. s64 v;
  584. s64 vs[2];
  585. unsigned int idx;
  586. switch (reg->id) {
  587. /* General purpose registers */
  588. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  589. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  590. break;
  591. #ifndef CONFIG_CPU_MIPSR6
  592. case KVM_REG_MIPS_HI:
  593. v = (long)vcpu->arch.hi;
  594. break;
  595. case KVM_REG_MIPS_LO:
  596. v = (long)vcpu->arch.lo;
  597. break;
  598. #endif
  599. case KVM_REG_MIPS_PC:
  600. v = (long)vcpu->arch.pc;
  601. break;
  602. /* Floating point registers */
  603. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  604. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  605. return -EINVAL;
  606. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  607. /* Odd singles in top of even double when FR=0 */
  608. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  609. v = get_fpr32(&fpu->fpr[idx], 0);
  610. else
  611. v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
  612. break;
  613. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  614. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  615. return -EINVAL;
  616. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  617. /* Can't access odd doubles in FR=0 mode */
  618. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  619. return -EINVAL;
  620. v = get_fpr64(&fpu->fpr[idx], 0);
  621. break;
  622. case KVM_REG_MIPS_FCR_IR:
  623. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  624. return -EINVAL;
  625. v = boot_cpu_data.fpu_id;
  626. break;
  627. case KVM_REG_MIPS_FCR_CSR:
  628. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  629. return -EINVAL;
  630. v = fpu->fcr31;
  631. break;
  632. /* MIPS SIMD Architecture (MSA) registers */
  633. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  634. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  635. return -EINVAL;
  636. /* Can't access MSA registers in FR=0 mode */
  637. if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
  638. return -EINVAL;
  639. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  640. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  641. /* least significant byte first */
  642. vs[0] = get_fpr64(&fpu->fpr[idx], 0);
  643. vs[1] = get_fpr64(&fpu->fpr[idx], 1);
  644. #else
  645. /* most significant byte first */
  646. vs[0] = get_fpr64(&fpu->fpr[idx], 1);
  647. vs[1] = get_fpr64(&fpu->fpr[idx], 0);
  648. #endif
  649. break;
  650. case KVM_REG_MIPS_MSA_IR:
  651. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  652. return -EINVAL;
  653. v = boot_cpu_data.msa_id;
  654. break;
  655. case KVM_REG_MIPS_MSA_CSR:
  656. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  657. return -EINVAL;
  658. v = fpu->msacsr;
  659. break;
  660. /* Co-processor 0 registers */
  661. case KVM_REG_MIPS_CP0_INDEX:
  662. v = (long)kvm_read_c0_guest_index(cop0);
  663. break;
  664. case KVM_REG_MIPS_CP0_CONTEXT:
  665. v = (long)kvm_read_c0_guest_context(cop0);
  666. break;
  667. case KVM_REG_MIPS_CP0_USERLOCAL:
  668. v = (long)kvm_read_c0_guest_userlocal(cop0);
  669. break;
  670. case KVM_REG_MIPS_CP0_PAGEMASK:
  671. v = (long)kvm_read_c0_guest_pagemask(cop0);
  672. break;
  673. case KVM_REG_MIPS_CP0_WIRED:
  674. v = (long)kvm_read_c0_guest_wired(cop0);
  675. break;
  676. case KVM_REG_MIPS_CP0_HWRENA:
  677. v = (long)kvm_read_c0_guest_hwrena(cop0);
  678. break;
  679. case KVM_REG_MIPS_CP0_BADVADDR:
  680. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  681. break;
  682. case KVM_REG_MIPS_CP0_ENTRYHI:
  683. v = (long)kvm_read_c0_guest_entryhi(cop0);
  684. break;
  685. case KVM_REG_MIPS_CP0_COMPARE:
  686. v = (long)kvm_read_c0_guest_compare(cop0);
  687. break;
  688. case KVM_REG_MIPS_CP0_STATUS:
  689. v = (long)kvm_read_c0_guest_status(cop0);
  690. break;
  691. case KVM_REG_MIPS_CP0_CAUSE:
  692. v = (long)kvm_read_c0_guest_cause(cop0);
  693. break;
  694. case KVM_REG_MIPS_CP0_EPC:
  695. v = (long)kvm_read_c0_guest_epc(cop0);
  696. break;
  697. case KVM_REG_MIPS_CP0_PRID:
  698. v = (long)kvm_read_c0_guest_prid(cop0);
  699. break;
  700. case KVM_REG_MIPS_CP0_CONFIG:
  701. v = (long)kvm_read_c0_guest_config(cop0);
  702. break;
  703. case KVM_REG_MIPS_CP0_CONFIG1:
  704. v = (long)kvm_read_c0_guest_config1(cop0);
  705. break;
  706. case KVM_REG_MIPS_CP0_CONFIG2:
  707. v = (long)kvm_read_c0_guest_config2(cop0);
  708. break;
  709. case KVM_REG_MIPS_CP0_CONFIG3:
  710. v = (long)kvm_read_c0_guest_config3(cop0);
  711. break;
  712. case KVM_REG_MIPS_CP0_CONFIG4:
  713. v = (long)kvm_read_c0_guest_config4(cop0);
  714. break;
  715. case KVM_REG_MIPS_CP0_CONFIG5:
  716. v = (long)kvm_read_c0_guest_config5(cop0);
  717. break;
  718. case KVM_REG_MIPS_CP0_CONFIG7:
  719. v = (long)kvm_read_c0_guest_config7(cop0);
  720. break;
  721. case KVM_REG_MIPS_CP0_ERROREPC:
  722. v = (long)kvm_read_c0_guest_errorepc(cop0);
  723. break;
  724. case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
  725. idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
  726. if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
  727. return -EINVAL;
  728. switch (idx) {
  729. case 2:
  730. v = (long)kvm_read_c0_guest_kscratch1(cop0);
  731. break;
  732. case 3:
  733. v = (long)kvm_read_c0_guest_kscratch2(cop0);
  734. break;
  735. case 4:
  736. v = (long)kvm_read_c0_guest_kscratch3(cop0);
  737. break;
  738. case 5:
  739. v = (long)kvm_read_c0_guest_kscratch4(cop0);
  740. break;
  741. case 6:
  742. v = (long)kvm_read_c0_guest_kscratch5(cop0);
  743. break;
  744. case 7:
  745. v = (long)kvm_read_c0_guest_kscratch6(cop0);
  746. break;
  747. }
  748. break;
  749. /* registers to be handled specially */
  750. default:
  751. ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
  752. if (ret)
  753. return ret;
  754. break;
  755. }
  756. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  757. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  758. return put_user(v, uaddr64);
  759. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  760. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  761. u32 v32 = (u32)v;
  762. return put_user(v32, uaddr32);
  763. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  764. void __user *uaddr = (void __user *)(long)reg->addr;
  765. return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
  766. } else {
  767. return -EINVAL;
  768. }
  769. }
  770. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  771. const struct kvm_one_reg *reg)
  772. {
  773. struct mips_coproc *cop0 = vcpu->arch.cop0;
  774. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  775. s64 v;
  776. s64 vs[2];
  777. unsigned int idx;
  778. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  779. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  780. if (get_user(v, uaddr64) != 0)
  781. return -EFAULT;
  782. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  783. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  784. s32 v32;
  785. if (get_user(v32, uaddr32) != 0)
  786. return -EFAULT;
  787. v = (s64)v32;
  788. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  789. void __user *uaddr = (void __user *)(long)reg->addr;
  790. return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
  791. } else {
  792. return -EINVAL;
  793. }
  794. switch (reg->id) {
  795. /* General purpose registers */
  796. case KVM_REG_MIPS_R0:
  797. /* Silently ignore requests to set $0 */
  798. break;
  799. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  800. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  801. break;
  802. #ifndef CONFIG_CPU_MIPSR6
  803. case KVM_REG_MIPS_HI:
  804. vcpu->arch.hi = v;
  805. break;
  806. case KVM_REG_MIPS_LO:
  807. vcpu->arch.lo = v;
  808. break;
  809. #endif
  810. case KVM_REG_MIPS_PC:
  811. vcpu->arch.pc = v;
  812. break;
  813. /* Floating point registers */
  814. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  815. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  816. return -EINVAL;
  817. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  818. /* Odd singles in top of even double when FR=0 */
  819. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  820. set_fpr32(&fpu->fpr[idx], 0, v);
  821. else
  822. set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
  823. break;
  824. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  825. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  826. return -EINVAL;
  827. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  828. /* Can't access odd doubles in FR=0 mode */
  829. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  830. return -EINVAL;
  831. set_fpr64(&fpu->fpr[idx], 0, v);
  832. break;
  833. case KVM_REG_MIPS_FCR_IR:
  834. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  835. return -EINVAL;
  836. /* Read-only */
  837. break;
  838. case KVM_REG_MIPS_FCR_CSR:
  839. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  840. return -EINVAL;
  841. fpu->fcr31 = v;
  842. break;
  843. /* MIPS SIMD Architecture (MSA) registers */
  844. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  845. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  846. return -EINVAL;
  847. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  848. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  849. /* least significant byte first */
  850. set_fpr64(&fpu->fpr[idx], 0, vs[0]);
  851. set_fpr64(&fpu->fpr[idx], 1, vs[1]);
  852. #else
  853. /* most significant byte first */
  854. set_fpr64(&fpu->fpr[idx], 1, vs[0]);
  855. set_fpr64(&fpu->fpr[idx], 0, vs[1]);
  856. #endif
  857. break;
  858. case KVM_REG_MIPS_MSA_IR:
  859. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  860. return -EINVAL;
  861. /* Read-only */
  862. break;
  863. case KVM_REG_MIPS_MSA_CSR:
  864. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  865. return -EINVAL;
  866. fpu->msacsr = v;
  867. break;
  868. /* Co-processor 0 registers */
  869. case KVM_REG_MIPS_CP0_INDEX:
  870. kvm_write_c0_guest_index(cop0, v);
  871. break;
  872. case KVM_REG_MIPS_CP0_CONTEXT:
  873. kvm_write_c0_guest_context(cop0, v);
  874. break;
  875. case KVM_REG_MIPS_CP0_USERLOCAL:
  876. kvm_write_c0_guest_userlocal(cop0, v);
  877. break;
  878. case KVM_REG_MIPS_CP0_PAGEMASK:
  879. kvm_write_c0_guest_pagemask(cop0, v);
  880. break;
  881. case KVM_REG_MIPS_CP0_WIRED:
  882. kvm_write_c0_guest_wired(cop0, v);
  883. break;
  884. case KVM_REG_MIPS_CP0_HWRENA:
  885. kvm_write_c0_guest_hwrena(cop0, v);
  886. break;
  887. case KVM_REG_MIPS_CP0_BADVADDR:
  888. kvm_write_c0_guest_badvaddr(cop0, v);
  889. break;
  890. case KVM_REG_MIPS_CP0_ENTRYHI:
  891. kvm_write_c0_guest_entryhi(cop0, v);
  892. break;
  893. case KVM_REG_MIPS_CP0_STATUS:
  894. kvm_write_c0_guest_status(cop0, v);
  895. break;
  896. case KVM_REG_MIPS_CP0_EPC:
  897. kvm_write_c0_guest_epc(cop0, v);
  898. break;
  899. case KVM_REG_MIPS_CP0_PRID:
  900. kvm_write_c0_guest_prid(cop0, v);
  901. break;
  902. case KVM_REG_MIPS_CP0_ERROREPC:
  903. kvm_write_c0_guest_errorepc(cop0, v);
  904. break;
  905. case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
  906. idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
  907. if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
  908. return -EINVAL;
  909. switch (idx) {
  910. case 2:
  911. kvm_write_c0_guest_kscratch1(cop0, v);
  912. break;
  913. case 3:
  914. kvm_write_c0_guest_kscratch2(cop0, v);
  915. break;
  916. case 4:
  917. kvm_write_c0_guest_kscratch3(cop0, v);
  918. break;
  919. case 5:
  920. kvm_write_c0_guest_kscratch4(cop0, v);
  921. break;
  922. case 6:
  923. kvm_write_c0_guest_kscratch5(cop0, v);
  924. break;
  925. case 7:
  926. kvm_write_c0_guest_kscratch6(cop0, v);
  927. break;
  928. }
  929. break;
  930. /* registers to be handled specially */
  931. default:
  932. return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
  933. }
  934. return 0;
  935. }
  936. static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
  937. struct kvm_enable_cap *cap)
  938. {
  939. int r = 0;
  940. if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
  941. return -EINVAL;
  942. if (cap->flags)
  943. return -EINVAL;
  944. if (cap->args[0])
  945. return -EINVAL;
  946. switch (cap->cap) {
  947. case KVM_CAP_MIPS_FPU:
  948. vcpu->arch.fpu_enabled = true;
  949. break;
  950. case KVM_CAP_MIPS_MSA:
  951. vcpu->arch.msa_enabled = true;
  952. break;
  953. default:
  954. r = -EINVAL;
  955. break;
  956. }
  957. return r;
  958. }
  959. long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
  960. unsigned long arg)
  961. {
  962. struct kvm_vcpu *vcpu = filp->private_data;
  963. void __user *argp = (void __user *)arg;
  964. long r;
  965. switch (ioctl) {
  966. case KVM_SET_ONE_REG:
  967. case KVM_GET_ONE_REG: {
  968. struct kvm_one_reg reg;
  969. if (copy_from_user(&reg, argp, sizeof(reg)))
  970. return -EFAULT;
  971. if (ioctl == KVM_SET_ONE_REG)
  972. return kvm_mips_set_reg(vcpu, &reg);
  973. else
  974. return kvm_mips_get_reg(vcpu, &reg);
  975. }
  976. case KVM_GET_REG_LIST: {
  977. struct kvm_reg_list __user *user_list = argp;
  978. struct kvm_reg_list reg_list;
  979. unsigned n;
  980. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  981. return -EFAULT;
  982. n = reg_list.n;
  983. reg_list.n = kvm_mips_num_regs(vcpu);
  984. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  985. return -EFAULT;
  986. if (n < reg_list.n)
  987. return -E2BIG;
  988. return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
  989. }
  990. case KVM_NMI:
  991. /* Treat the NMI as a CPU reset */
  992. r = kvm_mips_reset_vcpu(vcpu);
  993. break;
  994. case KVM_INTERRUPT:
  995. {
  996. struct kvm_mips_interrupt irq;
  997. r = -EFAULT;
  998. if (copy_from_user(&irq, argp, sizeof(irq)))
  999. goto out;
  1000. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  1001. irq.irq);
  1002. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1003. break;
  1004. }
  1005. case KVM_ENABLE_CAP: {
  1006. struct kvm_enable_cap cap;
  1007. r = -EFAULT;
  1008. if (copy_from_user(&cap, argp, sizeof(cap)))
  1009. goto out;
  1010. r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
  1011. break;
  1012. }
  1013. default:
  1014. r = -ENOIOCTLCMD;
  1015. }
  1016. out:
  1017. return r;
  1018. }
  1019. /* Get (and clear) the dirty memory log for a memory slot. */
  1020. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  1021. {
  1022. struct kvm_memslots *slots;
  1023. struct kvm_memory_slot *memslot;
  1024. unsigned long ga, ga_end;
  1025. int is_dirty = 0;
  1026. int r;
  1027. unsigned long n;
  1028. mutex_lock(&kvm->slots_lock);
  1029. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1030. if (r)
  1031. goto out;
  1032. /* If nothing is dirty, don't bother messing with page tables. */
  1033. if (is_dirty) {
  1034. slots = kvm_memslots(kvm);
  1035. memslot = id_to_memslot(slots, log->slot);
  1036. ga = memslot->base_gfn << PAGE_SHIFT;
  1037. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  1038. kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  1039. ga_end);
  1040. n = kvm_dirty_bitmap_bytes(memslot);
  1041. memset(memslot->dirty_bitmap, 0, n);
  1042. }
  1043. r = 0;
  1044. out:
  1045. mutex_unlock(&kvm->slots_lock);
  1046. return r;
  1047. }
  1048. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  1049. {
  1050. long r;
  1051. switch (ioctl) {
  1052. default:
  1053. r = -ENOIOCTLCMD;
  1054. }
  1055. return r;
  1056. }
  1057. int kvm_arch_init(void *opaque)
  1058. {
  1059. if (kvm_mips_callbacks) {
  1060. kvm_err("kvm: module already exists\n");
  1061. return -EEXIST;
  1062. }
  1063. return kvm_mips_emulation_init(&kvm_mips_callbacks);
  1064. }
  1065. void kvm_arch_exit(void)
  1066. {
  1067. kvm_mips_callbacks = NULL;
  1068. }
  1069. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1070. struct kvm_sregs *sregs)
  1071. {
  1072. return -ENOIOCTLCMD;
  1073. }
  1074. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1075. struct kvm_sregs *sregs)
  1076. {
  1077. return -ENOIOCTLCMD;
  1078. }
  1079. void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  1080. {
  1081. }
  1082. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1083. {
  1084. return -ENOIOCTLCMD;
  1085. }
  1086. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1087. {
  1088. return -ENOIOCTLCMD;
  1089. }
  1090. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  1091. {
  1092. return VM_FAULT_SIGBUS;
  1093. }
  1094. int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
  1095. {
  1096. int r;
  1097. switch (ext) {
  1098. case KVM_CAP_ONE_REG:
  1099. case KVM_CAP_ENABLE_CAP:
  1100. r = 1;
  1101. break;
  1102. case KVM_CAP_COALESCED_MMIO:
  1103. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1104. break;
  1105. case KVM_CAP_MIPS_FPU:
  1106. /* We don't handle systems with inconsistent cpu_has_fpu */
  1107. r = !!raw_cpu_has_fpu;
  1108. break;
  1109. case KVM_CAP_MIPS_MSA:
  1110. /*
  1111. * We don't support MSA vector partitioning yet:
  1112. * 1) It would require explicit support which can't be tested
  1113. * yet due to lack of support in current hardware.
  1114. * 2) It extends the state that would need to be saved/restored
  1115. * by e.g. QEMU for migration.
  1116. *
  1117. * When vector partitioning hardware becomes available, support
  1118. * could be added by requiring a flag when enabling
  1119. * KVM_CAP_MIPS_MSA capability to indicate that userland knows
  1120. * to save/restore the appropriate extra state.
  1121. */
  1122. r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
  1123. break;
  1124. default:
  1125. r = 0;
  1126. break;
  1127. }
  1128. return r;
  1129. }
  1130. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1131. {
  1132. return kvm_mips_pending_timer(vcpu);
  1133. }
  1134. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  1135. {
  1136. int i;
  1137. struct mips_coproc *cop0;
  1138. if (!vcpu)
  1139. return -1;
  1140. kvm_debug("VCPU Register Dump:\n");
  1141. kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
  1142. kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  1143. for (i = 0; i < 32; i += 4) {
  1144. kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  1145. vcpu->arch.gprs[i],
  1146. vcpu->arch.gprs[i + 1],
  1147. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  1148. }
  1149. kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
  1150. kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
  1151. cop0 = vcpu->arch.cop0;
  1152. kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  1153. kvm_read_c0_guest_status(cop0),
  1154. kvm_read_c0_guest_cause(cop0));
  1155. kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  1156. return 0;
  1157. }
  1158. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1159. {
  1160. int i;
  1161. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  1162. vcpu->arch.gprs[i] = regs->gpr[i];
  1163. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  1164. vcpu->arch.hi = regs->hi;
  1165. vcpu->arch.lo = regs->lo;
  1166. vcpu->arch.pc = regs->pc;
  1167. return 0;
  1168. }
  1169. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1170. {
  1171. int i;
  1172. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  1173. regs->gpr[i] = vcpu->arch.gprs[i];
  1174. regs->hi = vcpu->arch.hi;
  1175. regs->lo = vcpu->arch.lo;
  1176. regs->pc = vcpu->arch.pc;
  1177. return 0;
  1178. }
  1179. static void kvm_mips_comparecount_func(unsigned long data)
  1180. {
  1181. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  1182. kvm_mips_callbacks->queue_timer_int(vcpu);
  1183. vcpu->arch.wait = 0;
  1184. if (swait_active(&vcpu->wq))
  1185. swake_up(&vcpu->wq);
  1186. }
  1187. /* low level hrtimer wake routine */
  1188. static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  1189. {
  1190. struct kvm_vcpu *vcpu;
  1191. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  1192. kvm_mips_comparecount_func((unsigned long) vcpu);
  1193. return kvm_mips_count_timeout(vcpu);
  1194. }
  1195. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  1196. {
  1197. kvm_mips_callbacks->vcpu_init(vcpu);
  1198. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  1199. HRTIMER_MODE_REL);
  1200. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  1201. return 0;
  1202. }
  1203. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1204. struct kvm_translation *tr)
  1205. {
  1206. return 0;
  1207. }
  1208. /* Initial guest state */
  1209. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1210. {
  1211. return kvm_mips_callbacks->vcpu_setup(vcpu);
  1212. }
  1213. static void kvm_mips_set_c0_status(void)
  1214. {
  1215. u32 status = read_c0_status();
  1216. if (cpu_has_dsp)
  1217. status |= (ST0_MX);
  1218. write_c0_status(status);
  1219. ehb();
  1220. }
  1221. /*
  1222. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  1223. */
  1224. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  1225. {
  1226. u32 cause = vcpu->arch.host_cp0_cause;
  1227. u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  1228. u32 __user *opc = (u32 __user *) vcpu->arch.pc;
  1229. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  1230. enum emulation_result er = EMULATE_DONE;
  1231. int ret = RESUME_GUEST;
  1232. /* re-enable HTW before enabling interrupts */
  1233. htw_start();
  1234. /* Set a default exit reason */
  1235. run->exit_reason = KVM_EXIT_UNKNOWN;
  1236. run->ready_for_interrupt_injection = 1;
  1237. /*
  1238. * Set the appropriate status bits based on host CPU features,
  1239. * before we hit the scheduler
  1240. */
  1241. kvm_mips_set_c0_status();
  1242. local_irq_enable();
  1243. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  1244. cause, opc, run, vcpu);
  1245. trace_kvm_exit(vcpu, exccode);
  1246. /*
  1247. * Do a privilege check, if in UM most of these exit conditions end up
  1248. * causing an exception to be delivered to the Guest Kernel
  1249. */
  1250. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  1251. if (er == EMULATE_PRIV_FAIL) {
  1252. goto skip_emul;
  1253. } else if (er == EMULATE_FAIL) {
  1254. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1255. ret = RESUME_HOST;
  1256. goto skip_emul;
  1257. }
  1258. switch (exccode) {
  1259. case EXCCODE_INT:
  1260. kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
  1261. ++vcpu->stat.int_exits;
  1262. if (need_resched())
  1263. cond_resched();
  1264. ret = RESUME_GUEST;
  1265. break;
  1266. case EXCCODE_CPU:
  1267. kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
  1268. ++vcpu->stat.cop_unusable_exits;
  1269. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  1270. /* XXXKYMA: Might need to return to user space */
  1271. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
  1272. ret = RESUME_HOST;
  1273. break;
  1274. case EXCCODE_MOD:
  1275. ++vcpu->stat.tlbmod_exits;
  1276. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  1277. break;
  1278. case EXCCODE_TLBS:
  1279. kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  1280. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  1281. badvaddr);
  1282. ++vcpu->stat.tlbmiss_st_exits;
  1283. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  1284. break;
  1285. case EXCCODE_TLBL:
  1286. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  1287. cause, opc, badvaddr);
  1288. ++vcpu->stat.tlbmiss_ld_exits;
  1289. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  1290. break;
  1291. case EXCCODE_ADES:
  1292. ++vcpu->stat.addrerr_st_exits;
  1293. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  1294. break;
  1295. case EXCCODE_ADEL:
  1296. ++vcpu->stat.addrerr_ld_exits;
  1297. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  1298. break;
  1299. case EXCCODE_SYS:
  1300. ++vcpu->stat.syscall_exits;
  1301. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  1302. break;
  1303. case EXCCODE_RI:
  1304. ++vcpu->stat.resvd_inst_exits;
  1305. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  1306. break;
  1307. case EXCCODE_BP:
  1308. ++vcpu->stat.break_inst_exits;
  1309. ret = kvm_mips_callbacks->handle_break(vcpu);
  1310. break;
  1311. case EXCCODE_TR:
  1312. ++vcpu->stat.trap_inst_exits;
  1313. ret = kvm_mips_callbacks->handle_trap(vcpu);
  1314. break;
  1315. case EXCCODE_MSAFPE:
  1316. ++vcpu->stat.msa_fpe_exits;
  1317. ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
  1318. break;
  1319. case EXCCODE_FPE:
  1320. ++vcpu->stat.fpe_exits;
  1321. ret = kvm_mips_callbacks->handle_fpe(vcpu);
  1322. break;
  1323. case EXCCODE_MSADIS:
  1324. ++vcpu->stat.msa_disabled_exits;
  1325. ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
  1326. break;
  1327. default:
  1328. kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  1329. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  1330. kvm_read_c0_guest_status(vcpu->arch.cop0));
  1331. kvm_arch_vcpu_dump_regs(vcpu);
  1332. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1333. ret = RESUME_HOST;
  1334. break;
  1335. }
  1336. skip_emul:
  1337. local_irq_disable();
  1338. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  1339. kvm_mips_deliver_interrupts(vcpu, cause);
  1340. if (!(ret & RESUME_HOST)) {
  1341. /* Only check for signals if not already exiting to userspace */
  1342. if (signal_pending(current)) {
  1343. run->exit_reason = KVM_EXIT_INTR;
  1344. ret = (-EINTR << 2) | RESUME_HOST;
  1345. ++vcpu->stat.signal_exits;
  1346. trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
  1347. }
  1348. }
  1349. if (ret == RESUME_GUEST) {
  1350. trace_kvm_reenter(vcpu);
  1351. kvm_mips_check_asids(vcpu);
  1352. /*
  1353. * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
  1354. * is live), restore FCR31 / MSACSR.
  1355. *
  1356. * This should be before returning to the guest exception
  1357. * vector, as it may well cause an [MSA] FP exception if there
  1358. * are pending exception bits unmasked. (see
  1359. * kvm_mips_csr_die_notifier() for how that is handled).
  1360. */
  1361. if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
  1362. read_c0_status() & ST0_CU1)
  1363. __kvm_restore_fcsr(&vcpu->arch);
  1364. if (kvm_mips_guest_has_msa(&vcpu->arch) &&
  1365. read_c0_config5() & MIPS_CONF5_MSAEN)
  1366. __kvm_restore_msacsr(&vcpu->arch);
  1367. }
  1368. /* Disable HTW before returning to guest or host */
  1369. htw_stop();
  1370. return ret;
  1371. }
  1372. /* Enable FPU for guest and restore context */
  1373. void kvm_own_fpu(struct kvm_vcpu *vcpu)
  1374. {
  1375. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1376. unsigned int sr, cfg5;
  1377. preempt_disable();
  1378. sr = kvm_read_c0_guest_status(cop0);
  1379. /*
  1380. * If MSA state is already live, it is undefined how it interacts with
  1381. * FR=0 FPU state, and we don't want to hit reserved instruction
  1382. * exceptions trying to save the MSA state later when CU=1 && FR=1, so
  1383. * play it safe and save it first.
  1384. *
  1385. * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
  1386. * get called when guest CU1 is set, however we can't trust the guest
  1387. * not to clobber the status register directly via the commpage.
  1388. */
  1389. if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
  1390. vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
  1391. kvm_lose_fpu(vcpu);
  1392. /*
  1393. * Enable FPU for guest
  1394. * We set FR and FRE according to guest context
  1395. */
  1396. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1397. if (cpu_has_fre) {
  1398. cfg5 = kvm_read_c0_guest_config5(cop0);
  1399. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1400. }
  1401. enable_fpu_hazard();
  1402. /* If guest FPU state not active, restore it now */
  1403. if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
  1404. __kvm_restore_fpu(&vcpu->arch);
  1405. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
  1406. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
  1407. } else {
  1408. trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
  1409. }
  1410. preempt_enable();
  1411. }
  1412. #ifdef CONFIG_CPU_HAS_MSA
  1413. /* Enable MSA for guest and restore context */
  1414. void kvm_own_msa(struct kvm_vcpu *vcpu)
  1415. {
  1416. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1417. unsigned int sr, cfg5;
  1418. preempt_disable();
  1419. /*
  1420. * Enable FPU if enabled in guest, since we're restoring FPU context
  1421. * anyway. We set FR and FRE according to guest context.
  1422. */
  1423. if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
  1424. sr = kvm_read_c0_guest_status(cop0);
  1425. /*
  1426. * If FR=0 FPU state is already live, it is undefined how it
  1427. * interacts with MSA state, so play it safe and save it first.
  1428. */
  1429. if (!(sr & ST0_FR) &&
  1430. (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
  1431. KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
  1432. kvm_lose_fpu(vcpu);
  1433. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1434. if (sr & ST0_CU1 && cpu_has_fre) {
  1435. cfg5 = kvm_read_c0_guest_config5(cop0);
  1436. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1437. }
  1438. }
  1439. /* Enable MSA for guest */
  1440. set_c0_config5(MIPS_CONF5_MSAEN);
  1441. enable_fpu_hazard();
  1442. switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
  1443. case KVM_MIPS_AUX_FPU:
  1444. /*
  1445. * Guest FPU state already loaded, only restore upper MSA state
  1446. */
  1447. __kvm_restore_msa_upper(&vcpu->arch);
  1448. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
  1449. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
  1450. break;
  1451. case 0:
  1452. /* Neither FPU or MSA already active, restore full MSA state */
  1453. __kvm_restore_msa(&vcpu->arch);
  1454. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
  1455. if (kvm_mips_guest_has_fpu(&vcpu->arch))
  1456. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
  1457. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
  1458. KVM_TRACE_AUX_FPU_MSA);
  1459. break;
  1460. default:
  1461. trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
  1462. break;
  1463. }
  1464. preempt_enable();
  1465. }
  1466. #endif
  1467. /* Drop FPU & MSA without saving it */
  1468. void kvm_drop_fpu(struct kvm_vcpu *vcpu)
  1469. {
  1470. preempt_disable();
  1471. if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
  1472. disable_msa();
  1473. trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
  1474. vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
  1475. }
  1476. if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
  1477. clear_c0_status(ST0_CU1 | ST0_FR);
  1478. trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
  1479. vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
  1480. }
  1481. preempt_enable();
  1482. }
  1483. /* Save and disable FPU & MSA */
  1484. void kvm_lose_fpu(struct kvm_vcpu *vcpu)
  1485. {
  1486. /*
  1487. * FPU & MSA get disabled in root context (hardware) when it is disabled
  1488. * in guest context (software), but the register state in the hardware
  1489. * may still be in use. This is why we explicitly re-enable the hardware
  1490. * before saving.
  1491. */
  1492. preempt_disable();
  1493. if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
  1494. set_c0_config5(MIPS_CONF5_MSAEN);
  1495. enable_fpu_hazard();
  1496. __kvm_save_msa(&vcpu->arch);
  1497. trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
  1498. /* Disable MSA & FPU */
  1499. disable_msa();
  1500. if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
  1501. clear_c0_status(ST0_CU1 | ST0_FR);
  1502. disable_fpu_hazard();
  1503. }
  1504. vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
  1505. } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
  1506. set_c0_status(ST0_CU1);
  1507. enable_fpu_hazard();
  1508. __kvm_save_fpu(&vcpu->arch);
  1509. vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
  1510. trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
  1511. /* Disable FPU */
  1512. clear_c0_status(ST0_CU1 | ST0_FR);
  1513. disable_fpu_hazard();
  1514. }
  1515. preempt_enable();
  1516. }
  1517. /*
  1518. * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
  1519. * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
  1520. * exception if cause bits are set in the value being written.
  1521. */
  1522. static int kvm_mips_csr_die_notify(struct notifier_block *self,
  1523. unsigned long cmd, void *ptr)
  1524. {
  1525. struct die_args *args = (struct die_args *)ptr;
  1526. struct pt_regs *regs = args->regs;
  1527. unsigned long pc;
  1528. /* Only interested in FPE and MSAFPE */
  1529. if (cmd != DIE_FP && cmd != DIE_MSAFP)
  1530. return NOTIFY_DONE;
  1531. /* Return immediately if guest context isn't active */
  1532. if (!(current->flags & PF_VCPU))
  1533. return NOTIFY_DONE;
  1534. /* Should never get here from user mode */
  1535. BUG_ON(user_mode(regs));
  1536. pc = instruction_pointer(regs);
  1537. switch (cmd) {
  1538. case DIE_FP:
  1539. /* match 2nd instruction in __kvm_restore_fcsr */
  1540. if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
  1541. return NOTIFY_DONE;
  1542. break;
  1543. case DIE_MSAFP:
  1544. /* match 2nd/3rd instruction in __kvm_restore_msacsr */
  1545. if (!cpu_has_msa ||
  1546. pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
  1547. pc > (unsigned long)&__kvm_restore_msacsr + 8)
  1548. return NOTIFY_DONE;
  1549. break;
  1550. }
  1551. /* Move PC forward a little and continue executing */
  1552. instruction_pointer(regs) += 4;
  1553. return NOTIFY_STOP;
  1554. }
  1555. static struct notifier_block kvm_mips_csr_die_notifier = {
  1556. .notifier_call = kvm_mips_csr_die_notify,
  1557. };
  1558. static int __init kvm_mips_init(void)
  1559. {
  1560. int ret;
  1561. ret = kvm_mips_entry_setup();
  1562. if (ret)
  1563. return ret;
  1564. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  1565. if (ret)
  1566. return ret;
  1567. register_die_notifier(&kvm_mips_csr_die_notifier);
  1568. return 0;
  1569. }
  1570. static void __exit kvm_mips_exit(void)
  1571. {
  1572. kvm_exit();
  1573. unregister_die_notifier(&kvm_mips_csr_die_notifier);
  1574. }
  1575. module_init(kvm_mips_init);
  1576. module_exit(kvm_mips_exit);
  1577. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);