ptrace.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199
  1. /*
  2. * Kernel support for the ptrace() and syscall tracing interfaces.
  3. *
  4. * Copyright (C) 1999-2005 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * Copyright (C) 2006 Intel Co
  7. * 2006-08-12 - IA64 Native Utrace implementation support added by
  8. * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  9. *
  10. * Derived from the x86 and Alpha versions.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/sched.h>
  14. #include <linux/mm.h>
  15. #include <linux/errno.h>
  16. #include <linux/ptrace.h>
  17. #include <linux/user.h>
  18. #include <linux/security.h>
  19. #include <linux/audit.h>
  20. #include <linux/signal.h>
  21. #include <linux/regset.h>
  22. #include <linux/elf.h>
  23. #include <linux/tracehook.h>
  24. #include <asm/pgtable.h>
  25. #include <asm/processor.h>
  26. #include <asm/ptrace_offsets.h>
  27. #include <asm/rse.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/unwind.h>
  30. #ifdef CONFIG_PERFMON
  31. #include <asm/perfmon.h>
  32. #endif
  33. #include "entry.h"
  34. /*
  35. * Bits in the PSR that we allow ptrace() to change:
  36. * be, up, ac, mfl, mfh (the user mask; five bits total)
  37. * db (debug breakpoint fault; one bit)
  38. * id (instruction debug fault disable; one bit)
  39. * dd (data debug fault disable; one bit)
  40. * ri (restart instruction; two bits)
  41. * is (instruction set; one bit)
  42. */
  43. #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
  44. | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
  45. #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
  46. #define PFM_MASK MASK(38)
  47. #define PTRACE_DEBUG 0
  48. #if PTRACE_DEBUG
  49. # define dprintk(format...) printk(format)
  50. # define inline
  51. #else
  52. # define dprintk(format...)
  53. #endif
  54. /* Return TRUE if PT was created due to kernel-entry via a system-call. */
  55. static inline int
  56. in_syscall (struct pt_regs *pt)
  57. {
  58. return (long) pt->cr_ifs >= 0;
  59. }
  60. /*
  61. * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
  62. * bitset where bit i is set iff the NaT bit of register i is set.
  63. */
  64. unsigned long
  65. ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
  66. {
  67. # define GET_BITS(first, last, unat) \
  68. ({ \
  69. unsigned long bit = ia64_unat_pos(&pt->r##first); \
  70. unsigned long nbits = (last - first + 1); \
  71. unsigned long mask = MASK(nbits) << first; \
  72. unsigned long dist; \
  73. if (bit < first) \
  74. dist = 64 + bit - first; \
  75. else \
  76. dist = bit - first; \
  77. ia64_rotr(unat, dist) & mask; \
  78. })
  79. unsigned long val;
  80. /*
  81. * Registers that are stored consecutively in struct pt_regs
  82. * can be handled in parallel. If the register order in
  83. * struct_pt_regs changes, this code MUST be updated.
  84. */
  85. val = GET_BITS( 1, 1, scratch_unat);
  86. val |= GET_BITS( 2, 3, scratch_unat);
  87. val |= GET_BITS(12, 13, scratch_unat);
  88. val |= GET_BITS(14, 14, scratch_unat);
  89. val |= GET_BITS(15, 15, scratch_unat);
  90. val |= GET_BITS( 8, 11, scratch_unat);
  91. val |= GET_BITS(16, 31, scratch_unat);
  92. return val;
  93. # undef GET_BITS
  94. }
  95. /*
  96. * Set the NaT bits for the scratch registers according to NAT and
  97. * return the resulting unat (assuming the scratch registers are
  98. * stored in PT).
  99. */
  100. unsigned long
  101. ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
  102. {
  103. # define PUT_BITS(first, last, nat) \
  104. ({ \
  105. unsigned long bit = ia64_unat_pos(&pt->r##first); \
  106. unsigned long nbits = (last - first + 1); \
  107. unsigned long mask = MASK(nbits) << first; \
  108. long dist; \
  109. if (bit < first) \
  110. dist = 64 + bit - first; \
  111. else \
  112. dist = bit - first; \
  113. ia64_rotl(nat & mask, dist); \
  114. })
  115. unsigned long scratch_unat;
  116. /*
  117. * Registers that are stored consecutively in struct pt_regs
  118. * can be handled in parallel. If the register order in
  119. * struct_pt_regs changes, this code MUST be updated.
  120. */
  121. scratch_unat = PUT_BITS( 1, 1, nat);
  122. scratch_unat |= PUT_BITS( 2, 3, nat);
  123. scratch_unat |= PUT_BITS(12, 13, nat);
  124. scratch_unat |= PUT_BITS(14, 14, nat);
  125. scratch_unat |= PUT_BITS(15, 15, nat);
  126. scratch_unat |= PUT_BITS( 8, 11, nat);
  127. scratch_unat |= PUT_BITS(16, 31, nat);
  128. return scratch_unat;
  129. # undef PUT_BITS
  130. }
  131. #define IA64_MLX_TEMPLATE 0x2
  132. #define IA64_MOVL_OPCODE 6
  133. void
  134. ia64_increment_ip (struct pt_regs *regs)
  135. {
  136. unsigned long w0, ri = ia64_psr(regs)->ri + 1;
  137. if (ri > 2) {
  138. ri = 0;
  139. regs->cr_iip += 16;
  140. } else if (ri == 2) {
  141. get_user(w0, (char __user *) regs->cr_iip + 0);
  142. if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
  143. /*
  144. * rfi'ing to slot 2 of an MLX bundle causes
  145. * an illegal operation fault. We don't want
  146. * that to happen...
  147. */
  148. ri = 0;
  149. regs->cr_iip += 16;
  150. }
  151. }
  152. ia64_psr(regs)->ri = ri;
  153. }
  154. void
  155. ia64_decrement_ip (struct pt_regs *regs)
  156. {
  157. unsigned long w0, ri = ia64_psr(regs)->ri - 1;
  158. if (ia64_psr(regs)->ri == 0) {
  159. regs->cr_iip -= 16;
  160. ri = 2;
  161. get_user(w0, (char __user *) regs->cr_iip + 0);
  162. if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
  163. /*
  164. * rfi'ing to slot 2 of an MLX bundle causes
  165. * an illegal operation fault. We don't want
  166. * that to happen...
  167. */
  168. ri = 1;
  169. }
  170. }
  171. ia64_psr(regs)->ri = ri;
  172. }
  173. /*
  174. * This routine is used to read an rnat bits that are stored on the
  175. * kernel backing store. Since, in general, the alignment of the user
  176. * and kernel are different, this is not completely trivial. In
  177. * essence, we need to construct the user RNAT based on up to two
  178. * kernel RNAT values and/or the RNAT value saved in the child's
  179. * pt_regs.
  180. *
  181. * user rbs
  182. *
  183. * +--------+ <-- lowest address
  184. * | slot62 |
  185. * +--------+
  186. * | rnat | 0x....1f8
  187. * +--------+
  188. * | slot00 | \
  189. * +--------+ |
  190. * | slot01 | > child_regs->ar_rnat
  191. * +--------+ |
  192. * | slot02 | / kernel rbs
  193. * +--------+ +--------+
  194. * <- child_regs->ar_bspstore | slot61 | <-- krbs
  195. * +- - - - + +--------+
  196. * | slot62 |
  197. * +- - - - + +--------+
  198. * | rnat |
  199. * +- - - - + +--------+
  200. * vrnat | slot00 |
  201. * +- - - - + +--------+
  202. * = =
  203. * +--------+
  204. * | slot00 | \
  205. * +--------+ |
  206. * | slot01 | > child_stack->ar_rnat
  207. * +--------+ |
  208. * | slot02 | /
  209. * +--------+
  210. * <--- child_stack->ar_bspstore
  211. *
  212. * The way to think of this code is as follows: bit 0 in the user rnat
  213. * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
  214. * value. The kernel rnat value holding this bit is stored in
  215. * variable rnat0. rnat1 is loaded with the kernel rnat value that
  216. * form the upper bits of the user rnat value.
  217. *
  218. * Boundary cases:
  219. *
  220. * o when reading the rnat "below" the first rnat slot on the kernel
  221. * backing store, rnat0/rnat1 are set to 0 and the low order bits are
  222. * merged in from pt->ar_rnat.
  223. *
  224. * o when reading the rnat "above" the last rnat slot on the kernel
  225. * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
  226. */
  227. static unsigned long
  228. get_rnat (struct task_struct *task, struct switch_stack *sw,
  229. unsigned long *krbs, unsigned long *urnat_addr,
  230. unsigned long *urbs_end)
  231. {
  232. unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
  233. unsigned long umask = 0, mask, m;
  234. unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
  235. long num_regs, nbits;
  236. struct pt_regs *pt;
  237. pt = task_pt_regs(task);
  238. kbsp = (unsigned long *) sw->ar_bspstore;
  239. ubspstore = (unsigned long *) pt->ar_bspstore;
  240. if (urbs_end < urnat_addr)
  241. nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
  242. else
  243. nbits = 63;
  244. mask = MASK(nbits);
  245. /*
  246. * First, figure out which bit number slot 0 in user-land maps
  247. * to in the kernel rnat. Do this by figuring out how many
  248. * register slots we're beyond the user's backingstore and
  249. * then computing the equivalent address in kernel space.
  250. */
  251. num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
  252. slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
  253. shift = ia64_rse_slot_num(slot0_kaddr);
  254. rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
  255. rnat0_kaddr = rnat1_kaddr - 64;
  256. if (ubspstore + 63 > urnat_addr) {
  257. /* some bits need to be merged in from pt->ar_rnat */
  258. umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
  259. urnat = (pt->ar_rnat & umask);
  260. mask &= ~umask;
  261. if (!mask)
  262. return urnat;
  263. }
  264. m = mask << shift;
  265. if (rnat0_kaddr >= kbsp)
  266. rnat0 = sw->ar_rnat;
  267. else if (rnat0_kaddr > krbs)
  268. rnat0 = *rnat0_kaddr;
  269. urnat |= (rnat0 & m) >> shift;
  270. m = mask >> (63 - shift);
  271. if (rnat1_kaddr >= kbsp)
  272. rnat1 = sw->ar_rnat;
  273. else if (rnat1_kaddr > krbs)
  274. rnat1 = *rnat1_kaddr;
  275. urnat |= (rnat1 & m) << (63 - shift);
  276. return urnat;
  277. }
  278. /*
  279. * The reverse of get_rnat.
  280. */
  281. static void
  282. put_rnat (struct task_struct *task, struct switch_stack *sw,
  283. unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
  284. unsigned long *urbs_end)
  285. {
  286. unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
  287. unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
  288. long num_regs, nbits;
  289. struct pt_regs *pt;
  290. unsigned long cfm, *urbs_kargs;
  291. pt = task_pt_regs(task);
  292. kbsp = (unsigned long *) sw->ar_bspstore;
  293. ubspstore = (unsigned long *) pt->ar_bspstore;
  294. urbs_kargs = urbs_end;
  295. if (in_syscall(pt)) {
  296. /*
  297. * If entered via syscall, don't allow user to set rnat bits
  298. * for syscall args.
  299. */
  300. cfm = pt->cr_ifs;
  301. urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
  302. }
  303. if (urbs_kargs >= urnat_addr)
  304. nbits = 63;
  305. else {
  306. if ((urnat_addr - 63) >= urbs_kargs)
  307. return;
  308. nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
  309. }
  310. mask = MASK(nbits);
  311. /*
  312. * First, figure out which bit number slot 0 in user-land maps
  313. * to in the kernel rnat. Do this by figuring out how many
  314. * register slots we're beyond the user's backingstore and
  315. * then computing the equivalent address in kernel space.
  316. */
  317. num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
  318. slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
  319. shift = ia64_rse_slot_num(slot0_kaddr);
  320. rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
  321. rnat0_kaddr = rnat1_kaddr - 64;
  322. if (ubspstore + 63 > urnat_addr) {
  323. /* some bits need to be place in pt->ar_rnat: */
  324. umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
  325. pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
  326. mask &= ~umask;
  327. if (!mask)
  328. return;
  329. }
  330. /*
  331. * Note: Section 11.1 of the EAS guarantees that bit 63 of an
  332. * rnat slot is ignored. so we don't have to clear it here.
  333. */
  334. rnat0 = (urnat << shift);
  335. m = mask << shift;
  336. if (rnat0_kaddr >= kbsp)
  337. sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
  338. else if (rnat0_kaddr > krbs)
  339. *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
  340. rnat1 = (urnat >> (63 - shift));
  341. m = mask >> (63 - shift);
  342. if (rnat1_kaddr >= kbsp)
  343. sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
  344. else if (rnat1_kaddr > krbs)
  345. *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
  346. }
  347. static inline int
  348. on_kernel_rbs (unsigned long addr, unsigned long bspstore,
  349. unsigned long urbs_end)
  350. {
  351. unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
  352. urbs_end);
  353. return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
  354. }
  355. /*
  356. * Read a word from the user-level backing store of task CHILD. ADDR
  357. * is the user-level address to read the word from, VAL a pointer to
  358. * the return value, and USER_BSP gives the end of the user-level
  359. * backing store (i.e., it's the address that would be in ar.bsp after
  360. * the user executed a "cover" instruction).
  361. *
  362. * This routine takes care of accessing the kernel register backing
  363. * store for those registers that got spilled there. It also takes
  364. * care of calculating the appropriate RNaT collection words.
  365. */
  366. long
  367. ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
  368. unsigned long user_rbs_end, unsigned long addr, long *val)
  369. {
  370. unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
  371. struct pt_regs *child_regs;
  372. size_t copied;
  373. long ret;
  374. urbs_end = (long *) user_rbs_end;
  375. laddr = (unsigned long *) addr;
  376. child_regs = task_pt_regs(child);
  377. bspstore = (unsigned long *) child_regs->ar_bspstore;
  378. krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
  379. if (on_kernel_rbs(addr, (unsigned long) bspstore,
  380. (unsigned long) urbs_end))
  381. {
  382. /*
  383. * Attempt to read the RBS in an area that's actually
  384. * on the kernel RBS => read the corresponding bits in
  385. * the kernel RBS.
  386. */
  387. rnat_addr = ia64_rse_rnat_addr(laddr);
  388. ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
  389. if (laddr == rnat_addr) {
  390. /* return NaT collection word itself */
  391. *val = ret;
  392. return 0;
  393. }
  394. if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
  395. /*
  396. * It is implementation dependent whether the
  397. * data portion of a NaT value gets saved on a
  398. * st8.spill or RSE spill (e.g., see EAS 2.6,
  399. * 4.4.4.6 Register Spill and Fill). To get
  400. * consistent behavior across all possible
  401. * IA-64 implementations, we return zero in
  402. * this case.
  403. */
  404. *val = 0;
  405. return 0;
  406. }
  407. if (laddr < urbs_end) {
  408. /*
  409. * The desired word is on the kernel RBS and
  410. * is not a NaT.
  411. */
  412. regnum = ia64_rse_num_regs(bspstore, laddr);
  413. *val = *ia64_rse_skip_regs(krbs, regnum);
  414. return 0;
  415. }
  416. }
  417. copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
  418. if (copied != sizeof(ret))
  419. return -EIO;
  420. *val = ret;
  421. return 0;
  422. }
  423. long
  424. ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
  425. unsigned long user_rbs_end, unsigned long addr, long val)
  426. {
  427. unsigned long *bspstore, *krbs, regnum, *laddr;
  428. unsigned long *urbs_end = (long *) user_rbs_end;
  429. struct pt_regs *child_regs;
  430. laddr = (unsigned long *) addr;
  431. child_regs = task_pt_regs(child);
  432. bspstore = (unsigned long *) child_regs->ar_bspstore;
  433. krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
  434. if (on_kernel_rbs(addr, (unsigned long) bspstore,
  435. (unsigned long) urbs_end))
  436. {
  437. /*
  438. * Attempt to write the RBS in an area that's actually
  439. * on the kernel RBS => write the corresponding bits
  440. * in the kernel RBS.
  441. */
  442. if (ia64_rse_is_rnat_slot(laddr))
  443. put_rnat(child, child_stack, krbs, laddr, val,
  444. urbs_end);
  445. else {
  446. if (laddr < urbs_end) {
  447. regnum = ia64_rse_num_regs(bspstore, laddr);
  448. *ia64_rse_skip_regs(krbs, regnum) = val;
  449. }
  450. }
  451. } else if (access_process_vm(child, addr, &val, sizeof(val),
  452. FOLL_FORCE | FOLL_WRITE)
  453. != sizeof(val))
  454. return -EIO;
  455. return 0;
  456. }
  457. /*
  458. * Calculate the address of the end of the user-level register backing
  459. * store. This is the address that would have been stored in ar.bsp
  460. * if the user had executed a "cover" instruction right before
  461. * entering the kernel. If CFMP is not NULL, it is used to return the
  462. * "current frame mask" that was active at the time the kernel was
  463. * entered.
  464. */
  465. unsigned long
  466. ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
  467. unsigned long *cfmp)
  468. {
  469. unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
  470. long ndirty;
  471. krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
  472. bspstore = (unsigned long *) pt->ar_bspstore;
  473. ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
  474. if (in_syscall(pt))
  475. ndirty += (cfm & 0x7f);
  476. else
  477. cfm &= ~(1UL << 63); /* clear valid bit */
  478. if (cfmp)
  479. *cfmp = cfm;
  480. return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
  481. }
  482. /*
  483. * Synchronize (i.e, write) the RSE backing store living in kernel
  484. * space to the VM of the CHILD task. SW and PT are the pointers to
  485. * the switch_stack and pt_regs structures, respectively.
  486. * USER_RBS_END is the user-level address at which the backing store
  487. * ends.
  488. */
  489. long
  490. ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
  491. unsigned long user_rbs_start, unsigned long user_rbs_end)
  492. {
  493. unsigned long addr, val;
  494. long ret;
  495. /* now copy word for word from kernel rbs to user rbs: */
  496. for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
  497. ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
  498. if (ret < 0)
  499. return ret;
  500. if (access_process_vm(child, addr, &val, sizeof(val),
  501. FOLL_FORCE | FOLL_WRITE)
  502. != sizeof(val))
  503. return -EIO;
  504. }
  505. return 0;
  506. }
  507. static long
  508. ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
  509. unsigned long user_rbs_start, unsigned long user_rbs_end)
  510. {
  511. unsigned long addr, val;
  512. long ret;
  513. /* now copy word for word from user rbs to kernel rbs: */
  514. for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
  515. if (access_process_vm(child, addr, &val, sizeof(val),
  516. FOLL_FORCE)
  517. != sizeof(val))
  518. return -EIO;
  519. ret = ia64_poke(child, sw, user_rbs_end, addr, val);
  520. if (ret < 0)
  521. return ret;
  522. }
  523. return 0;
  524. }
  525. typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
  526. unsigned long, unsigned long);
  527. static void do_sync_rbs(struct unw_frame_info *info, void *arg)
  528. {
  529. struct pt_regs *pt;
  530. unsigned long urbs_end;
  531. syncfunc_t fn = arg;
  532. if (unw_unwind_to_user(info) < 0)
  533. return;
  534. pt = task_pt_regs(info->task);
  535. urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
  536. fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
  537. }
  538. /*
  539. * when a thread is stopped (ptraced), debugger might change thread's user
  540. * stack (change memory directly), and we must avoid the RSE stored in kernel
  541. * to override user stack (user space's RSE is newer than kernel's in the
  542. * case). To workaround the issue, we copy kernel RSE to user RSE before the
  543. * task is stopped, so user RSE has updated data. we then copy user RSE to
  544. * kernel after the task is resummed from traced stop and kernel will use the
  545. * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
  546. * synchronize user RSE to kernel.
  547. */
  548. void ia64_ptrace_stop(void)
  549. {
  550. if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
  551. return;
  552. set_notify_resume(current);
  553. unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
  554. }
  555. /*
  556. * This is called to read back the register backing store.
  557. */
  558. void ia64_sync_krbs(void)
  559. {
  560. clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
  561. unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
  562. }
  563. /*
  564. * After PTRACE_ATTACH, a thread's register backing store area in user
  565. * space is assumed to contain correct data whenever the thread is
  566. * stopped. arch_ptrace_stop takes care of this on tracing stops.
  567. * But if the child was already stopped for job control when we attach
  568. * to it, then it might not ever get into ptrace_stop by the time we
  569. * want to examine the user memory containing the RBS.
  570. */
  571. void
  572. ptrace_attach_sync_user_rbs (struct task_struct *child)
  573. {
  574. int stopped = 0;
  575. struct unw_frame_info info;
  576. /*
  577. * If the child is in TASK_STOPPED, we need to change that to
  578. * TASK_TRACED momentarily while we operate on it. This ensures
  579. * that the child won't be woken up and return to user mode while
  580. * we are doing the sync. (It can only be woken up for SIGKILL.)
  581. */
  582. read_lock(&tasklist_lock);
  583. if (child->sighand) {
  584. spin_lock_irq(&child->sighand->siglock);
  585. if (child->state == TASK_STOPPED &&
  586. !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
  587. set_notify_resume(child);
  588. child->state = TASK_TRACED;
  589. stopped = 1;
  590. }
  591. spin_unlock_irq(&child->sighand->siglock);
  592. }
  593. read_unlock(&tasklist_lock);
  594. if (!stopped)
  595. return;
  596. unw_init_from_blocked_task(&info, child);
  597. do_sync_rbs(&info, ia64_sync_user_rbs);
  598. /*
  599. * Now move the child back into TASK_STOPPED if it should be in a
  600. * job control stop, so that SIGCONT can be used to wake it up.
  601. */
  602. read_lock(&tasklist_lock);
  603. if (child->sighand) {
  604. spin_lock_irq(&child->sighand->siglock);
  605. if (child->state == TASK_TRACED &&
  606. (child->signal->flags & SIGNAL_STOP_STOPPED)) {
  607. child->state = TASK_STOPPED;
  608. }
  609. spin_unlock_irq(&child->sighand->siglock);
  610. }
  611. read_unlock(&tasklist_lock);
  612. }
  613. /*
  614. * Write f32-f127 back to task->thread.fph if it has been modified.
  615. */
  616. inline void
  617. ia64_flush_fph (struct task_struct *task)
  618. {
  619. struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
  620. /*
  621. * Prevent migrating this task while
  622. * we're fiddling with the FPU state
  623. */
  624. preempt_disable();
  625. if (ia64_is_local_fpu_owner(task) && psr->mfh) {
  626. psr->mfh = 0;
  627. task->thread.flags |= IA64_THREAD_FPH_VALID;
  628. ia64_save_fpu(&task->thread.fph[0]);
  629. }
  630. preempt_enable();
  631. }
  632. /*
  633. * Sync the fph state of the task so that it can be manipulated
  634. * through thread.fph. If necessary, f32-f127 are written back to
  635. * thread.fph or, if the fph state hasn't been used before, thread.fph
  636. * is cleared to zeroes. Also, access to f32-f127 is disabled to
  637. * ensure that the task picks up the state from thread.fph when it
  638. * executes again.
  639. */
  640. void
  641. ia64_sync_fph (struct task_struct *task)
  642. {
  643. struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
  644. ia64_flush_fph(task);
  645. if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
  646. task->thread.flags |= IA64_THREAD_FPH_VALID;
  647. memset(&task->thread.fph, 0, sizeof(task->thread.fph));
  648. }
  649. ia64_drop_fpu(task);
  650. psr->dfh = 1;
  651. }
  652. /*
  653. * Change the machine-state of CHILD such that it will return via the normal
  654. * kernel exit-path, rather than the syscall-exit path.
  655. */
  656. static void
  657. convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
  658. unsigned long cfm)
  659. {
  660. struct unw_frame_info info, prev_info;
  661. unsigned long ip, sp, pr;
  662. unw_init_from_blocked_task(&info, child);
  663. while (1) {
  664. prev_info = info;
  665. if (unw_unwind(&info) < 0)
  666. return;
  667. unw_get_sp(&info, &sp);
  668. if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
  669. < IA64_PT_REGS_SIZE) {
  670. dprintk("ptrace.%s: ran off the top of the kernel "
  671. "stack\n", __func__);
  672. return;
  673. }
  674. if (unw_get_pr (&prev_info, &pr) < 0) {
  675. unw_get_rp(&prev_info, &ip);
  676. dprintk("ptrace.%s: failed to read "
  677. "predicate register (ip=0x%lx)\n",
  678. __func__, ip);
  679. return;
  680. }
  681. if (unw_is_intr_frame(&info)
  682. && (pr & (1UL << PRED_USER_STACK)))
  683. break;
  684. }
  685. /*
  686. * Note: at the time of this call, the target task is blocked
  687. * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
  688. * (aka, "pLvSys") we redirect execution from
  689. * .work_pending_syscall_end to .work_processed_kernel.
  690. */
  691. unw_get_pr(&prev_info, &pr);
  692. pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
  693. pr |= (1UL << PRED_NON_SYSCALL);
  694. unw_set_pr(&prev_info, pr);
  695. pt->cr_ifs = (1UL << 63) | cfm;
  696. /*
  697. * Clear the memory that is NOT written on syscall-entry to
  698. * ensure we do not leak kernel-state to user when execution
  699. * resumes.
  700. */
  701. pt->r2 = 0;
  702. pt->r3 = 0;
  703. pt->r14 = 0;
  704. memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
  705. memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
  706. pt->b7 = 0;
  707. pt->ar_ccv = 0;
  708. pt->ar_csd = 0;
  709. pt->ar_ssd = 0;
  710. }
  711. static int
  712. access_nat_bits (struct task_struct *child, struct pt_regs *pt,
  713. struct unw_frame_info *info,
  714. unsigned long *data, int write_access)
  715. {
  716. unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
  717. char nat = 0;
  718. if (write_access) {
  719. nat_bits = *data;
  720. scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
  721. if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
  722. dprintk("ptrace: failed to set ar.unat\n");
  723. return -1;
  724. }
  725. for (regnum = 4; regnum <= 7; ++regnum) {
  726. unw_get_gr(info, regnum, &dummy, &nat);
  727. unw_set_gr(info, regnum, dummy,
  728. (nat_bits >> regnum) & 1);
  729. }
  730. } else {
  731. if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
  732. dprintk("ptrace: failed to read ar.unat\n");
  733. return -1;
  734. }
  735. nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
  736. for (regnum = 4; regnum <= 7; ++regnum) {
  737. unw_get_gr(info, regnum, &dummy, &nat);
  738. nat_bits |= (nat != 0) << regnum;
  739. }
  740. *data = nat_bits;
  741. }
  742. return 0;
  743. }
  744. static int
  745. access_uarea (struct task_struct *child, unsigned long addr,
  746. unsigned long *data, int write_access);
  747. static long
  748. ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
  749. {
  750. unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
  751. struct unw_frame_info info;
  752. struct ia64_fpreg fpval;
  753. struct switch_stack *sw;
  754. struct pt_regs *pt;
  755. long ret, retval = 0;
  756. char nat = 0;
  757. int i;
  758. if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
  759. return -EIO;
  760. pt = task_pt_regs(child);
  761. sw = (struct switch_stack *) (child->thread.ksp + 16);
  762. unw_init_from_blocked_task(&info, child);
  763. if (unw_unwind_to_user(&info) < 0) {
  764. return -EIO;
  765. }
  766. if (((unsigned long) ppr & 0x7) != 0) {
  767. dprintk("ptrace:unaligned register address %p\n", ppr);
  768. return -EIO;
  769. }
  770. if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
  771. || access_uarea(child, PT_AR_EC, &ec, 0) < 0
  772. || access_uarea(child, PT_AR_LC, &lc, 0) < 0
  773. || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
  774. || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
  775. || access_uarea(child, PT_CFM, &cfm, 0)
  776. || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
  777. return -EIO;
  778. /* control regs */
  779. retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
  780. retval |= __put_user(psr, &ppr->cr_ipsr);
  781. /* app regs */
  782. retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
  783. retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
  784. retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
  785. retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
  786. retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
  787. retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
  788. retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
  789. retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
  790. retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
  791. retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
  792. retval |= __put_user(cfm, &ppr->cfm);
  793. /* gr1-gr3 */
  794. retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
  795. retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
  796. /* gr4-gr7 */
  797. for (i = 4; i < 8; i++) {
  798. if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
  799. return -EIO;
  800. retval |= __put_user(val, &ppr->gr[i]);
  801. }
  802. /* gr8-gr11 */
  803. retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
  804. /* gr12-gr15 */
  805. retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
  806. retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
  807. retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
  808. /* gr16-gr31 */
  809. retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
  810. /* b0 */
  811. retval |= __put_user(pt->b0, &ppr->br[0]);
  812. /* b1-b5 */
  813. for (i = 1; i < 6; i++) {
  814. if (unw_access_br(&info, i, &val, 0) < 0)
  815. return -EIO;
  816. __put_user(val, &ppr->br[i]);
  817. }
  818. /* b6-b7 */
  819. retval |= __put_user(pt->b6, &ppr->br[6]);
  820. retval |= __put_user(pt->b7, &ppr->br[7]);
  821. /* fr2-fr5 */
  822. for (i = 2; i < 6; i++) {
  823. if (unw_get_fr(&info, i, &fpval) < 0)
  824. return -EIO;
  825. retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
  826. }
  827. /* fr6-fr11 */
  828. retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
  829. sizeof(struct ia64_fpreg) * 6);
  830. /* fp scratch regs(12-15) */
  831. retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
  832. sizeof(struct ia64_fpreg) * 4);
  833. /* fr16-fr31 */
  834. for (i = 16; i < 32; i++) {
  835. if (unw_get_fr(&info, i, &fpval) < 0)
  836. return -EIO;
  837. retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
  838. }
  839. /* fph */
  840. ia64_flush_fph(child);
  841. retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
  842. sizeof(ppr->fr[32]) * 96);
  843. /* preds */
  844. retval |= __put_user(pt->pr, &ppr->pr);
  845. /* nat bits */
  846. retval |= __put_user(nat_bits, &ppr->nat);
  847. ret = retval ? -EIO : 0;
  848. return ret;
  849. }
  850. static long
  851. ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
  852. {
  853. unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
  854. struct unw_frame_info info;
  855. struct switch_stack *sw;
  856. struct ia64_fpreg fpval;
  857. struct pt_regs *pt;
  858. long ret, retval = 0;
  859. int i;
  860. memset(&fpval, 0, sizeof(fpval));
  861. if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
  862. return -EIO;
  863. pt = task_pt_regs(child);
  864. sw = (struct switch_stack *) (child->thread.ksp + 16);
  865. unw_init_from_blocked_task(&info, child);
  866. if (unw_unwind_to_user(&info) < 0) {
  867. return -EIO;
  868. }
  869. if (((unsigned long) ppr & 0x7) != 0) {
  870. dprintk("ptrace:unaligned register address %p\n", ppr);
  871. return -EIO;
  872. }
  873. /* control regs */
  874. retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
  875. retval |= __get_user(psr, &ppr->cr_ipsr);
  876. /* app regs */
  877. retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
  878. retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
  879. retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
  880. retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
  881. retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
  882. retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
  883. retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
  884. retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
  885. retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
  886. retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
  887. retval |= __get_user(cfm, &ppr->cfm);
  888. /* gr1-gr3 */
  889. retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
  890. retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
  891. /* gr4-gr7 */
  892. for (i = 4; i < 8; i++) {
  893. retval |= __get_user(val, &ppr->gr[i]);
  894. /* NaT bit will be set via PT_NAT_BITS: */
  895. if (unw_set_gr(&info, i, val, 0) < 0)
  896. return -EIO;
  897. }
  898. /* gr8-gr11 */
  899. retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
  900. /* gr12-gr15 */
  901. retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
  902. retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
  903. retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
  904. /* gr16-gr31 */
  905. retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
  906. /* b0 */
  907. retval |= __get_user(pt->b0, &ppr->br[0]);
  908. /* b1-b5 */
  909. for (i = 1; i < 6; i++) {
  910. retval |= __get_user(val, &ppr->br[i]);
  911. unw_set_br(&info, i, val);
  912. }
  913. /* b6-b7 */
  914. retval |= __get_user(pt->b6, &ppr->br[6]);
  915. retval |= __get_user(pt->b7, &ppr->br[7]);
  916. /* fr2-fr5 */
  917. for (i = 2; i < 6; i++) {
  918. retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
  919. if (unw_set_fr(&info, i, fpval) < 0)
  920. return -EIO;
  921. }
  922. /* fr6-fr11 */
  923. retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
  924. sizeof(ppr->fr[6]) * 6);
  925. /* fp scratch regs(12-15) */
  926. retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
  927. sizeof(ppr->fr[12]) * 4);
  928. /* fr16-fr31 */
  929. for (i = 16; i < 32; i++) {
  930. retval |= __copy_from_user(&fpval, &ppr->fr[i],
  931. sizeof(fpval));
  932. if (unw_set_fr(&info, i, fpval) < 0)
  933. return -EIO;
  934. }
  935. /* fph */
  936. ia64_sync_fph(child);
  937. retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
  938. sizeof(ppr->fr[32]) * 96);
  939. /* preds */
  940. retval |= __get_user(pt->pr, &ppr->pr);
  941. /* nat bits */
  942. retval |= __get_user(nat_bits, &ppr->nat);
  943. retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
  944. retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
  945. retval |= access_uarea(child, PT_AR_EC, &ec, 1);
  946. retval |= access_uarea(child, PT_AR_LC, &lc, 1);
  947. retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
  948. retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
  949. retval |= access_uarea(child, PT_CFM, &cfm, 1);
  950. retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
  951. ret = retval ? -EIO : 0;
  952. return ret;
  953. }
  954. void
  955. user_enable_single_step (struct task_struct *child)
  956. {
  957. struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
  958. set_tsk_thread_flag(child, TIF_SINGLESTEP);
  959. child_psr->ss = 1;
  960. }
  961. void
  962. user_enable_block_step (struct task_struct *child)
  963. {
  964. struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
  965. set_tsk_thread_flag(child, TIF_SINGLESTEP);
  966. child_psr->tb = 1;
  967. }
  968. void
  969. user_disable_single_step (struct task_struct *child)
  970. {
  971. struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
  972. /* make sure the single step/taken-branch trap bits are not set: */
  973. clear_tsk_thread_flag(child, TIF_SINGLESTEP);
  974. child_psr->ss = 0;
  975. child_psr->tb = 0;
  976. }
  977. /*
  978. * Called by kernel/ptrace.c when detaching..
  979. *
  980. * Make sure the single step bit is not set.
  981. */
  982. void
  983. ptrace_disable (struct task_struct *child)
  984. {
  985. user_disable_single_step(child);
  986. }
  987. long
  988. arch_ptrace (struct task_struct *child, long request,
  989. unsigned long addr, unsigned long data)
  990. {
  991. switch (request) {
  992. case PTRACE_PEEKTEXT:
  993. case PTRACE_PEEKDATA:
  994. /* read word at location addr */
  995. if (ptrace_access_vm(child, addr, &data, sizeof(data),
  996. FOLL_FORCE)
  997. != sizeof(data))
  998. return -EIO;
  999. /* ensure return value is not mistaken for error code */
  1000. force_successful_syscall_return();
  1001. return data;
  1002. /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
  1003. * by the generic ptrace_request().
  1004. */
  1005. case PTRACE_PEEKUSR:
  1006. /* read the word at addr in the USER area */
  1007. if (access_uarea(child, addr, &data, 0) < 0)
  1008. return -EIO;
  1009. /* ensure return value is not mistaken for error code */
  1010. force_successful_syscall_return();
  1011. return data;
  1012. case PTRACE_POKEUSR:
  1013. /* write the word at addr in the USER area */
  1014. if (access_uarea(child, addr, &data, 1) < 0)
  1015. return -EIO;
  1016. return 0;
  1017. case PTRACE_OLD_GETSIGINFO:
  1018. /* for backwards-compatibility */
  1019. return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
  1020. case PTRACE_OLD_SETSIGINFO:
  1021. /* for backwards-compatibility */
  1022. return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
  1023. case PTRACE_GETREGS:
  1024. return ptrace_getregs(child,
  1025. (struct pt_all_user_regs __user *) data);
  1026. case PTRACE_SETREGS:
  1027. return ptrace_setregs(child,
  1028. (struct pt_all_user_regs __user *) data);
  1029. default:
  1030. return ptrace_request(child, request, addr, data);
  1031. }
  1032. }
  1033. /* "asmlinkage" so the input arguments are preserved... */
  1034. asmlinkage long
  1035. syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
  1036. long arg4, long arg5, long arg6, long arg7,
  1037. struct pt_regs regs)
  1038. {
  1039. if (test_thread_flag(TIF_SYSCALL_TRACE))
  1040. if (tracehook_report_syscall_entry(&regs))
  1041. return -ENOSYS;
  1042. /* copy user rbs to kernel rbs */
  1043. if (test_thread_flag(TIF_RESTORE_RSE))
  1044. ia64_sync_krbs();
  1045. audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
  1046. return 0;
  1047. }
  1048. /* "asmlinkage" so the input arguments are preserved... */
  1049. asmlinkage void
  1050. syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
  1051. long arg4, long arg5, long arg6, long arg7,
  1052. struct pt_regs regs)
  1053. {
  1054. int step;
  1055. audit_syscall_exit(&regs);
  1056. step = test_thread_flag(TIF_SINGLESTEP);
  1057. if (step || test_thread_flag(TIF_SYSCALL_TRACE))
  1058. tracehook_report_syscall_exit(&regs, step);
  1059. /* copy user rbs to kernel rbs */
  1060. if (test_thread_flag(TIF_RESTORE_RSE))
  1061. ia64_sync_krbs();
  1062. }
  1063. /* Utrace implementation starts here */
  1064. struct regset_get {
  1065. void *kbuf;
  1066. void __user *ubuf;
  1067. };
  1068. struct regset_set {
  1069. const void *kbuf;
  1070. const void __user *ubuf;
  1071. };
  1072. struct regset_getset {
  1073. struct task_struct *target;
  1074. const struct user_regset *regset;
  1075. union {
  1076. struct regset_get get;
  1077. struct regset_set set;
  1078. } u;
  1079. unsigned int pos;
  1080. unsigned int count;
  1081. int ret;
  1082. };
  1083. static int
  1084. access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
  1085. unsigned long addr, unsigned long *data, int write_access)
  1086. {
  1087. struct pt_regs *pt;
  1088. unsigned long *ptr = NULL;
  1089. int ret;
  1090. char nat = 0;
  1091. pt = task_pt_regs(target);
  1092. switch (addr) {
  1093. case ELF_GR_OFFSET(1):
  1094. ptr = &pt->r1;
  1095. break;
  1096. case ELF_GR_OFFSET(2):
  1097. case ELF_GR_OFFSET(3):
  1098. ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
  1099. break;
  1100. case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
  1101. if (write_access) {
  1102. /* read NaT bit first: */
  1103. unsigned long dummy;
  1104. ret = unw_get_gr(info, addr/8, &dummy, &nat);
  1105. if (ret < 0)
  1106. return ret;
  1107. }
  1108. return unw_access_gr(info, addr/8, data, &nat, write_access);
  1109. case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
  1110. ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
  1111. break;
  1112. case ELF_GR_OFFSET(12):
  1113. case ELF_GR_OFFSET(13):
  1114. ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
  1115. break;
  1116. case ELF_GR_OFFSET(14):
  1117. ptr = &pt->r14;
  1118. break;
  1119. case ELF_GR_OFFSET(15):
  1120. ptr = &pt->r15;
  1121. }
  1122. if (write_access)
  1123. *ptr = *data;
  1124. else
  1125. *data = *ptr;
  1126. return 0;
  1127. }
  1128. static int
  1129. access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
  1130. unsigned long addr, unsigned long *data, int write_access)
  1131. {
  1132. struct pt_regs *pt;
  1133. unsigned long *ptr = NULL;
  1134. pt = task_pt_regs(target);
  1135. switch (addr) {
  1136. case ELF_BR_OFFSET(0):
  1137. ptr = &pt->b0;
  1138. break;
  1139. case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
  1140. return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
  1141. data, write_access);
  1142. case ELF_BR_OFFSET(6):
  1143. ptr = &pt->b6;
  1144. break;
  1145. case ELF_BR_OFFSET(7):
  1146. ptr = &pt->b7;
  1147. }
  1148. if (write_access)
  1149. *ptr = *data;
  1150. else
  1151. *data = *ptr;
  1152. return 0;
  1153. }
  1154. static int
  1155. access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
  1156. unsigned long addr, unsigned long *data, int write_access)
  1157. {
  1158. struct pt_regs *pt;
  1159. unsigned long cfm, urbs_end;
  1160. unsigned long *ptr = NULL;
  1161. pt = task_pt_regs(target);
  1162. if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
  1163. switch (addr) {
  1164. case ELF_AR_RSC_OFFSET:
  1165. /* force PL3 */
  1166. if (write_access)
  1167. pt->ar_rsc = *data | (3 << 2);
  1168. else
  1169. *data = pt->ar_rsc;
  1170. return 0;
  1171. case ELF_AR_BSP_OFFSET:
  1172. /*
  1173. * By convention, we use PT_AR_BSP to refer to
  1174. * the end of the user-level backing store.
  1175. * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
  1176. * to get the real value of ar.bsp at the time
  1177. * the kernel was entered.
  1178. *
  1179. * Furthermore, when changing the contents of
  1180. * PT_AR_BSP (or PT_CFM) while the task is
  1181. * blocked in a system call, convert the state
  1182. * so that the non-system-call exit
  1183. * path is used. This ensures that the proper
  1184. * state will be picked up when resuming
  1185. * execution. However, it *also* means that
  1186. * once we write PT_AR_BSP/PT_CFM, it won't be
  1187. * possible to modify the syscall arguments of
  1188. * the pending system call any longer. This
  1189. * shouldn't be an issue because modifying
  1190. * PT_AR_BSP/PT_CFM generally implies that
  1191. * we're either abandoning the pending system
  1192. * call or that we defer it's re-execution
  1193. * (e.g., due to GDB doing an inferior
  1194. * function call).
  1195. */
  1196. urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
  1197. if (write_access) {
  1198. if (*data != urbs_end) {
  1199. if (in_syscall(pt))
  1200. convert_to_non_syscall(target,
  1201. pt,
  1202. cfm);
  1203. /*
  1204. * Simulate user-level write
  1205. * of ar.bsp:
  1206. */
  1207. pt->loadrs = 0;
  1208. pt->ar_bspstore = *data;
  1209. }
  1210. } else
  1211. *data = urbs_end;
  1212. return 0;
  1213. case ELF_AR_BSPSTORE_OFFSET:
  1214. ptr = &pt->ar_bspstore;
  1215. break;
  1216. case ELF_AR_RNAT_OFFSET:
  1217. ptr = &pt->ar_rnat;
  1218. break;
  1219. case ELF_AR_CCV_OFFSET:
  1220. ptr = &pt->ar_ccv;
  1221. break;
  1222. case ELF_AR_UNAT_OFFSET:
  1223. ptr = &pt->ar_unat;
  1224. break;
  1225. case ELF_AR_FPSR_OFFSET:
  1226. ptr = &pt->ar_fpsr;
  1227. break;
  1228. case ELF_AR_PFS_OFFSET:
  1229. ptr = &pt->ar_pfs;
  1230. break;
  1231. case ELF_AR_LC_OFFSET:
  1232. return unw_access_ar(info, UNW_AR_LC, data,
  1233. write_access);
  1234. case ELF_AR_EC_OFFSET:
  1235. return unw_access_ar(info, UNW_AR_EC, data,
  1236. write_access);
  1237. case ELF_AR_CSD_OFFSET:
  1238. ptr = &pt->ar_csd;
  1239. break;
  1240. case ELF_AR_SSD_OFFSET:
  1241. ptr = &pt->ar_ssd;
  1242. }
  1243. } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
  1244. switch (addr) {
  1245. case ELF_CR_IIP_OFFSET:
  1246. ptr = &pt->cr_iip;
  1247. break;
  1248. case ELF_CFM_OFFSET:
  1249. urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
  1250. if (write_access) {
  1251. if (((cfm ^ *data) & PFM_MASK) != 0) {
  1252. if (in_syscall(pt))
  1253. convert_to_non_syscall(target,
  1254. pt,
  1255. cfm);
  1256. pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
  1257. | (*data & PFM_MASK));
  1258. }
  1259. } else
  1260. *data = cfm;
  1261. return 0;
  1262. case ELF_CR_IPSR_OFFSET:
  1263. if (write_access) {
  1264. unsigned long tmp = *data;
  1265. /* psr.ri==3 is a reserved value: SDM 2:25 */
  1266. if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
  1267. tmp &= ~IA64_PSR_RI;
  1268. pt->cr_ipsr = ((tmp & IPSR_MASK)
  1269. | (pt->cr_ipsr & ~IPSR_MASK));
  1270. } else
  1271. *data = (pt->cr_ipsr & IPSR_MASK);
  1272. return 0;
  1273. }
  1274. } else if (addr == ELF_NAT_OFFSET)
  1275. return access_nat_bits(target, pt, info,
  1276. data, write_access);
  1277. else if (addr == ELF_PR_OFFSET)
  1278. ptr = &pt->pr;
  1279. else
  1280. return -1;
  1281. if (write_access)
  1282. *ptr = *data;
  1283. else
  1284. *data = *ptr;
  1285. return 0;
  1286. }
  1287. static int
  1288. access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
  1289. unsigned long addr, unsigned long *data, int write_access)
  1290. {
  1291. if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
  1292. return access_elf_gpreg(target, info, addr, data, write_access);
  1293. else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
  1294. return access_elf_breg(target, info, addr, data, write_access);
  1295. else
  1296. return access_elf_areg(target, info, addr, data, write_access);
  1297. }
  1298. void do_gpregs_get(struct unw_frame_info *info, void *arg)
  1299. {
  1300. struct pt_regs *pt;
  1301. struct regset_getset *dst = arg;
  1302. elf_greg_t tmp[16];
  1303. unsigned int i, index, min_copy;
  1304. if (unw_unwind_to_user(info) < 0)
  1305. return;
  1306. /*
  1307. * coredump format:
  1308. * r0-r31
  1309. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  1310. * predicate registers (p0-p63)
  1311. * b0-b7
  1312. * ip cfm user-mask
  1313. * ar.rsc ar.bsp ar.bspstore ar.rnat
  1314. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  1315. */
  1316. /* Skip r0 */
  1317. if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
  1318. dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
  1319. &dst->u.get.kbuf,
  1320. &dst->u.get.ubuf,
  1321. 0, ELF_GR_OFFSET(1));
  1322. if (dst->ret || dst->count == 0)
  1323. return;
  1324. }
  1325. /* gr1 - gr15 */
  1326. if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
  1327. index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
  1328. min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
  1329. (dst->pos + dst->count) : ELF_GR_OFFSET(16);
  1330. for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
  1331. index++)
  1332. if (access_elf_reg(dst->target, info, i,
  1333. &tmp[index], 0) < 0) {
  1334. dst->ret = -EIO;
  1335. return;
  1336. }
  1337. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1338. &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
  1339. ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
  1340. if (dst->ret || dst->count == 0)
  1341. return;
  1342. }
  1343. /* r16-r31 */
  1344. if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
  1345. pt = task_pt_regs(dst->target);
  1346. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1347. &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
  1348. ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
  1349. if (dst->ret || dst->count == 0)
  1350. return;
  1351. }
  1352. /* nat, pr, b0 - b7 */
  1353. if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
  1354. index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
  1355. min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
  1356. (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
  1357. for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
  1358. index++)
  1359. if (access_elf_reg(dst->target, info, i,
  1360. &tmp[index], 0) < 0) {
  1361. dst->ret = -EIO;
  1362. return;
  1363. }
  1364. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1365. &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
  1366. ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
  1367. if (dst->ret || dst->count == 0)
  1368. return;
  1369. }
  1370. /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
  1371. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
  1372. */
  1373. if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
  1374. index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
  1375. min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
  1376. (dst->pos + dst->count) : ELF_AR_END_OFFSET;
  1377. for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
  1378. index++)
  1379. if (access_elf_reg(dst->target, info, i,
  1380. &tmp[index], 0) < 0) {
  1381. dst->ret = -EIO;
  1382. return;
  1383. }
  1384. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1385. &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
  1386. ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
  1387. }
  1388. }
  1389. void do_gpregs_set(struct unw_frame_info *info, void *arg)
  1390. {
  1391. struct pt_regs *pt;
  1392. struct regset_getset *dst = arg;
  1393. elf_greg_t tmp[16];
  1394. unsigned int i, index;
  1395. if (unw_unwind_to_user(info) < 0)
  1396. return;
  1397. /* Skip r0 */
  1398. if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
  1399. dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
  1400. &dst->u.set.kbuf,
  1401. &dst->u.set.ubuf,
  1402. 0, ELF_GR_OFFSET(1));
  1403. if (dst->ret || dst->count == 0)
  1404. return;
  1405. }
  1406. /* gr1-gr15 */
  1407. if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
  1408. i = dst->pos;
  1409. index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
  1410. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1411. &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
  1412. ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
  1413. if (dst->ret)
  1414. return;
  1415. for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
  1416. if (access_elf_reg(dst->target, info, i,
  1417. &tmp[index], 1) < 0) {
  1418. dst->ret = -EIO;
  1419. return;
  1420. }
  1421. if (dst->count == 0)
  1422. return;
  1423. }
  1424. /* gr16-gr31 */
  1425. if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
  1426. pt = task_pt_regs(dst->target);
  1427. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1428. &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
  1429. ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
  1430. if (dst->ret || dst->count == 0)
  1431. return;
  1432. }
  1433. /* nat, pr, b0 - b7 */
  1434. if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
  1435. i = dst->pos;
  1436. index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
  1437. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1438. &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
  1439. ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
  1440. if (dst->ret)
  1441. return;
  1442. for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
  1443. if (access_elf_reg(dst->target, info, i,
  1444. &tmp[index], 1) < 0) {
  1445. dst->ret = -EIO;
  1446. return;
  1447. }
  1448. if (dst->count == 0)
  1449. return;
  1450. }
  1451. /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
  1452. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
  1453. */
  1454. if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
  1455. i = dst->pos;
  1456. index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
  1457. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1458. &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
  1459. ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
  1460. if (dst->ret)
  1461. return;
  1462. for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
  1463. if (access_elf_reg(dst->target, info, i,
  1464. &tmp[index], 1) < 0) {
  1465. dst->ret = -EIO;
  1466. return;
  1467. }
  1468. }
  1469. }
  1470. #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
  1471. void do_fpregs_get(struct unw_frame_info *info, void *arg)
  1472. {
  1473. struct regset_getset *dst = arg;
  1474. struct task_struct *task = dst->target;
  1475. elf_fpreg_t tmp[30];
  1476. int index, min_copy, i;
  1477. if (unw_unwind_to_user(info) < 0)
  1478. return;
  1479. /* Skip pos 0 and 1 */
  1480. if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
  1481. dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
  1482. &dst->u.get.kbuf,
  1483. &dst->u.get.ubuf,
  1484. 0, ELF_FP_OFFSET(2));
  1485. if (dst->count == 0 || dst->ret)
  1486. return;
  1487. }
  1488. /* fr2-fr31 */
  1489. if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
  1490. index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
  1491. min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
  1492. dst->pos + dst->count);
  1493. for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
  1494. index++)
  1495. if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
  1496. &tmp[index])) {
  1497. dst->ret = -EIO;
  1498. return;
  1499. }
  1500. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1501. &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
  1502. ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
  1503. if (dst->count == 0 || dst->ret)
  1504. return;
  1505. }
  1506. /* fph */
  1507. if (dst->count > 0) {
  1508. ia64_flush_fph(dst->target);
  1509. if (task->thread.flags & IA64_THREAD_FPH_VALID)
  1510. dst->ret = user_regset_copyout(
  1511. &dst->pos, &dst->count,
  1512. &dst->u.get.kbuf, &dst->u.get.ubuf,
  1513. &dst->target->thread.fph,
  1514. ELF_FP_OFFSET(32), -1);
  1515. else
  1516. /* Zero fill instead. */
  1517. dst->ret = user_regset_copyout_zero(
  1518. &dst->pos, &dst->count,
  1519. &dst->u.get.kbuf, &dst->u.get.ubuf,
  1520. ELF_FP_OFFSET(32), -1);
  1521. }
  1522. }
  1523. void do_fpregs_set(struct unw_frame_info *info, void *arg)
  1524. {
  1525. struct regset_getset *dst = arg;
  1526. elf_fpreg_t fpreg, tmp[30];
  1527. int index, start, end;
  1528. if (unw_unwind_to_user(info) < 0)
  1529. return;
  1530. /* Skip pos 0 and 1 */
  1531. if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
  1532. dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
  1533. &dst->u.set.kbuf,
  1534. &dst->u.set.ubuf,
  1535. 0, ELF_FP_OFFSET(2));
  1536. if (dst->count == 0 || dst->ret)
  1537. return;
  1538. }
  1539. /* fr2-fr31 */
  1540. if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
  1541. start = dst->pos;
  1542. end = min(((unsigned int)ELF_FP_OFFSET(32)),
  1543. dst->pos + dst->count);
  1544. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1545. &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
  1546. ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
  1547. if (dst->ret)
  1548. return;
  1549. if (start & 0xF) { /* only write high part */
  1550. if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
  1551. &fpreg)) {
  1552. dst->ret = -EIO;
  1553. return;
  1554. }
  1555. tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
  1556. = fpreg.u.bits[0];
  1557. start &= ~0xFUL;
  1558. }
  1559. if (end & 0xF) { /* only write low part */
  1560. if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
  1561. &fpreg)) {
  1562. dst->ret = -EIO;
  1563. return;
  1564. }
  1565. tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
  1566. = fpreg.u.bits[1];
  1567. end = (end + 0xF) & ~0xFUL;
  1568. }
  1569. for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
  1570. index = start / sizeof(elf_fpreg_t);
  1571. if (unw_set_fr(info, index, tmp[index - 2])) {
  1572. dst->ret = -EIO;
  1573. return;
  1574. }
  1575. }
  1576. if (dst->ret || dst->count == 0)
  1577. return;
  1578. }
  1579. /* fph */
  1580. if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
  1581. ia64_sync_fph(dst->target);
  1582. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1583. &dst->u.set.kbuf,
  1584. &dst->u.set.ubuf,
  1585. &dst->target->thread.fph,
  1586. ELF_FP_OFFSET(32), -1);
  1587. }
  1588. }
  1589. static int
  1590. do_regset_call(void (*call)(struct unw_frame_info *, void *),
  1591. struct task_struct *target,
  1592. const struct user_regset *regset,
  1593. unsigned int pos, unsigned int count,
  1594. const void *kbuf, const void __user *ubuf)
  1595. {
  1596. struct regset_getset info = { .target = target, .regset = regset,
  1597. .pos = pos, .count = count,
  1598. .u.set = { .kbuf = kbuf, .ubuf = ubuf },
  1599. .ret = 0 };
  1600. if (target == current)
  1601. unw_init_running(call, &info);
  1602. else {
  1603. struct unw_frame_info ufi;
  1604. memset(&ufi, 0, sizeof(ufi));
  1605. unw_init_from_blocked_task(&ufi, target);
  1606. (*call)(&ufi, &info);
  1607. }
  1608. return info.ret;
  1609. }
  1610. static int
  1611. gpregs_get(struct task_struct *target,
  1612. const struct user_regset *regset,
  1613. unsigned int pos, unsigned int count,
  1614. void *kbuf, void __user *ubuf)
  1615. {
  1616. return do_regset_call(do_gpregs_get, target, regset, pos, count,
  1617. kbuf, ubuf);
  1618. }
  1619. static int gpregs_set(struct task_struct *target,
  1620. const struct user_regset *regset,
  1621. unsigned int pos, unsigned int count,
  1622. const void *kbuf, const void __user *ubuf)
  1623. {
  1624. return do_regset_call(do_gpregs_set, target, regset, pos, count,
  1625. kbuf, ubuf);
  1626. }
  1627. static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
  1628. {
  1629. do_sync_rbs(info, ia64_sync_user_rbs);
  1630. }
  1631. /*
  1632. * This is called to write back the register backing store.
  1633. * ptrace does this before it stops, so that a tracer reading the user
  1634. * memory after the thread stops will get the current register data.
  1635. */
  1636. static int
  1637. gpregs_writeback(struct task_struct *target,
  1638. const struct user_regset *regset,
  1639. int now)
  1640. {
  1641. if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
  1642. return 0;
  1643. set_notify_resume(target);
  1644. return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
  1645. NULL, NULL);
  1646. }
  1647. static int
  1648. fpregs_active(struct task_struct *target, const struct user_regset *regset)
  1649. {
  1650. return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
  1651. }
  1652. static int fpregs_get(struct task_struct *target,
  1653. const struct user_regset *regset,
  1654. unsigned int pos, unsigned int count,
  1655. void *kbuf, void __user *ubuf)
  1656. {
  1657. return do_regset_call(do_fpregs_get, target, regset, pos, count,
  1658. kbuf, ubuf);
  1659. }
  1660. static int fpregs_set(struct task_struct *target,
  1661. const struct user_regset *regset,
  1662. unsigned int pos, unsigned int count,
  1663. const void *kbuf, const void __user *ubuf)
  1664. {
  1665. return do_regset_call(do_fpregs_set, target, regset, pos, count,
  1666. kbuf, ubuf);
  1667. }
  1668. static int
  1669. access_uarea(struct task_struct *child, unsigned long addr,
  1670. unsigned long *data, int write_access)
  1671. {
  1672. unsigned int pos = -1; /* an invalid value */
  1673. int ret;
  1674. unsigned long *ptr, regnum;
  1675. if ((addr & 0x7) != 0) {
  1676. dprintk("ptrace: unaligned register address 0x%lx\n", addr);
  1677. return -1;
  1678. }
  1679. if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
  1680. (addr >= PT_R7 + 8 && addr < PT_B1) ||
  1681. (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
  1682. (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
  1683. dprintk("ptrace: rejecting access to register "
  1684. "address 0x%lx\n", addr);
  1685. return -1;
  1686. }
  1687. switch (addr) {
  1688. case PT_F32 ... (PT_F127 + 15):
  1689. pos = addr - PT_F32 + ELF_FP_OFFSET(32);
  1690. break;
  1691. case PT_F2 ... (PT_F5 + 15):
  1692. pos = addr - PT_F2 + ELF_FP_OFFSET(2);
  1693. break;
  1694. case PT_F10 ... (PT_F31 + 15):
  1695. pos = addr - PT_F10 + ELF_FP_OFFSET(10);
  1696. break;
  1697. case PT_F6 ... (PT_F9 + 15):
  1698. pos = addr - PT_F6 + ELF_FP_OFFSET(6);
  1699. break;
  1700. }
  1701. if (pos != -1) {
  1702. if (write_access)
  1703. ret = fpregs_set(child, NULL, pos,
  1704. sizeof(unsigned long), data, NULL);
  1705. else
  1706. ret = fpregs_get(child, NULL, pos,
  1707. sizeof(unsigned long), data, NULL);
  1708. if (ret != 0)
  1709. return -1;
  1710. return 0;
  1711. }
  1712. switch (addr) {
  1713. case PT_NAT_BITS:
  1714. pos = ELF_NAT_OFFSET;
  1715. break;
  1716. case PT_R4 ... PT_R7:
  1717. pos = addr - PT_R4 + ELF_GR_OFFSET(4);
  1718. break;
  1719. case PT_B1 ... PT_B5:
  1720. pos = addr - PT_B1 + ELF_BR_OFFSET(1);
  1721. break;
  1722. case PT_AR_EC:
  1723. pos = ELF_AR_EC_OFFSET;
  1724. break;
  1725. case PT_AR_LC:
  1726. pos = ELF_AR_LC_OFFSET;
  1727. break;
  1728. case PT_CR_IPSR:
  1729. pos = ELF_CR_IPSR_OFFSET;
  1730. break;
  1731. case PT_CR_IIP:
  1732. pos = ELF_CR_IIP_OFFSET;
  1733. break;
  1734. case PT_CFM:
  1735. pos = ELF_CFM_OFFSET;
  1736. break;
  1737. case PT_AR_UNAT:
  1738. pos = ELF_AR_UNAT_OFFSET;
  1739. break;
  1740. case PT_AR_PFS:
  1741. pos = ELF_AR_PFS_OFFSET;
  1742. break;
  1743. case PT_AR_RSC:
  1744. pos = ELF_AR_RSC_OFFSET;
  1745. break;
  1746. case PT_AR_RNAT:
  1747. pos = ELF_AR_RNAT_OFFSET;
  1748. break;
  1749. case PT_AR_BSPSTORE:
  1750. pos = ELF_AR_BSPSTORE_OFFSET;
  1751. break;
  1752. case PT_PR:
  1753. pos = ELF_PR_OFFSET;
  1754. break;
  1755. case PT_B6:
  1756. pos = ELF_BR_OFFSET(6);
  1757. break;
  1758. case PT_AR_BSP:
  1759. pos = ELF_AR_BSP_OFFSET;
  1760. break;
  1761. case PT_R1 ... PT_R3:
  1762. pos = addr - PT_R1 + ELF_GR_OFFSET(1);
  1763. break;
  1764. case PT_R12 ... PT_R15:
  1765. pos = addr - PT_R12 + ELF_GR_OFFSET(12);
  1766. break;
  1767. case PT_R8 ... PT_R11:
  1768. pos = addr - PT_R8 + ELF_GR_OFFSET(8);
  1769. break;
  1770. case PT_R16 ... PT_R31:
  1771. pos = addr - PT_R16 + ELF_GR_OFFSET(16);
  1772. break;
  1773. case PT_AR_CCV:
  1774. pos = ELF_AR_CCV_OFFSET;
  1775. break;
  1776. case PT_AR_FPSR:
  1777. pos = ELF_AR_FPSR_OFFSET;
  1778. break;
  1779. case PT_B0:
  1780. pos = ELF_BR_OFFSET(0);
  1781. break;
  1782. case PT_B7:
  1783. pos = ELF_BR_OFFSET(7);
  1784. break;
  1785. case PT_AR_CSD:
  1786. pos = ELF_AR_CSD_OFFSET;
  1787. break;
  1788. case PT_AR_SSD:
  1789. pos = ELF_AR_SSD_OFFSET;
  1790. break;
  1791. }
  1792. if (pos != -1) {
  1793. if (write_access)
  1794. ret = gpregs_set(child, NULL, pos,
  1795. sizeof(unsigned long), data, NULL);
  1796. else
  1797. ret = gpregs_get(child, NULL, pos,
  1798. sizeof(unsigned long), data, NULL);
  1799. if (ret != 0)
  1800. return -1;
  1801. return 0;
  1802. }
  1803. /* access debug registers */
  1804. if (addr >= PT_IBR) {
  1805. regnum = (addr - PT_IBR) >> 3;
  1806. ptr = &child->thread.ibr[0];
  1807. } else {
  1808. regnum = (addr - PT_DBR) >> 3;
  1809. ptr = &child->thread.dbr[0];
  1810. }
  1811. if (regnum >= 8) {
  1812. dprintk("ptrace: rejecting access to register "
  1813. "address 0x%lx\n", addr);
  1814. return -1;
  1815. }
  1816. #ifdef CONFIG_PERFMON
  1817. /*
  1818. * Check if debug registers are used by perfmon. This
  1819. * test must be done once we know that we can do the
  1820. * operation, i.e. the arguments are all valid, but
  1821. * before we start modifying the state.
  1822. *
  1823. * Perfmon needs to keep a count of how many processes
  1824. * are trying to modify the debug registers for system
  1825. * wide monitoring sessions.
  1826. *
  1827. * We also include read access here, because they may
  1828. * cause the PMU-installed debug register state
  1829. * (dbr[], ibr[]) to be reset. The two arrays are also
  1830. * used by perfmon, but we do not use
  1831. * IA64_THREAD_DBG_VALID. The registers are restored
  1832. * by the PMU context switch code.
  1833. */
  1834. if (pfm_use_debug_registers(child))
  1835. return -1;
  1836. #endif
  1837. if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
  1838. child->thread.flags |= IA64_THREAD_DBG_VALID;
  1839. memset(child->thread.dbr, 0,
  1840. sizeof(child->thread.dbr));
  1841. memset(child->thread.ibr, 0,
  1842. sizeof(child->thread.ibr));
  1843. }
  1844. ptr += regnum;
  1845. if ((regnum & 1) && write_access) {
  1846. /* don't let the user set kernel-level breakpoints: */
  1847. *ptr = *data & ~(7UL << 56);
  1848. return 0;
  1849. }
  1850. if (write_access)
  1851. *ptr = *data;
  1852. else
  1853. *data = *ptr;
  1854. return 0;
  1855. }
  1856. static const struct user_regset native_regsets[] = {
  1857. {
  1858. .core_note_type = NT_PRSTATUS,
  1859. .n = ELF_NGREG,
  1860. .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
  1861. .get = gpregs_get, .set = gpregs_set,
  1862. .writeback = gpregs_writeback
  1863. },
  1864. {
  1865. .core_note_type = NT_PRFPREG,
  1866. .n = ELF_NFPREG,
  1867. .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
  1868. .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
  1869. },
  1870. };
  1871. static const struct user_regset_view user_ia64_view = {
  1872. .name = "ia64",
  1873. .e_machine = EM_IA_64,
  1874. .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
  1875. };
  1876. const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
  1877. {
  1878. return &user_ia64_view;
  1879. }
  1880. struct syscall_get_set_args {
  1881. unsigned int i;
  1882. unsigned int n;
  1883. unsigned long *args;
  1884. struct pt_regs *regs;
  1885. int rw;
  1886. };
  1887. static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
  1888. {
  1889. struct syscall_get_set_args *args = data;
  1890. struct pt_regs *pt = args->regs;
  1891. unsigned long *krbs, cfm, ndirty;
  1892. int i, count;
  1893. if (unw_unwind_to_user(info) < 0)
  1894. return;
  1895. cfm = pt->cr_ifs;
  1896. krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
  1897. ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
  1898. count = 0;
  1899. if (in_syscall(pt))
  1900. count = min_t(int, args->n, cfm & 0x7f);
  1901. for (i = 0; i < count; i++) {
  1902. if (args->rw)
  1903. *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
  1904. args->args[i];
  1905. else
  1906. args->args[i] = *ia64_rse_skip_regs(krbs,
  1907. ndirty + i + args->i);
  1908. }
  1909. if (!args->rw) {
  1910. while (i < args->n) {
  1911. args->args[i] = 0;
  1912. i++;
  1913. }
  1914. }
  1915. }
  1916. void ia64_syscall_get_set_arguments(struct task_struct *task,
  1917. struct pt_regs *regs, unsigned int i, unsigned int n,
  1918. unsigned long *args, int rw)
  1919. {
  1920. struct syscall_get_set_args data = {
  1921. .i = i,
  1922. .n = n,
  1923. .args = args,
  1924. .regs = regs,
  1925. .rw = rw,
  1926. };
  1927. if (task == current)
  1928. unw_init_running(syscall_get_set_args_cb, &data);
  1929. else {
  1930. struct unw_frame_info ufi;
  1931. memset(&ufi, 0, sizeof(ufi));
  1932. unw_init_from_blocked_task(&ufi, task);
  1933. syscall_get_set_args_cb(&ufi, &data);
  1934. }
  1935. }