module-plts.c 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202
  1. /*
  2. * Copyright (C) 2014-2016 Linaro Ltd. <ard.biesheuvel@linaro.org>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/elf.h>
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/sort.h>
  12. struct plt_entry {
  13. /*
  14. * A program that conforms to the AArch64 Procedure Call Standard
  15. * (AAPCS64) must assume that a veneer that alters IP0 (x16) and/or
  16. * IP1 (x17) may be inserted at any branch instruction that is
  17. * exposed to a relocation that supports long branches. Since that
  18. * is exactly what we are dealing with here, we are free to use x16
  19. * as a scratch register in the PLT veneers.
  20. */
  21. __le32 mov0; /* movn x16, #0x.... */
  22. __le32 mov1; /* movk x16, #0x...., lsl #16 */
  23. __le32 mov2; /* movk x16, #0x...., lsl #32 */
  24. __le32 br; /* br x16 */
  25. };
  26. u64 module_emit_plt_entry(struct module *mod, const Elf64_Rela *rela,
  27. Elf64_Sym *sym)
  28. {
  29. struct plt_entry *plt = (struct plt_entry *)mod->arch.plt->sh_addr;
  30. int i = mod->arch.plt_num_entries;
  31. u64 val = sym->st_value + rela->r_addend;
  32. /*
  33. * We only emit PLT entries against undefined (SHN_UNDEF) symbols,
  34. * which are listed in the ELF symtab section, but without a type
  35. * or a size.
  36. * So, similar to how the module loader uses the Elf64_Sym::st_value
  37. * field to store the resolved addresses of undefined symbols, let's
  38. * borrow the Elf64_Sym::st_size field (whose value is never used by
  39. * the module loader, even for symbols that are defined) to record
  40. * the address of a symbol's associated PLT entry as we emit it for a
  41. * zero addend relocation (which is the only kind we have to deal with
  42. * in practice). This allows us to find duplicates without having to
  43. * go through the table every time.
  44. */
  45. if (rela->r_addend == 0 && sym->st_size != 0) {
  46. BUG_ON(sym->st_size < (u64)plt || sym->st_size >= (u64)&plt[i]);
  47. return sym->st_size;
  48. }
  49. mod->arch.plt_num_entries++;
  50. BUG_ON(mod->arch.plt_num_entries > mod->arch.plt_max_entries);
  51. /*
  52. * MOVK/MOVN/MOVZ opcode:
  53. * +--------+------------+--------+-----------+-------------+---------+
  54. * | sf[31] | opc[30:29] | 100101 | hw[22:21] | imm16[20:5] | Rd[4:0] |
  55. * +--------+------------+--------+-----------+-------------+---------+
  56. *
  57. * Rd := 0x10 (x16)
  58. * hw := 0b00 (no shift), 0b01 (lsl #16), 0b10 (lsl #32)
  59. * opc := 0b11 (MOVK), 0b00 (MOVN), 0b10 (MOVZ)
  60. * sf := 1 (64-bit variant)
  61. */
  62. plt[i] = (struct plt_entry){
  63. cpu_to_le32(0x92800010 | (((~val ) & 0xffff)) << 5),
  64. cpu_to_le32(0xf2a00010 | ((( val >> 16) & 0xffff)) << 5),
  65. cpu_to_le32(0xf2c00010 | ((( val >> 32) & 0xffff)) << 5),
  66. cpu_to_le32(0xd61f0200)
  67. };
  68. if (rela->r_addend == 0)
  69. sym->st_size = (u64)&plt[i];
  70. return (u64)&plt[i];
  71. }
  72. #define cmp_3way(a,b) ((a) < (b) ? -1 : (a) > (b))
  73. static int cmp_rela(const void *a, const void *b)
  74. {
  75. const Elf64_Rela *x = a, *y = b;
  76. int i;
  77. /* sort by type, symbol index and addend */
  78. i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
  79. if (i == 0)
  80. i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
  81. if (i == 0)
  82. i = cmp_3way(x->r_addend, y->r_addend);
  83. return i;
  84. }
  85. static bool duplicate_rel(const Elf64_Rela *rela, int num)
  86. {
  87. /*
  88. * Entries are sorted by type, symbol index and addend. That means
  89. * that, if a duplicate entry exists, it must be in the preceding
  90. * slot.
  91. */
  92. return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
  93. }
  94. static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num)
  95. {
  96. unsigned int ret = 0;
  97. Elf64_Sym *s;
  98. int i;
  99. for (i = 0; i < num; i++) {
  100. switch (ELF64_R_TYPE(rela[i].r_info)) {
  101. case R_AARCH64_JUMP26:
  102. case R_AARCH64_CALL26:
  103. /*
  104. * We only have to consider branch targets that resolve
  105. * to undefined symbols. This is not simply a heuristic,
  106. * it is a fundamental limitation, since the PLT itself
  107. * is part of the module, and needs to be within 128 MB
  108. * as well, so modules can never grow beyond that limit.
  109. */
  110. s = syms + ELF64_R_SYM(rela[i].r_info);
  111. if (s->st_shndx != SHN_UNDEF)
  112. break;
  113. /*
  114. * Jump relocations with non-zero addends against
  115. * undefined symbols are supported by the ELF spec, but
  116. * do not occur in practice (e.g., 'jump n bytes past
  117. * the entry point of undefined function symbol f').
  118. * So we need to support them, but there is no need to
  119. * take them into consideration when trying to optimize
  120. * this code. So let's only check for duplicates when
  121. * the addend is zero: this allows us to record the PLT
  122. * entry address in the symbol table itself, rather than
  123. * having to search the list for duplicates each time we
  124. * emit one.
  125. */
  126. if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
  127. ret++;
  128. break;
  129. }
  130. }
  131. return ret;
  132. }
  133. int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
  134. char *secstrings, struct module *mod)
  135. {
  136. unsigned long plt_max_entries = 0;
  137. Elf64_Sym *syms = NULL;
  138. int i;
  139. /*
  140. * Find the empty .plt section so we can expand it to store the PLT
  141. * entries. Record the symtab address as well.
  142. */
  143. for (i = 0; i < ehdr->e_shnum; i++) {
  144. if (strcmp(".plt", secstrings + sechdrs[i].sh_name) == 0)
  145. mod->arch.plt = sechdrs + i;
  146. else if (sechdrs[i].sh_type == SHT_SYMTAB)
  147. syms = (Elf64_Sym *)sechdrs[i].sh_addr;
  148. }
  149. if (!mod->arch.plt) {
  150. pr_err("%s: module PLT section missing\n", mod->name);
  151. return -ENOEXEC;
  152. }
  153. if (!syms) {
  154. pr_err("%s: module symtab section missing\n", mod->name);
  155. return -ENOEXEC;
  156. }
  157. for (i = 0; i < ehdr->e_shnum; i++) {
  158. Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
  159. int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
  160. Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
  161. if (sechdrs[i].sh_type != SHT_RELA)
  162. continue;
  163. /* ignore relocations that operate on non-exec sections */
  164. if (!(dstsec->sh_flags & SHF_EXECINSTR))
  165. continue;
  166. /* sort by type, symbol index and addend */
  167. sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL);
  168. plt_max_entries += count_plts(syms, rels, numrels);
  169. }
  170. mod->arch.plt->sh_type = SHT_NOBITS;
  171. mod->arch.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
  172. mod->arch.plt->sh_addralign = L1_CACHE_BYTES;
  173. mod->arch.plt->sh_size = plt_max_entries * sizeof(struct plt_entry);
  174. mod->arch.plt_num_entries = 0;
  175. mod->arch.plt_max_entries = plt_max_entries;
  176. return 0;
  177. }