cpufeature.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245
  1. /*
  2. * Contains CPU feature definitions
  3. *
  4. * Copyright (C) 2015 ARM Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #define pr_fmt(fmt) "CPU features: " fmt
  19. #include <linux/bsearch.h>
  20. #include <linux/cpumask.h>
  21. #include <linux/sort.h>
  22. #include <linux/stop_machine.h>
  23. #include <linux/types.h>
  24. #include <asm/cpu.h>
  25. #include <asm/cpufeature.h>
  26. #include <asm/cpu_ops.h>
  27. #include <asm/mmu_context.h>
  28. #include <asm/processor.h>
  29. #include <asm/sysreg.h>
  30. #include <asm/virt.h>
  31. unsigned long elf_hwcap __read_mostly;
  32. EXPORT_SYMBOL_GPL(elf_hwcap);
  33. #ifdef CONFIG_COMPAT
  34. #define COMPAT_ELF_HWCAP_DEFAULT \
  35. (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
  36. COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
  37. COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
  38. COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
  39. COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
  40. COMPAT_HWCAP_LPAE)
  41. unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
  42. unsigned int compat_elf_hwcap2 __read_mostly;
  43. #endif
  44. DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
  45. EXPORT_SYMBOL(cpu_hwcaps);
  46. DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
  47. EXPORT_SYMBOL(cpu_hwcap_keys);
  48. #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
  49. { \
  50. .sign = SIGNED, \
  51. .strict = STRICT, \
  52. .type = TYPE, \
  53. .shift = SHIFT, \
  54. .width = WIDTH, \
  55. .safe_val = SAFE_VAL, \
  56. }
  57. /* Define a feature with unsigned values */
  58. #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
  59. __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
  60. /* Define a feature with a signed value */
  61. #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
  62. __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
  63. #define ARM64_FTR_END \
  64. { \
  65. .width = 0, \
  66. }
  67. /* meta feature for alternatives */
  68. static bool __maybe_unused
  69. cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
  70. static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
  71. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
  72. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
  73. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
  74. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
  75. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
  76. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
  77. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
  78. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
  79. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
  80. ARM64_FTR_END,
  81. };
  82. static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
  83. ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
  84. ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
  85. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 24, 0),
  86. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
  87. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
  88. S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
  89. S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
  90. /* Linux doesn't care about the EL3 */
  91. ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
  92. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
  93. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
  94. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
  95. ARM64_FTR_END,
  96. };
  97. static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
  98. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
  99. S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
  100. S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
  101. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
  102. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
  103. /* Linux shouldn't care about secure memory */
  104. ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
  105. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
  106. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
  107. /*
  108. * Differing PARange is fine as long as all peripherals and memory are mapped
  109. * within the minimum PARange of all CPUs
  110. */
  111. ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
  112. ARM64_FTR_END,
  113. };
  114. static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
  115. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
  116. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
  117. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
  118. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
  119. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
  120. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
  121. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
  122. ARM64_FTR_END,
  123. };
  124. static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
  125. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
  126. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
  127. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
  128. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
  129. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
  130. ARM64_FTR_END,
  131. };
  132. static const struct arm64_ftr_bits ftr_ctr[] = {
  133. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
  134. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
  135. ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
  136. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
  137. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
  138. /*
  139. * Linux can handle differing I-cache policies. Userspace JITs will
  140. * make use of *minLine.
  141. * If we have differing I-cache policies, report it as the weakest - AIVIVT.
  142. */
  143. ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_AIVIVT), /* L1Ip */
  144. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */
  145. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
  146. ARM64_FTR_END,
  147. };
  148. struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
  149. .name = "SYS_CTR_EL0",
  150. .ftr_bits = ftr_ctr
  151. };
  152. static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
  153. S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
  154. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
  155. ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
  156. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
  157. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
  158. S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
  159. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
  160. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
  161. ARM64_FTR_END,
  162. };
  163. static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
  164. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
  165. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
  166. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
  167. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
  168. S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
  169. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
  170. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
  171. ARM64_FTR_END,
  172. };
  173. static const struct arm64_ftr_bits ftr_mvfr2[] = {
  174. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
  175. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
  176. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
  177. ARM64_FTR_END,
  178. };
  179. static const struct arm64_ftr_bits ftr_dczid[] = {
  180. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */
  181. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
  182. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
  183. ARM64_FTR_END,
  184. };
  185. static const struct arm64_ftr_bits ftr_id_isar5[] = {
  186. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
  187. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */
  188. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
  189. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
  190. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
  191. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
  192. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
  193. ARM64_FTR_END,
  194. };
  195. static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
  196. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
  197. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
  198. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
  199. ARM64_FTR_END,
  200. };
  201. static const struct arm64_ftr_bits ftr_id_pfr0[] = {
  202. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */
  203. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
  204. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
  205. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
  206. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
  207. ARM64_FTR_END,
  208. };
  209. static const struct arm64_ftr_bits ftr_id_dfr0[] = {
  210. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
  211. S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
  212. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
  213. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
  214. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
  215. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
  216. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
  217. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
  218. ARM64_FTR_END,
  219. };
  220. /*
  221. * Common ftr bits for a 32bit register with all hidden, strict
  222. * attributes, with 4bit feature fields and a default safe value of
  223. * 0. Covers the following 32bit registers:
  224. * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
  225. */
  226. static const struct arm64_ftr_bits ftr_generic_32bits[] = {
  227. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
  228. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
  229. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
  230. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
  231. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
  232. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
  233. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
  234. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
  235. ARM64_FTR_END,
  236. };
  237. static const struct arm64_ftr_bits ftr_generic[] = {
  238. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
  239. ARM64_FTR_END,
  240. };
  241. static const struct arm64_ftr_bits ftr_generic32[] = {
  242. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
  243. ARM64_FTR_END,
  244. };
  245. static const struct arm64_ftr_bits ftr_aa64raz[] = {
  246. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
  247. ARM64_FTR_END,
  248. };
  249. #define ARM64_FTR_REG(id, table) { \
  250. .sys_id = id, \
  251. .reg = &(struct arm64_ftr_reg){ \
  252. .name = #id, \
  253. .ftr_bits = &((table)[0]), \
  254. }}
  255. static const struct __ftr_reg_entry {
  256. u32 sys_id;
  257. struct arm64_ftr_reg *reg;
  258. } arm64_ftr_regs[] = {
  259. /* Op1 = 0, CRn = 0, CRm = 1 */
  260. ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
  261. ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
  262. ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
  263. ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
  264. ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
  265. ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
  266. ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
  267. /* Op1 = 0, CRn = 0, CRm = 2 */
  268. ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
  269. ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
  270. ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
  271. ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
  272. ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
  273. ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
  274. ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
  275. /* Op1 = 0, CRn = 0, CRm = 3 */
  276. ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
  277. ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
  278. ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
  279. /* Op1 = 0, CRn = 0, CRm = 4 */
  280. ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
  281. ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
  282. /* Op1 = 0, CRn = 0, CRm = 5 */
  283. ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
  284. ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
  285. /* Op1 = 0, CRn = 0, CRm = 6 */
  286. ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
  287. ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
  288. /* Op1 = 0, CRn = 0, CRm = 7 */
  289. ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
  290. ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
  291. ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
  292. /* Op1 = 3, CRn = 0, CRm = 0 */
  293. { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
  294. ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
  295. /* Op1 = 3, CRn = 14, CRm = 0 */
  296. ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
  297. };
  298. static int search_cmp_ftr_reg(const void *id, const void *regp)
  299. {
  300. return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
  301. }
  302. /*
  303. * get_arm64_ftr_reg - Lookup a feature register entry using its
  304. * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
  305. * ascending order of sys_id , we use binary search to find a matching
  306. * entry.
  307. *
  308. * returns - Upon success, matching ftr_reg entry for id.
  309. * - NULL on failure. It is upto the caller to decide
  310. * the impact of a failure.
  311. */
  312. static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
  313. {
  314. const struct __ftr_reg_entry *ret;
  315. ret = bsearch((const void *)(unsigned long)sys_id,
  316. arm64_ftr_regs,
  317. ARRAY_SIZE(arm64_ftr_regs),
  318. sizeof(arm64_ftr_regs[0]),
  319. search_cmp_ftr_reg);
  320. if (ret)
  321. return ret->reg;
  322. return NULL;
  323. }
  324. static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
  325. s64 ftr_val)
  326. {
  327. u64 mask = arm64_ftr_mask(ftrp);
  328. reg &= ~mask;
  329. reg |= (ftr_val << ftrp->shift) & mask;
  330. return reg;
  331. }
  332. static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
  333. s64 cur)
  334. {
  335. s64 ret = 0;
  336. switch (ftrp->type) {
  337. case FTR_EXACT:
  338. ret = ftrp->safe_val;
  339. break;
  340. case FTR_LOWER_SAFE:
  341. ret = new < cur ? new : cur;
  342. break;
  343. case FTR_HIGHER_SAFE:
  344. ret = new > cur ? new : cur;
  345. break;
  346. default:
  347. BUG();
  348. }
  349. return ret;
  350. }
  351. static void __init sort_ftr_regs(void)
  352. {
  353. int i;
  354. /* Check that the array is sorted so that we can do the binary search */
  355. for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
  356. BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
  357. }
  358. /*
  359. * Initialise the CPU feature register from Boot CPU values.
  360. * Also initiliases the strict_mask for the register.
  361. */
  362. static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
  363. {
  364. u64 val = 0;
  365. u64 strict_mask = ~0x0ULL;
  366. const struct arm64_ftr_bits *ftrp;
  367. struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
  368. BUG_ON(!reg);
  369. for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
  370. s64 ftr_new = arm64_ftr_value(ftrp, new);
  371. val = arm64_ftr_set_value(ftrp, val, ftr_new);
  372. if (!ftrp->strict)
  373. strict_mask &= ~arm64_ftr_mask(ftrp);
  374. }
  375. reg->sys_val = val;
  376. reg->strict_mask = strict_mask;
  377. }
  378. void __init init_cpu_features(struct cpuinfo_arm64 *info)
  379. {
  380. /* Before we start using the tables, make sure it is sorted */
  381. sort_ftr_regs();
  382. init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
  383. init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
  384. init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
  385. init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
  386. init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
  387. init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
  388. init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
  389. init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
  390. init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
  391. init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
  392. init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
  393. init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
  394. if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
  395. init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
  396. init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
  397. init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
  398. init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
  399. init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
  400. init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
  401. init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
  402. init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
  403. init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
  404. init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
  405. init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
  406. init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
  407. init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
  408. init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
  409. init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
  410. init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
  411. }
  412. }
  413. static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
  414. {
  415. const struct arm64_ftr_bits *ftrp;
  416. for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
  417. s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
  418. s64 ftr_new = arm64_ftr_value(ftrp, new);
  419. if (ftr_cur == ftr_new)
  420. continue;
  421. /* Find a safe value */
  422. ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
  423. reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
  424. }
  425. }
  426. static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
  427. {
  428. struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
  429. BUG_ON(!regp);
  430. update_cpu_ftr_reg(regp, val);
  431. if ((boot & regp->strict_mask) == (val & regp->strict_mask))
  432. return 0;
  433. pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
  434. regp->name, boot, cpu, val);
  435. return 1;
  436. }
  437. /*
  438. * Update system wide CPU feature registers with the values from a
  439. * non-boot CPU. Also performs SANITY checks to make sure that there
  440. * aren't any insane variations from that of the boot CPU.
  441. */
  442. void update_cpu_features(int cpu,
  443. struct cpuinfo_arm64 *info,
  444. struct cpuinfo_arm64 *boot)
  445. {
  446. int taint = 0;
  447. /*
  448. * The kernel can handle differing I-cache policies, but otherwise
  449. * caches should look identical. Userspace JITs will make use of
  450. * *minLine.
  451. */
  452. taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
  453. info->reg_ctr, boot->reg_ctr);
  454. /*
  455. * Userspace may perform DC ZVA instructions. Mismatched block sizes
  456. * could result in too much or too little memory being zeroed if a
  457. * process is preempted and migrated between CPUs.
  458. */
  459. taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
  460. info->reg_dczid, boot->reg_dczid);
  461. /* If different, timekeeping will be broken (especially with KVM) */
  462. taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
  463. info->reg_cntfrq, boot->reg_cntfrq);
  464. /*
  465. * The kernel uses self-hosted debug features and expects CPUs to
  466. * support identical debug features. We presently need CTX_CMPs, WRPs,
  467. * and BRPs to be identical.
  468. * ID_AA64DFR1 is currently RES0.
  469. */
  470. taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
  471. info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
  472. taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
  473. info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
  474. /*
  475. * Even in big.LITTLE, processors should be identical instruction-set
  476. * wise.
  477. */
  478. taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
  479. info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
  480. taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
  481. info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
  482. /*
  483. * Differing PARange support is fine as long as all peripherals and
  484. * memory are mapped within the minimum PARange of all CPUs.
  485. * Linux should not care about secure memory.
  486. */
  487. taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
  488. info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
  489. taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
  490. info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
  491. taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
  492. info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
  493. /*
  494. * EL3 is not our concern.
  495. * ID_AA64PFR1 is currently RES0.
  496. */
  497. taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
  498. info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
  499. taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
  500. info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
  501. /*
  502. * If we have AArch32, we care about 32-bit features for compat.
  503. * If the system doesn't support AArch32, don't update them.
  504. */
  505. if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
  506. id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
  507. taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
  508. info->reg_id_dfr0, boot->reg_id_dfr0);
  509. taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
  510. info->reg_id_isar0, boot->reg_id_isar0);
  511. taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
  512. info->reg_id_isar1, boot->reg_id_isar1);
  513. taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
  514. info->reg_id_isar2, boot->reg_id_isar2);
  515. taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
  516. info->reg_id_isar3, boot->reg_id_isar3);
  517. taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
  518. info->reg_id_isar4, boot->reg_id_isar4);
  519. taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
  520. info->reg_id_isar5, boot->reg_id_isar5);
  521. /*
  522. * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
  523. * ACTLR formats could differ across CPUs and therefore would have to
  524. * be trapped for virtualization anyway.
  525. */
  526. taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
  527. info->reg_id_mmfr0, boot->reg_id_mmfr0);
  528. taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
  529. info->reg_id_mmfr1, boot->reg_id_mmfr1);
  530. taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
  531. info->reg_id_mmfr2, boot->reg_id_mmfr2);
  532. taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
  533. info->reg_id_mmfr3, boot->reg_id_mmfr3);
  534. taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
  535. info->reg_id_pfr0, boot->reg_id_pfr0);
  536. taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
  537. info->reg_id_pfr1, boot->reg_id_pfr1);
  538. taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
  539. info->reg_mvfr0, boot->reg_mvfr0);
  540. taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
  541. info->reg_mvfr1, boot->reg_mvfr1);
  542. taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
  543. info->reg_mvfr2, boot->reg_mvfr2);
  544. }
  545. /*
  546. * Mismatched CPU features are a recipe for disaster. Don't even
  547. * pretend to support them.
  548. */
  549. WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
  550. "Unsupported CPU feature variation.\n");
  551. }
  552. u64 read_system_reg(u32 id)
  553. {
  554. struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
  555. /* We shouldn't get a request for an unsupported register */
  556. BUG_ON(!regp);
  557. return regp->sys_val;
  558. }
  559. /*
  560. * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
  561. * Read the system register on the current CPU
  562. */
  563. static u64 __raw_read_system_reg(u32 sys_id)
  564. {
  565. switch (sys_id) {
  566. case SYS_ID_PFR0_EL1: return read_cpuid(ID_PFR0_EL1);
  567. case SYS_ID_PFR1_EL1: return read_cpuid(ID_PFR1_EL1);
  568. case SYS_ID_DFR0_EL1: return read_cpuid(ID_DFR0_EL1);
  569. case SYS_ID_MMFR0_EL1: return read_cpuid(ID_MMFR0_EL1);
  570. case SYS_ID_MMFR1_EL1: return read_cpuid(ID_MMFR1_EL1);
  571. case SYS_ID_MMFR2_EL1: return read_cpuid(ID_MMFR2_EL1);
  572. case SYS_ID_MMFR3_EL1: return read_cpuid(ID_MMFR3_EL1);
  573. case SYS_ID_ISAR0_EL1: return read_cpuid(ID_ISAR0_EL1);
  574. case SYS_ID_ISAR1_EL1: return read_cpuid(ID_ISAR1_EL1);
  575. case SYS_ID_ISAR2_EL1: return read_cpuid(ID_ISAR2_EL1);
  576. case SYS_ID_ISAR3_EL1: return read_cpuid(ID_ISAR3_EL1);
  577. case SYS_ID_ISAR4_EL1: return read_cpuid(ID_ISAR4_EL1);
  578. case SYS_ID_ISAR5_EL1: return read_cpuid(ID_ISAR5_EL1);
  579. case SYS_MVFR0_EL1: return read_cpuid(MVFR0_EL1);
  580. case SYS_MVFR1_EL1: return read_cpuid(MVFR1_EL1);
  581. case SYS_MVFR2_EL1: return read_cpuid(MVFR2_EL1);
  582. case SYS_ID_AA64PFR0_EL1: return read_cpuid(ID_AA64PFR0_EL1);
  583. case SYS_ID_AA64PFR1_EL1: return read_cpuid(ID_AA64PFR1_EL1);
  584. case SYS_ID_AA64DFR0_EL1: return read_cpuid(ID_AA64DFR0_EL1);
  585. case SYS_ID_AA64DFR1_EL1: return read_cpuid(ID_AA64DFR1_EL1);
  586. case SYS_ID_AA64MMFR0_EL1: return read_cpuid(ID_AA64MMFR0_EL1);
  587. case SYS_ID_AA64MMFR1_EL1: return read_cpuid(ID_AA64MMFR1_EL1);
  588. case SYS_ID_AA64MMFR2_EL1: return read_cpuid(ID_AA64MMFR2_EL1);
  589. case SYS_ID_AA64ISAR0_EL1: return read_cpuid(ID_AA64ISAR0_EL1);
  590. case SYS_ID_AA64ISAR1_EL1: return read_cpuid(ID_AA64ISAR1_EL1);
  591. case SYS_CNTFRQ_EL0: return read_cpuid(CNTFRQ_EL0);
  592. case SYS_CTR_EL0: return read_cpuid(CTR_EL0);
  593. case SYS_DCZID_EL0: return read_cpuid(DCZID_EL0);
  594. default:
  595. BUG();
  596. return 0;
  597. }
  598. }
  599. #include <linux/irqchip/arm-gic-v3.h>
  600. static bool
  601. feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
  602. {
  603. int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
  604. return val >= entry->min_field_value;
  605. }
  606. static bool
  607. has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
  608. {
  609. u64 val;
  610. WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
  611. if (scope == SCOPE_SYSTEM)
  612. val = read_system_reg(entry->sys_reg);
  613. else
  614. val = __raw_read_system_reg(entry->sys_reg);
  615. return feature_matches(val, entry);
  616. }
  617. static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
  618. {
  619. bool has_sre;
  620. if (!has_cpuid_feature(entry, scope))
  621. return false;
  622. has_sre = gic_enable_sre();
  623. if (!has_sre)
  624. pr_warn_once("%s present but disabled by higher exception level\n",
  625. entry->desc);
  626. return has_sre;
  627. }
  628. static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
  629. {
  630. u32 midr = read_cpuid_id();
  631. u32 rv_min, rv_max;
  632. /* Cavium ThunderX pass 1.x and 2.x */
  633. rv_min = 0;
  634. rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
  635. return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
  636. }
  637. static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
  638. {
  639. return is_kernel_in_hyp_mode();
  640. }
  641. static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
  642. int __unused)
  643. {
  644. phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);
  645. /*
  646. * Activate the lower HYP offset only if:
  647. * - the idmap doesn't clash with it,
  648. * - the kernel is not running at EL2.
  649. */
  650. return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
  651. }
  652. #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
  653. static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
  654. static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
  655. int __unused)
  656. {
  657. char const *str = "command line option";
  658. u64 pfr0 = read_system_reg(SYS_ID_AA64PFR0_EL1);
  659. /*
  660. * For reasons that aren't entirely clear, enabling KPTI on Cavium
  661. * ThunderX leads to apparent I-cache corruption of kernel text, which
  662. * ends as well as you might imagine. Don't even try.
  663. */
  664. if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
  665. str = "ARM64_WORKAROUND_CAVIUM_27456";
  666. __kpti_forced = -1;
  667. }
  668. /* Forced? */
  669. if (__kpti_forced) {
  670. pr_info_once("kernel page table isolation forced %s by %s\n",
  671. __kpti_forced > 0 ? "ON" : "OFF", str);
  672. return __kpti_forced > 0;
  673. }
  674. /* Useful for KASLR robustness */
  675. if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
  676. return true;
  677. /* Don't force KPTI for CPUs that are not vulnerable */
  678. switch (read_cpuid_id() & MIDR_CPU_MODEL_MASK) {
  679. case MIDR_CAVIUM_THUNDERX2:
  680. case MIDR_BRCM_VULCAN:
  681. return false;
  682. }
  683. /* Defer to CPU feature registers */
  684. return !cpuid_feature_extract_unsigned_field(pfr0,
  685. ID_AA64PFR0_CSV3_SHIFT);
  686. }
  687. static int kpti_install_ng_mappings(void *__unused)
  688. {
  689. typedef void (kpti_remap_fn)(int, int, phys_addr_t);
  690. extern kpti_remap_fn idmap_kpti_install_ng_mappings;
  691. kpti_remap_fn *remap_fn;
  692. static bool kpti_applied = false;
  693. int cpu = smp_processor_id();
  694. if (kpti_applied)
  695. return 0;
  696. remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
  697. cpu_install_idmap();
  698. remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
  699. cpu_uninstall_idmap();
  700. if (!cpu)
  701. kpti_applied = true;
  702. return 0;
  703. }
  704. static int __init parse_kpti(char *str)
  705. {
  706. bool enabled;
  707. int ret = strtobool(str, &enabled);
  708. if (ret)
  709. return ret;
  710. __kpti_forced = enabled ? 1 : -1;
  711. return 0;
  712. }
  713. early_param("kpti", parse_kpti);
  714. #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
  715. static int cpu_copy_el2regs(void *__unused)
  716. {
  717. /*
  718. * Copy register values that aren't redirected by hardware.
  719. *
  720. * Before code patching, we only set tpidr_el1, all CPUs need to copy
  721. * this value to tpidr_el2 before we patch the code. Once we've done
  722. * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
  723. * do anything here.
  724. */
  725. if (!alternatives_applied)
  726. write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
  727. return 0;
  728. }
  729. static const struct arm64_cpu_capabilities arm64_features[] = {
  730. {
  731. .desc = "GIC system register CPU interface",
  732. .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
  733. .def_scope = SCOPE_SYSTEM,
  734. .matches = has_useable_gicv3_cpuif,
  735. .sys_reg = SYS_ID_AA64PFR0_EL1,
  736. .field_pos = ID_AA64PFR0_GIC_SHIFT,
  737. .sign = FTR_UNSIGNED,
  738. .min_field_value = 1,
  739. },
  740. #ifdef CONFIG_ARM64_PAN
  741. {
  742. .desc = "Privileged Access Never",
  743. .capability = ARM64_HAS_PAN,
  744. .def_scope = SCOPE_SYSTEM,
  745. .matches = has_cpuid_feature,
  746. .sys_reg = SYS_ID_AA64MMFR1_EL1,
  747. .field_pos = ID_AA64MMFR1_PAN_SHIFT,
  748. .sign = FTR_UNSIGNED,
  749. .min_field_value = 1,
  750. .enable = cpu_enable_pan,
  751. },
  752. #endif /* CONFIG_ARM64_PAN */
  753. #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
  754. {
  755. .desc = "LSE atomic instructions",
  756. .capability = ARM64_HAS_LSE_ATOMICS,
  757. .def_scope = SCOPE_SYSTEM,
  758. .matches = has_cpuid_feature,
  759. .sys_reg = SYS_ID_AA64ISAR0_EL1,
  760. .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
  761. .sign = FTR_UNSIGNED,
  762. .min_field_value = 2,
  763. },
  764. #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
  765. {
  766. .desc = "Software prefetching using PRFM",
  767. .capability = ARM64_HAS_NO_HW_PREFETCH,
  768. .def_scope = SCOPE_SYSTEM,
  769. .matches = has_no_hw_prefetch,
  770. },
  771. #ifdef CONFIG_ARM64_UAO
  772. {
  773. .desc = "User Access Override",
  774. .capability = ARM64_HAS_UAO,
  775. .def_scope = SCOPE_SYSTEM,
  776. .matches = has_cpuid_feature,
  777. .sys_reg = SYS_ID_AA64MMFR2_EL1,
  778. .field_pos = ID_AA64MMFR2_UAO_SHIFT,
  779. .min_field_value = 1,
  780. .enable = cpu_enable_uao,
  781. },
  782. #endif /* CONFIG_ARM64_UAO */
  783. #ifdef CONFIG_ARM64_PAN
  784. {
  785. .capability = ARM64_ALT_PAN_NOT_UAO,
  786. .def_scope = SCOPE_SYSTEM,
  787. .matches = cpufeature_pan_not_uao,
  788. },
  789. #endif /* CONFIG_ARM64_PAN */
  790. {
  791. .desc = "Virtualization Host Extensions",
  792. .capability = ARM64_HAS_VIRT_HOST_EXTN,
  793. .def_scope = SCOPE_SYSTEM,
  794. .matches = runs_at_el2,
  795. .enable = cpu_copy_el2regs,
  796. },
  797. {
  798. .desc = "32-bit EL0 Support",
  799. .capability = ARM64_HAS_32BIT_EL0,
  800. .def_scope = SCOPE_SYSTEM,
  801. .matches = has_cpuid_feature,
  802. .sys_reg = SYS_ID_AA64PFR0_EL1,
  803. .sign = FTR_UNSIGNED,
  804. .field_pos = ID_AA64PFR0_EL0_SHIFT,
  805. .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
  806. },
  807. {
  808. .desc = "Reduced HYP mapping offset",
  809. .capability = ARM64_HYP_OFFSET_LOW,
  810. .def_scope = SCOPE_SYSTEM,
  811. .matches = hyp_offset_low,
  812. },
  813. #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
  814. {
  815. .desc = "Kernel page table isolation (KPTI)",
  816. .capability = ARM64_UNMAP_KERNEL_AT_EL0,
  817. .def_scope = SCOPE_SYSTEM,
  818. .matches = unmap_kernel_at_el0,
  819. .enable = kpti_install_ng_mappings,
  820. },
  821. #endif
  822. {},
  823. };
  824. #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
  825. { \
  826. .desc = #cap, \
  827. .def_scope = SCOPE_SYSTEM, \
  828. .matches = has_cpuid_feature, \
  829. .sys_reg = reg, \
  830. .field_pos = field, \
  831. .sign = s, \
  832. .min_field_value = min_value, \
  833. .hwcap_type = type, \
  834. .hwcap = cap, \
  835. }
  836. static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
  837. HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
  838. HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
  839. HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
  840. HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
  841. HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
  842. HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
  843. HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
  844. HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
  845. HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
  846. HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
  847. {},
  848. };
  849. static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
  850. #ifdef CONFIG_COMPAT
  851. HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
  852. HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
  853. HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
  854. HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
  855. HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
  856. #endif
  857. {},
  858. };
  859. static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
  860. {
  861. switch (cap->hwcap_type) {
  862. case CAP_HWCAP:
  863. elf_hwcap |= cap->hwcap;
  864. break;
  865. #ifdef CONFIG_COMPAT
  866. case CAP_COMPAT_HWCAP:
  867. compat_elf_hwcap |= (u32)cap->hwcap;
  868. break;
  869. case CAP_COMPAT_HWCAP2:
  870. compat_elf_hwcap2 |= (u32)cap->hwcap;
  871. break;
  872. #endif
  873. default:
  874. WARN_ON(1);
  875. break;
  876. }
  877. }
  878. /* Check if we have a particular HWCAP enabled */
  879. static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
  880. {
  881. bool rc;
  882. switch (cap->hwcap_type) {
  883. case CAP_HWCAP:
  884. rc = (elf_hwcap & cap->hwcap) != 0;
  885. break;
  886. #ifdef CONFIG_COMPAT
  887. case CAP_COMPAT_HWCAP:
  888. rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
  889. break;
  890. case CAP_COMPAT_HWCAP2:
  891. rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
  892. break;
  893. #endif
  894. default:
  895. WARN_ON(1);
  896. rc = false;
  897. }
  898. return rc;
  899. }
  900. static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
  901. {
  902. for (; hwcaps->matches; hwcaps++)
  903. if (hwcaps->matches(hwcaps, hwcaps->def_scope))
  904. cap_set_elf_hwcap(hwcaps);
  905. }
  906. /*
  907. * Check if the current CPU has a given feature capability.
  908. * Should be called from non-preemptible context.
  909. */
  910. static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
  911. unsigned int cap)
  912. {
  913. const struct arm64_cpu_capabilities *caps;
  914. if (WARN_ON(preemptible()))
  915. return false;
  916. for (caps = cap_array; caps->matches; caps++)
  917. if (caps->capability == cap &&
  918. caps->matches(caps, SCOPE_LOCAL_CPU))
  919. return true;
  920. return false;
  921. }
  922. void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
  923. const char *info)
  924. {
  925. for (; caps->matches; caps++) {
  926. if (!caps->matches(caps, caps->def_scope))
  927. continue;
  928. if (!cpus_have_cap(caps->capability) && caps->desc)
  929. pr_info("%s %s\n", info, caps->desc);
  930. cpus_set_cap(caps->capability);
  931. }
  932. }
  933. /*
  934. * Run through the enabled capabilities and enable() it on all active
  935. * CPUs
  936. */
  937. void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
  938. {
  939. for (; caps->matches; caps++) {
  940. unsigned int num = caps->capability;
  941. if (!cpus_have_cap(num))
  942. continue;
  943. /* Ensure cpus_have_const_cap(num) works */
  944. static_branch_enable(&cpu_hwcap_keys[num]);
  945. if (caps->enable) {
  946. /*
  947. * Use stop_machine() as it schedules the work allowing
  948. * us to modify PSTATE, instead of on_each_cpu() which
  949. * uses an IPI, giving us a PSTATE that disappears when
  950. * we return.
  951. */
  952. stop_machine(caps->enable, (void *)caps, cpu_online_mask);
  953. }
  954. }
  955. }
  956. /*
  957. * Flag to indicate if we have computed the system wide
  958. * capabilities based on the boot time active CPUs. This
  959. * will be used to determine if a new booting CPU should
  960. * go through the verification process to make sure that it
  961. * supports the system capabilities, without using a hotplug
  962. * notifier.
  963. */
  964. static bool sys_caps_initialised;
  965. static inline void set_sys_caps_initialised(void)
  966. {
  967. sys_caps_initialised = true;
  968. }
  969. /*
  970. * Check for CPU features that are used in early boot
  971. * based on the Boot CPU value.
  972. */
  973. static void check_early_cpu_features(void)
  974. {
  975. verify_cpu_run_el();
  976. verify_cpu_asid_bits();
  977. }
  978. static void
  979. verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
  980. {
  981. for (; caps->matches; caps++)
  982. if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
  983. pr_crit("CPU%d: missing HWCAP: %s\n",
  984. smp_processor_id(), caps->desc);
  985. cpu_die_early();
  986. }
  987. }
  988. static void
  989. verify_local_cpu_features(const struct arm64_cpu_capabilities *caps_list)
  990. {
  991. const struct arm64_cpu_capabilities *caps = caps_list;
  992. for (; caps->matches; caps++) {
  993. if (!cpus_have_cap(caps->capability))
  994. continue;
  995. /*
  996. * If the new CPU misses an advertised feature, we cannot proceed
  997. * further, park the cpu.
  998. */
  999. if (!__this_cpu_has_cap(caps_list, caps->capability)) {
  1000. pr_crit("CPU%d: missing feature: %s\n",
  1001. smp_processor_id(), caps->desc);
  1002. cpu_die_early();
  1003. }
  1004. if (caps->enable)
  1005. caps->enable((void *)caps);
  1006. }
  1007. }
  1008. /*
  1009. * Run through the enabled system capabilities and enable() it on this CPU.
  1010. * The capabilities were decided based on the available CPUs at the boot time.
  1011. * Any new CPU should match the system wide status of the capability. If the
  1012. * new CPU doesn't have a capability which the system now has enabled, we
  1013. * cannot do anything to fix it up and could cause unexpected failures. So
  1014. * we park the CPU.
  1015. */
  1016. static void verify_local_cpu_capabilities(void)
  1017. {
  1018. verify_local_cpu_errata_workarounds();
  1019. verify_local_cpu_features(arm64_features);
  1020. verify_local_elf_hwcaps(arm64_elf_hwcaps);
  1021. if (system_supports_32bit_el0())
  1022. verify_local_elf_hwcaps(compat_elf_hwcaps);
  1023. }
  1024. void check_local_cpu_capabilities(void)
  1025. {
  1026. /*
  1027. * All secondary CPUs should conform to the early CPU features
  1028. * in use by the kernel based on boot CPU.
  1029. */
  1030. check_early_cpu_features();
  1031. /*
  1032. * If we haven't finalised the system capabilities, this CPU gets
  1033. * a chance to update the errata work arounds.
  1034. * Otherwise, this CPU should verify that it has all the system
  1035. * advertised capabilities.
  1036. */
  1037. if (!sys_caps_initialised)
  1038. update_cpu_errata_workarounds();
  1039. else
  1040. verify_local_cpu_capabilities();
  1041. }
  1042. static void __init setup_feature_capabilities(void)
  1043. {
  1044. update_cpu_capabilities(arm64_features, "detected feature:");
  1045. enable_cpu_capabilities(arm64_features);
  1046. }
  1047. DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
  1048. EXPORT_SYMBOL(arm64_const_caps_ready);
  1049. static void __init mark_const_caps_ready(void)
  1050. {
  1051. static_branch_enable(&arm64_const_caps_ready);
  1052. }
  1053. extern const struct arm64_cpu_capabilities arm64_errata[];
  1054. bool this_cpu_has_cap(unsigned int cap)
  1055. {
  1056. return (__this_cpu_has_cap(arm64_features, cap) ||
  1057. __this_cpu_has_cap(arm64_errata, cap));
  1058. }
  1059. void __init setup_cpu_features(void)
  1060. {
  1061. u32 cwg;
  1062. int cls;
  1063. /* Set the CPU feature capabilies */
  1064. setup_feature_capabilities();
  1065. enable_errata_workarounds();
  1066. mark_const_caps_ready();
  1067. setup_elf_hwcaps(arm64_elf_hwcaps);
  1068. if (system_supports_32bit_el0())
  1069. setup_elf_hwcaps(compat_elf_hwcaps);
  1070. /* Advertise that we have computed the system capabilities */
  1071. set_sys_caps_initialised();
  1072. /*
  1073. * Check for sane CTR_EL0.CWG value.
  1074. */
  1075. cwg = cache_type_cwg();
  1076. cls = cache_line_size();
  1077. if (!cwg)
  1078. pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
  1079. cls);
  1080. if (L1_CACHE_BYTES < cls)
  1081. pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
  1082. L1_CACHE_BYTES, cls);
  1083. }
  1084. static bool __maybe_unused
  1085. cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
  1086. {
  1087. return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
  1088. }