123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- /*
- * pid.c PID controller for testing cooling devices
- *
- *
- *
- * Copyright (C) 2012 Intel Corporation. All rights reserved.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License version
- * 2 or later as published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * Author Name Jacob Pan <jacob.jun.pan@linux.intel.com>
- *
- */
- #include <unistd.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdint.h>
- #include <sys/types.h>
- #include <dirent.h>
- #include <libintl.h>
- #include <ctype.h>
- #include <assert.h>
- #include <time.h>
- #include <limits.h>
- #include <math.h>
- #include <sys/stat.h>
- #include <syslog.h>
- #include "tmon.h"
- /**************************************************************************
- * PID (Proportional-Integral-Derivative) controller is commonly used in
- * linear control system, consider the the process.
- * G(s) = U(s)/E(s)
- * kp = proportional gain
- * ki = integral gain
- * kd = derivative gain
- * Ts
- * We use type C Alan Bradley equation which takes set point off the
- * output dependency in P and D term.
- *
- * y[k] = y[k-1] - kp*(x[k] - x[k-1]) + Ki*Ts*e[k] - Kd*(x[k]
- * - 2*x[k-1]+x[k-2])/Ts
- *
- *
- ***********************************************************************/
- struct pid_params p_param;
- /* cached data from previous loop */
- static double xk_1, xk_2; /* input temperature x[k-#] */
- /*
- * TODO: make PID parameters tuned automatically,
- * 1. use CPU burn to produce open loop unit step response
- * 2. calculate PID based on Ziegler-Nichols rule
- *
- * add a flag for tuning PID
- */
- int init_thermal_controller(void)
- {
- int ret = 0;
- /* init pid params */
- p_param.ts = ticktime;
- /* TODO: get it from TUI tuning tab */
- p_param.kp = .36;
- p_param.ki = 5.0;
- p_param.kd = 0.19;
- p_param.t_target = target_temp_user;
- return ret;
- }
- void controller_reset(void)
- {
- /* TODO: relax control data when not over thermal limit */
- syslog(LOG_DEBUG, "TC inactive, relax p-state\n");
- p_param.y_k = 0.0;
- xk_1 = 0.0;
- xk_2 = 0.0;
- set_ctrl_state(0);
- }
- /* To be called at time interval Ts. Type C PID controller.
- * y[k] = y[k-1] - kp*(x[k] - x[k-1]) + Ki*Ts*e[k] - Kd*(x[k]
- * - 2*x[k-1]+x[k-2])/Ts
- * TODO: add low pass filter for D term
- */
- #define GUARD_BAND (2)
- void controller_handler(const double xk, double *yk)
- {
- double ek;
- double p_term, i_term, d_term;
- ek = p_param.t_target - xk; /* error */
- if (ek >= 3.0) {
- syslog(LOG_DEBUG, "PID: %3.1f Below set point %3.1f, stop\n",
- xk, p_param.t_target);
- controller_reset();
- *yk = 0.0;
- return;
- }
- /* compute intermediate PID terms */
- p_term = -p_param.kp * (xk - xk_1);
- i_term = p_param.kp * p_param.ki * p_param.ts * ek;
- d_term = -p_param.kp * p_param.kd * (xk - 2 * xk_1 + xk_2) / p_param.ts;
- /* compute output */
- *yk += p_term + i_term + d_term;
- /* update sample data */
- xk_1 = xk;
- xk_2 = xk_1;
- /* clamp output adjustment range */
- if (*yk < -LIMIT_HIGH)
- *yk = -LIMIT_HIGH;
- else if (*yk > -LIMIT_LOW)
- *yk = -LIMIT_LOW;
- p_param.y_k = *yk;
- set_ctrl_state(lround(fabs(p_param.y_k)));
- }
|