segment.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * Written by Ryusuke Konishi.
  17. *
  18. */
  19. #include <linux/pagemap.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/writeback.h>
  22. #include <linux/bitops.h>
  23. #include <linux/bio.h>
  24. #include <linux/completion.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/backing-dev.h>
  27. #include <linux/freezer.h>
  28. #include <linux/kthread.h>
  29. #include <linux/crc32.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/slab.h>
  32. #include "nilfs.h"
  33. #include "btnode.h"
  34. #include "page.h"
  35. #include "segment.h"
  36. #include "sufile.h"
  37. #include "cpfile.h"
  38. #include "ifile.h"
  39. #include "segbuf.h"
  40. /*
  41. * Segment constructor
  42. */
  43. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  44. #define SC_MAX_SEGDELTA 64 /*
  45. * Upper limit of the number of segments
  46. * appended in collection retry loop
  47. */
  48. /* Construction mode */
  49. enum {
  50. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  51. SC_LSEG_DSYNC, /*
  52. * Flush data blocks of a given file and make
  53. * a logical segment without a super root.
  54. */
  55. SC_FLUSH_FILE, /*
  56. * Flush data files, leads to segment writes without
  57. * creating a checkpoint.
  58. */
  59. SC_FLUSH_DAT, /*
  60. * Flush DAT file. This also creates segments
  61. * without a checkpoint.
  62. */
  63. };
  64. /* Stage numbers of dirty block collection */
  65. enum {
  66. NILFS_ST_INIT = 0,
  67. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  68. NILFS_ST_FILE,
  69. NILFS_ST_IFILE,
  70. NILFS_ST_CPFILE,
  71. NILFS_ST_SUFILE,
  72. NILFS_ST_DAT,
  73. NILFS_ST_SR, /* Super root */
  74. NILFS_ST_DSYNC, /* Data sync blocks */
  75. NILFS_ST_DONE,
  76. };
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/nilfs2.h>
  79. /*
  80. * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
  81. * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
  82. * the variable must use them because transition of stage count must involve
  83. * trace events (trace_nilfs2_collection_stage_transition).
  84. *
  85. * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
  86. * produce tracepoint events. It is provided just for making the intention
  87. * clear.
  88. */
  89. static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci)
  90. {
  91. sci->sc_stage.scnt++;
  92. trace_nilfs2_collection_stage_transition(sci);
  93. }
  94. static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt)
  95. {
  96. sci->sc_stage.scnt = next_scnt;
  97. trace_nilfs2_collection_stage_transition(sci);
  98. }
  99. static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci)
  100. {
  101. return sci->sc_stage.scnt;
  102. }
  103. /* State flags of collection */
  104. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  105. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  106. #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
  107. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
  108. /* Operations depending on the construction mode and file type */
  109. struct nilfs_sc_operations {
  110. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  111. struct inode *);
  112. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  113. struct inode *);
  114. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  115. struct inode *);
  116. void (*write_data_binfo)(struct nilfs_sc_info *,
  117. struct nilfs_segsum_pointer *,
  118. union nilfs_binfo *);
  119. void (*write_node_binfo)(struct nilfs_sc_info *,
  120. struct nilfs_segsum_pointer *,
  121. union nilfs_binfo *);
  122. };
  123. /*
  124. * Other definitions
  125. */
  126. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  127. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  128. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  129. static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
  130. #define nilfs_cnt32_gt(a, b) \
  131. (typecheck(__u32, a) && typecheck(__u32, b) && \
  132. ((__s32)(b) - (__s32)(a) < 0))
  133. #define nilfs_cnt32_ge(a, b) \
  134. (typecheck(__u32, a) && typecheck(__u32, b) && \
  135. ((__s32)(a) - (__s32)(b) >= 0))
  136. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  137. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  138. static int nilfs_prepare_segment_lock(struct super_block *sb,
  139. struct nilfs_transaction_info *ti)
  140. {
  141. struct nilfs_transaction_info *cur_ti = current->journal_info;
  142. void *save = NULL;
  143. if (cur_ti) {
  144. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  145. return ++cur_ti->ti_count;
  146. /*
  147. * If journal_info field is occupied by other FS,
  148. * it is saved and will be restored on
  149. * nilfs_transaction_commit().
  150. */
  151. nilfs_msg(sb, KERN_WARNING, "journal info from a different FS");
  152. save = current->journal_info;
  153. }
  154. if (!ti) {
  155. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  156. if (!ti)
  157. return -ENOMEM;
  158. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  159. } else {
  160. ti->ti_flags = 0;
  161. }
  162. ti->ti_count = 0;
  163. ti->ti_save = save;
  164. ti->ti_magic = NILFS_TI_MAGIC;
  165. current->journal_info = ti;
  166. return 0;
  167. }
  168. /**
  169. * nilfs_transaction_begin - start indivisible file operations.
  170. * @sb: super block
  171. * @ti: nilfs_transaction_info
  172. * @vacancy_check: flags for vacancy rate checks
  173. *
  174. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  175. * the segment semaphore, to make a segment construction and write tasks
  176. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  177. * The region enclosed by these two functions can be nested. To avoid a
  178. * deadlock, the semaphore is only acquired or released in the outermost call.
  179. *
  180. * This function allocates a nilfs_transaction_info struct to keep context
  181. * information on it. It is initialized and hooked onto the current task in
  182. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  183. * instead; otherwise a new struct is assigned from a slab.
  184. *
  185. * When @vacancy_check flag is set, this function will check the amount of
  186. * free space, and will wait for the GC to reclaim disk space if low capacity.
  187. *
  188. * Return Value: On success, 0 is returned. On error, one of the following
  189. * negative error code is returned.
  190. *
  191. * %-ENOMEM - Insufficient memory available.
  192. *
  193. * %-ENOSPC - No space left on device
  194. */
  195. int nilfs_transaction_begin(struct super_block *sb,
  196. struct nilfs_transaction_info *ti,
  197. int vacancy_check)
  198. {
  199. struct the_nilfs *nilfs;
  200. int ret = nilfs_prepare_segment_lock(sb, ti);
  201. struct nilfs_transaction_info *trace_ti;
  202. if (unlikely(ret < 0))
  203. return ret;
  204. if (ret > 0) {
  205. trace_ti = current->journal_info;
  206. trace_nilfs2_transaction_transition(sb, trace_ti,
  207. trace_ti->ti_count, trace_ti->ti_flags,
  208. TRACE_NILFS2_TRANSACTION_BEGIN);
  209. return 0;
  210. }
  211. sb_start_intwrite(sb);
  212. nilfs = sb->s_fs_info;
  213. down_read(&nilfs->ns_segctor_sem);
  214. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  215. up_read(&nilfs->ns_segctor_sem);
  216. ret = -ENOSPC;
  217. goto failed;
  218. }
  219. trace_ti = current->journal_info;
  220. trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count,
  221. trace_ti->ti_flags,
  222. TRACE_NILFS2_TRANSACTION_BEGIN);
  223. return 0;
  224. failed:
  225. ti = current->journal_info;
  226. current->journal_info = ti->ti_save;
  227. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  228. kmem_cache_free(nilfs_transaction_cachep, ti);
  229. sb_end_intwrite(sb);
  230. return ret;
  231. }
  232. /**
  233. * nilfs_transaction_commit - commit indivisible file operations.
  234. * @sb: super block
  235. *
  236. * nilfs_transaction_commit() releases the read semaphore which is
  237. * acquired by nilfs_transaction_begin(). This is only performed
  238. * in outermost call of this function. If a commit flag is set,
  239. * nilfs_transaction_commit() sets a timer to start the segment
  240. * constructor. If a sync flag is set, it starts construction
  241. * directly.
  242. */
  243. int nilfs_transaction_commit(struct super_block *sb)
  244. {
  245. struct nilfs_transaction_info *ti = current->journal_info;
  246. struct the_nilfs *nilfs = sb->s_fs_info;
  247. int err = 0;
  248. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  249. ti->ti_flags |= NILFS_TI_COMMIT;
  250. if (ti->ti_count > 0) {
  251. ti->ti_count--;
  252. trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
  253. ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
  254. return 0;
  255. }
  256. if (nilfs->ns_writer) {
  257. struct nilfs_sc_info *sci = nilfs->ns_writer;
  258. if (ti->ti_flags & NILFS_TI_COMMIT)
  259. nilfs_segctor_start_timer(sci);
  260. if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
  261. nilfs_segctor_do_flush(sci, 0);
  262. }
  263. up_read(&nilfs->ns_segctor_sem);
  264. trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
  265. ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
  266. current->journal_info = ti->ti_save;
  267. if (ti->ti_flags & NILFS_TI_SYNC)
  268. err = nilfs_construct_segment(sb);
  269. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  270. kmem_cache_free(nilfs_transaction_cachep, ti);
  271. sb_end_intwrite(sb);
  272. return err;
  273. }
  274. void nilfs_transaction_abort(struct super_block *sb)
  275. {
  276. struct nilfs_transaction_info *ti = current->journal_info;
  277. struct the_nilfs *nilfs = sb->s_fs_info;
  278. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  279. if (ti->ti_count > 0) {
  280. ti->ti_count--;
  281. trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
  282. ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
  283. return;
  284. }
  285. up_read(&nilfs->ns_segctor_sem);
  286. trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
  287. ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
  288. current->journal_info = ti->ti_save;
  289. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  290. kmem_cache_free(nilfs_transaction_cachep, ti);
  291. sb_end_intwrite(sb);
  292. }
  293. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  294. {
  295. struct the_nilfs *nilfs = sb->s_fs_info;
  296. struct nilfs_sc_info *sci = nilfs->ns_writer;
  297. if (!sci || !sci->sc_flush_request)
  298. return;
  299. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  300. up_read(&nilfs->ns_segctor_sem);
  301. down_write(&nilfs->ns_segctor_sem);
  302. if (sci->sc_flush_request &&
  303. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  304. struct nilfs_transaction_info *ti = current->journal_info;
  305. ti->ti_flags |= NILFS_TI_WRITER;
  306. nilfs_segctor_do_immediate_flush(sci);
  307. ti->ti_flags &= ~NILFS_TI_WRITER;
  308. }
  309. downgrade_write(&nilfs->ns_segctor_sem);
  310. }
  311. static void nilfs_transaction_lock(struct super_block *sb,
  312. struct nilfs_transaction_info *ti,
  313. int gcflag)
  314. {
  315. struct nilfs_transaction_info *cur_ti = current->journal_info;
  316. struct the_nilfs *nilfs = sb->s_fs_info;
  317. struct nilfs_sc_info *sci = nilfs->ns_writer;
  318. WARN_ON(cur_ti);
  319. ti->ti_flags = NILFS_TI_WRITER;
  320. ti->ti_count = 0;
  321. ti->ti_save = cur_ti;
  322. ti->ti_magic = NILFS_TI_MAGIC;
  323. current->journal_info = ti;
  324. for (;;) {
  325. trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
  326. ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK);
  327. down_write(&nilfs->ns_segctor_sem);
  328. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
  329. break;
  330. nilfs_segctor_do_immediate_flush(sci);
  331. up_write(&nilfs->ns_segctor_sem);
  332. cond_resched();
  333. }
  334. if (gcflag)
  335. ti->ti_flags |= NILFS_TI_GC;
  336. trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
  337. ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK);
  338. }
  339. static void nilfs_transaction_unlock(struct super_block *sb)
  340. {
  341. struct nilfs_transaction_info *ti = current->journal_info;
  342. struct the_nilfs *nilfs = sb->s_fs_info;
  343. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  344. BUG_ON(ti->ti_count > 0);
  345. up_write(&nilfs->ns_segctor_sem);
  346. current->journal_info = ti->ti_save;
  347. trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
  348. ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK);
  349. }
  350. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  351. struct nilfs_segsum_pointer *ssp,
  352. unsigned int bytes)
  353. {
  354. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  355. unsigned int blocksize = sci->sc_super->s_blocksize;
  356. void *p;
  357. if (unlikely(ssp->offset + bytes > blocksize)) {
  358. ssp->offset = 0;
  359. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  360. &segbuf->sb_segsum_buffers));
  361. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  362. }
  363. p = ssp->bh->b_data + ssp->offset;
  364. ssp->offset += bytes;
  365. return p;
  366. }
  367. /**
  368. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  369. * @sci: nilfs_sc_info
  370. */
  371. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  372. {
  373. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  374. struct buffer_head *sumbh;
  375. unsigned int sumbytes;
  376. unsigned int flags = 0;
  377. int err;
  378. if (nilfs_doing_gc())
  379. flags = NILFS_SS_GC;
  380. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
  381. if (unlikely(err))
  382. return err;
  383. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  384. sumbytes = segbuf->sb_sum.sumbytes;
  385. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  386. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  387. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  388. return 0;
  389. }
  390. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  391. {
  392. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  393. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  394. return -E2BIG; /*
  395. * The current segment is filled up
  396. * (internal code)
  397. */
  398. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  399. return nilfs_segctor_reset_segment_buffer(sci);
  400. }
  401. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  402. {
  403. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  404. int err;
  405. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  406. err = nilfs_segctor_feed_segment(sci);
  407. if (err)
  408. return err;
  409. segbuf = sci->sc_curseg;
  410. }
  411. err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
  412. if (likely(!err))
  413. segbuf->sb_sum.flags |= NILFS_SS_SR;
  414. return err;
  415. }
  416. /*
  417. * Functions for making segment summary and payloads
  418. */
  419. static int nilfs_segctor_segsum_block_required(
  420. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  421. unsigned int binfo_size)
  422. {
  423. unsigned int blocksize = sci->sc_super->s_blocksize;
  424. /* Size of finfo and binfo is enough small against blocksize */
  425. return ssp->offset + binfo_size +
  426. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  427. blocksize;
  428. }
  429. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  430. struct inode *inode)
  431. {
  432. sci->sc_curseg->sb_sum.nfinfo++;
  433. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  434. nilfs_segctor_map_segsum_entry(
  435. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  436. if (NILFS_I(inode)->i_root &&
  437. !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  438. set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  439. /* skip finfo */
  440. }
  441. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  442. struct inode *inode)
  443. {
  444. struct nilfs_finfo *finfo;
  445. struct nilfs_inode_info *ii;
  446. struct nilfs_segment_buffer *segbuf;
  447. __u64 cno;
  448. if (sci->sc_blk_cnt == 0)
  449. return;
  450. ii = NILFS_I(inode);
  451. if (test_bit(NILFS_I_GCINODE, &ii->i_state))
  452. cno = ii->i_cno;
  453. else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
  454. cno = 0;
  455. else
  456. cno = sci->sc_cno;
  457. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  458. sizeof(*finfo));
  459. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  460. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  461. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  462. finfo->fi_cno = cpu_to_le64(cno);
  463. segbuf = sci->sc_curseg;
  464. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  465. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  466. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  467. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  468. }
  469. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  470. struct buffer_head *bh,
  471. struct inode *inode,
  472. unsigned int binfo_size)
  473. {
  474. struct nilfs_segment_buffer *segbuf;
  475. int required, err = 0;
  476. retry:
  477. segbuf = sci->sc_curseg;
  478. required = nilfs_segctor_segsum_block_required(
  479. sci, &sci->sc_binfo_ptr, binfo_size);
  480. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  481. nilfs_segctor_end_finfo(sci, inode);
  482. err = nilfs_segctor_feed_segment(sci);
  483. if (err)
  484. return err;
  485. goto retry;
  486. }
  487. if (unlikely(required)) {
  488. err = nilfs_segbuf_extend_segsum(segbuf);
  489. if (unlikely(err))
  490. goto failed;
  491. }
  492. if (sci->sc_blk_cnt == 0)
  493. nilfs_segctor_begin_finfo(sci, inode);
  494. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  495. /* Substitution to vblocknr is delayed until update_blocknr() */
  496. nilfs_segbuf_add_file_buffer(segbuf, bh);
  497. sci->sc_blk_cnt++;
  498. failed:
  499. return err;
  500. }
  501. /*
  502. * Callback functions that enumerate, mark, and collect dirty blocks
  503. */
  504. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  505. struct buffer_head *bh, struct inode *inode)
  506. {
  507. int err;
  508. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  509. if (err < 0)
  510. return err;
  511. err = nilfs_segctor_add_file_block(sci, bh, inode,
  512. sizeof(struct nilfs_binfo_v));
  513. if (!err)
  514. sci->sc_datablk_cnt++;
  515. return err;
  516. }
  517. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  518. struct buffer_head *bh,
  519. struct inode *inode)
  520. {
  521. return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  522. }
  523. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  524. struct buffer_head *bh,
  525. struct inode *inode)
  526. {
  527. WARN_ON(!buffer_dirty(bh));
  528. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  529. }
  530. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  531. struct nilfs_segsum_pointer *ssp,
  532. union nilfs_binfo *binfo)
  533. {
  534. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  535. sci, ssp, sizeof(*binfo_v));
  536. *binfo_v = binfo->bi_v;
  537. }
  538. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  539. struct nilfs_segsum_pointer *ssp,
  540. union nilfs_binfo *binfo)
  541. {
  542. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  543. sci, ssp, sizeof(*vblocknr));
  544. *vblocknr = binfo->bi_v.bi_vblocknr;
  545. }
  546. static const struct nilfs_sc_operations nilfs_sc_file_ops = {
  547. .collect_data = nilfs_collect_file_data,
  548. .collect_node = nilfs_collect_file_node,
  549. .collect_bmap = nilfs_collect_file_bmap,
  550. .write_data_binfo = nilfs_write_file_data_binfo,
  551. .write_node_binfo = nilfs_write_file_node_binfo,
  552. };
  553. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  554. struct buffer_head *bh, struct inode *inode)
  555. {
  556. int err;
  557. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  558. if (err < 0)
  559. return err;
  560. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  561. if (!err)
  562. sci->sc_datablk_cnt++;
  563. return err;
  564. }
  565. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  566. struct buffer_head *bh, struct inode *inode)
  567. {
  568. WARN_ON(!buffer_dirty(bh));
  569. return nilfs_segctor_add_file_block(sci, bh, inode,
  570. sizeof(struct nilfs_binfo_dat));
  571. }
  572. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  573. struct nilfs_segsum_pointer *ssp,
  574. union nilfs_binfo *binfo)
  575. {
  576. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  577. sizeof(*blkoff));
  578. *blkoff = binfo->bi_dat.bi_blkoff;
  579. }
  580. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  581. struct nilfs_segsum_pointer *ssp,
  582. union nilfs_binfo *binfo)
  583. {
  584. struct nilfs_binfo_dat *binfo_dat =
  585. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  586. *binfo_dat = binfo->bi_dat;
  587. }
  588. static const struct nilfs_sc_operations nilfs_sc_dat_ops = {
  589. .collect_data = nilfs_collect_dat_data,
  590. .collect_node = nilfs_collect_file_node,
  591. .collect_bmap = nilfs_collect_dat_bmap,
  592. .write_data_binfo = nilfs_write_dat_data_binfo,
  593. .write_node_binfo = nilfs_write_dat_node_binfo,
  594. };
  595. static const struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  596. .collect_data = nilfs_collect_file_data,
  597. .collect_node = NULL,
  598. .collect_bmap = NULL,
  599. .write_data_binfo = nilfs_write_file_data_binfo,
  600. .write_node_binfo = NULL,
  601. };
  602. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  603. struct list_head *listp,
  604. size_t nlimit,
  605. loff_t start, loff_t end)
  606. {
  607. struct address_space *mapping = inode->i_mapping;
  608. struct pagevec pvec;
  609. pgoff_t index = 0, last = ULONG_MAX;
  610. size_t ndirties = 0;
  611. int i;
  612. if (unlikely(start != 0 || end != LLONG_MAX)) {
  613. /*
  614. * A valid range is given for sync-ing data pages. The
  615. * range is rounded to per-page; extra dirty buffers
  616. * may be included if blocksize < pagesize.
  617. */
  618. index = start >> PAGE_SHIFT;
  619. last = end >> PAGE_SHIFT;
  620. }
  621. pagevec_init(&pvec, 0);
  622. repeat:
  623. if (unlikely(index > last) ||
  624. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  625. min_t(pgoff_t, last - index,
  626. PAGEVEC_SIZE - 1) + 1))
  627. return ndirties;
  628. for (i = 0; i < pagevec_count(&pvec); i++) {
  629. struct buffer_head *bh, *head;
  630. struct page *page = pvec.pages[i];
  631. if (unlikely(page->index > last))
  632. break;
  633. lock_page(page);
  634. if (!page_has_buffers(page))
  635. create_empty_buffers(page, i_blocksize(inode), 0);
  636. unlock_page(page);
  637. bh = head = page_buffers(page);
  638. do {
  639. if (!buffer_dirty(bh) || buffer_async_write(bh))
  640. continue;
  641. get_bh(bh);
  642. list_add_tail(&bh->b_assoc_buffers, listp);
  643. ndirties++;
  644. if (unlikely(ndirties >= nlimit)) {
  645. pagevec_release(&pvec);
  646. cond_resched();
  647. return ndirties;
  648. }
  649. } while (bh = bh->b_this_page, bh != head);
  650. }
  651. pagevec_release(&pvec);
  652. cond_resched();
  653. goto repeat;
  654. }
  655. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  656. struct list_head *listp)
  657. {
  658. struct nilfs_inode_info *ii = NILFS_I(inode);
  659. struct address_space *mapping = &ii->i_btnode_cache;
  660. struct pagevec pvec;
  661. struct buffer_head *bh, *head;
  662. unsigned int i;
  663. pgoff_t index = 0;
  664. pagevec_init(&pvec, 0);
  665. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  666. PAGEVEC_SIZE)) {
  667. for (i = 0; i < pagevec_count(&pvec); i++) {
  668. bh = head = page_buffers(pvec.pages[i]);
  669. do {
  670. if (buffer_dirty(bh) &&
  671. !buffer_async_write(bh)) {
  672. get_bh(bh);
  673. list_add_tail(&bh->b_assoc_buffers,
  674. listp);
  675. }
  676. bh = bh->b_this_page;
  677. } while (bh != head);
  678. }
  679. pagevec_release(&pvec);
  680. cond_resched();
  681. }
  682. }
  683. static void nilfs_dispose_list(struct the_nilfs *nilfs,
  684. struct list_head *head, int force)
  685. {
  686. struct nilfs_inode_info *ii, *n;
  687. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  688. unsigned int nv = 0;
  689. while (!list_empty(head)) {
  690. spin_lock(&nilfs->ns_inode_lock);
  691. list_for_each_entry_safe(ii, n, head, i_dirty) {
  692. list_del_init(&ii->i_dirty);
  693. if (force) {
  694. if (unlikely(ii->i_bh)) {
  695. brelse(ii->i_bh);
  696. ii->i_bh = NULL;
  697. }
  698. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  699. set_bit(NILFS_I_QUEUED, &ii->i_state);
  700. list_add_tail(&ii->i_dirty,
  701. &nilfs->ns_dirty_files);
  702. continue;
  703. }
  704. ivec[nv++] = ii;
  705. if (nv == SC_N_INODEVEC)
  706. break;
  707. }
  708. spin_unlock(&nilfs->ns_inode_lock);
  709. for (pii = ivec; nv > 0; pii++, nv--)
  710. iput(&(*pii)->vfs_inode);
  711. }
  712. }
  713. static void nilfs_iput_work_func(struct work_struct *work)
  714. {
  715. struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
  716. sc_iput_work);
  717. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  718. nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
  719. }
  720. static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
  721. struct nilfs_root *root)
  722. {
  723. int ret = 0;
  724. if (nilfs_mdt_fetch_dirty(root->ifile))
  725. ret++;
  726. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  727. ret++;
  728. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  729. ret++;
  730. if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
  731. ret++;
  732. return ret;
  733. }
  734. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  735. {
  736. return list_empty(&sci->sc_dirty_files) &&
  737. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  738. sci->sc_nfreesegs == 0 &&
  739. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  740. }
  741. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  742. {
  743. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  744. int ret = 0;
  745. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  746. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  747. spin_lock(&nilfs->ns_inode_lock);
  748. if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
  749. ret++;
  750. spin_unlock(&nilfs->ns_inode_lock);
  751. return ret;
  752. }
  753. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  754. {
  755. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  756. nilfs_mdt_clear_dirty(sci->sc_root->ifile);
  757. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  758. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  759. nilfs_mdt_clear_dirty(nilfs->ns_dat);
  760. }
  761. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  762. {
  763. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  764. struct buffer_head *bh_cp;
  765. struct nilfs_checkpoint *raw_cp;
  766. int err;
  767. /* XXX: this interface will be changed */
  768. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  769. &raw_cp, &bh_cp);
  770. if (likely(!err)) {
  771. /*
  772. * The following code is duplicated with cpfile. But, it is
  773. * needed to collect the checkpoint even if it was not newly
  774. * created.
  775. */
  776. mark_buffer_dirty(bh_cp);
  777. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  778. nilfs_cpfile_put_checkpoint(
  779. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  780. } else
  781. WARN_ON(err == -EINVAL || err == -ENOENT);
  782. return err;
  783. }
  784. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  785. {
  786. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  787. struct buffer_head *bh_cp;
  788. struct nilfs_checkpoint *raw_cp;
  789. int err;
  790. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  791. &raw_cp, &bh_cp);
  792. if (unlikely(err)) {
  793. WARN_ON(err == -EINVAL || err == -ENOENT);
  794. goto failed_ibh;
  795. }
  796. raw_cp->cp_snapshot_list.ssl_next = 0;
  797. raw_cp->cp_snapshot_list.ssl_prev = 0;
  798. raw_cp->cp_inodes_count =
  799. cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count));
  800. raw_cp->cp_blocks_count =
  801. cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count));
  802. raw_cp->cp_nblk_inc =
  803. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  804. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  805. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  806. if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  807. nilfs_checkpoint_clear_minor(raw_cp);
  808. else
  809. nilfs_checkpoint_set_minor(raw_cp);
  810. nilfs_write_inode_common(sci->sc_root->ifile,
  811. &raw_cp->cp_ifile_inode, 1);
  812. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  813. return 0;
  814. failed_ibh:
  815. return err;
  816. }
  817. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  818. struct nilfs_inode_info *ii)
  819. {
  820. struct buffer_head *ibh;
  821. struct nilfs_inode *raw_inode;
  822. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  823. ibh = ii->i_bh;
  824. BUG_ON(!ibh);
  825. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  826. ibh);
  827. nilfs_bmap_write(ii->i_bmap, raw_inode);
  828. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  829. }
  830. }
  831. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
  832. {
  833. struct nilfs_inode_info *ii;
  834. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  835. nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
  836. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  837. }
  838. }
  839. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  840. struct the_nilfs *nilfs)
  841. {
  842. struct buffer_head *bh_sr;
  843. struct nilfs_super_root *raw_sr;
  844. unsigned int isz, srsz;
  845. bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
  846. raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
  847. isz = nilfs->ns_inode_size;
  848. srsz = NILFS_SR_BYTES(isz);
  849. raw_sr->sr_bytes = cpu_to_le16(srsz);
  850. raw_sr->sr_nongc_ctime
  851. = cpu_to_le64(nilfs_doing_gc() ?
  852. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  853. raw_sr->sr_flags = 0;
  854. nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
  855. NILFS_SR_DAT_OFFSET(isz), 1);
  856. nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
  857. NILFS_SR_CPFILE_OFFSET(isz), 1);
  858. nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
  859. NILFS_SR_SUFILE_OFFSET(isz), 1);
  860. memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
  861. }
  862. static void nilfs_redirty_inodes(struct list_head *head)
  863. {
  864. struct nilfs_inode_info *ii;
  865. list_for_each_entry(ii, head, i_dirty) {
  866. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  867. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  868. }
  869. }
  870. static void nilfs_drop_collected_inodes(struct list_head *head)
  871. {
  872. struct nilfs_inode_info *ii;
  873. list_for_each_entry(ii, head, i_dirty) {
  874. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  875. continue;
  876. clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
  877. set_bit(NILFS_I_UPDATED, &ii->i_state);
  878. }
  879. }
  880. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  881. struct inode *inode,
  882. struct list_head *listp,
  883. int (*collect)(struct nilfs_sc_info *,
  884. struct buffer_head *,
  885. struct inode *))
  886. {
  887. struct buffer_head *bh, *n;
  888. int err = 0;
  889. if (collect) {
  890. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  891. list_del_init(&bh->b_assoc_buffers);
  892. err = collect(sci, bh, inode);
  893. brelse(bh);
  894. if (unlikely(err))
  895. goto dispose_buffers;
  896. }
  897. return 0;
  898. }
  899. dispose_buffers:
  900. while (!list_empty(listp)) {
  901. bh = list_first_entry(listp, struct buffer_head,
  902. b_assoc_buffers);
  903. list_del_init(&bh->b_assoc_buffers);
  904. brelse(bh);
  905. }
  906. return err;
  907. }
  908. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  909. {
  910. /* Remaining number of blocks within segment buffer */
  911. return sci->sc_segbuf_nblocks -
  912. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  913. }
  914. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  915. struct inode *inode,
  916. const struct nilfs_sc_operations *sc_ops)
  917. {
  918. LIST_HEAD(data_buffers);
  919. LIST_HEAD(node_buffers);
  920. int err;
  921. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  922. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  923. n = nilfs_lookup_dirty_data_buffers(
  924. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  925. if (n > rest) {
  926. err = nilfs_segctor_apply_buffers(
  927. sci, inode, &data_buffers,
  928. sc_ops->collect_data);
  929. BUG_ON(!err); /* always receive -E2BIG or true error */
  930. goto break_or_fail;
  931. }
  932. }
  933. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  934. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  935. err = nilfs_segctor_apply_buffers(
  936. sci, inode, &data_buffers, sc_ops->collect_data);
  937. if (unlikely(err)) {
  938. /* dispose node list */
  939. nilfs_segctor_apply_buffers(
  940. sci, inode, &node_buffers, NULL);
  941. goto break_or_fail;
  942. }
  943. sci->sc_stage.flags |= NILFS_CF_NODE;
  944. }
  945. /* Collect node */
  946. err = nilfs_segctor_apply_buffers(
  947. sci, inode, &node_buffers, sc_ops->collect_node);
  948. if (unlikely(err))
  949. goto break_or_fail;
  950. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  951. err = nilfs_segctor_apply_buffers(
  952. sci, inode, &node_buffers, sc_ops->collect_bmap);
  953. if (unlikely(err))
  954. goto break_or_fail;
  955. nilfs_segctor_end_finfo(sci, inode);
  956. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  957. break_or_fail:
  958. return err;
  959. }
  960. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  961. struct inode *inode)
  962. {
  963. LIST_HEAD(data_buffers);
  964. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  965. int err;
  966. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  967. sci->sc_dsync_start,
  968. sci->sc_dsync_end);
  969. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  970. nilfs_collect_file_data);
  971. if (!err) {
  972. nilfs_segctor_end_finfo(sci, inode);
  973. BUG_ON(n > rest);
  974. /* always receive -E2BIG or true error if n > rest */
  975. }
  976. return err;
  977. }
  978. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  979. {
  980. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  981. struct list_head *head;
  982. struct nilfs_inode_info *ii;
  983. size_t ndone;
  984. int err = 0;
  985. switch (nilfs_sc_cstage_get(sci)) {
  986. case NILFS_ST_INIT:
  987. /* Pre-processes */
  988. sci->sc_stage.flags = 0;
  989. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  990. sci->sc_nblk_inc = 0;
  991. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  992. if (mode == SC_LSEG_DSYNC) {
  993. nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC);
  994. goto dsync_mode;
  995. }
  996. }
  997. sci->sc_stage.dirty_file_ptr = NULL;
  998. sci->sc_stage.gc_inode_ptr = NULL;
  999. if (mode == SC_FLUSH_DAT) {
  1000. nilfs_sc_cstage_set(sci, NILFS_ST_DAT);
  1001. goto dat_stage;
  1002. }
  1003. nilfs_sc_cstage_inc(sci); /* Fall through */
  1004. case NILFS_ST_GC:
  1005. if (nilfs_doing_gc()) {
  1006. head = &sci->sc_gc_inodes;
  1007. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  1008. head, i_dirty);
  1009. list_for_each_entry_continue(ii, head, i_dirty) {
  1010. err = nilfs_segctor_scan_file(
  1011. sci, &ii->vfs_inode,
  1012. &nilfs_sc_file_ops);
  1013. if (unlikely(err)) {
  1014. sci->sc_stage.gc_inode_ptr = list_entry(
  1015. ii->i_dirty.prev,
  1016. struct nilfs_inode_info,
  1017. i_dirty);
  1018. goto break_or_fail;
  1019. }
  1020. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  1021. }
  1022. sci->sc_stage.gc_inode_ptr = NULL;
  1023. }
  1024. nilfs_sc_cstage_inc(sci); /* Fall through */
  1025. case NILFS_ST_FILE:
  1026. head = &sci->sc_dirty_files;
  1027. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  1028. i_dirty);
  1029. list_for_each_entry_continue(ii, head, i_dirty) {
  1030. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  1031. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  1032. &nilfs_sc_file_ops);
  1033. if (unlikely(err)) {
  1034. sci->sc_stage.dirty_file_ptr =
  1035. list_entry(ii->i_dirty.prev,
  1036. struct nilfs_inode_info,
  1037. i_dirty);
  1038. goto break_or_fail;
  1039. }
  1040. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  1041. /* XXX: required ? */
  1042. }
  1043. sci->sc_stage.dirty_file_ptr = NULL;
  1044. if (mode == SC_FLUSH_FILE) {
  1045. nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
  1046. return 0;
  1047. }
  1048. nilfs_sc_cstage_inc(sci);
  1049. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  1050. /* Fall through */
  1051. case NILFS_ST_IFILE:
  1052. err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
  1053. &nilfs_sc_file_ops);
  1054. if (unlikely(err))
  1055. break;
  1056. nilfs_sc_cstage_inc(sci);
  1057. /* Creating a checkpoint */
  1058. err = nilfs_segctor_create_checkpoint(sci);
  1059. if (unlikely(err))
  1060. break;
  1061. /* Fall through */
  1062. case NILFS_ST_CPFILE:
  1063. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1064. &nilfs_sc_file_ops);
  1065. if (unlikely(err))
  1066. break;
  1067. nilfs_sc_cstage_inc(sci); /* Fall through */
  1068. case NILFS_ST_SUFILE:
  1069. err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
  1070. sci->sc_nfreesegs, &ndone);
  1071. if (unlikely(err)) {
  1072. nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1073. sci->sc_freesegs, ndone,
  1074. NULL);
  1075. break;
  1076. }
  1077. sci->sc_stage.flags |= NILFS_CF_SUFREED;
  1078. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1079. &nilfs_sc_file_ops);
  1080. if (unlikely(err))
  1081. break;
  1082. nilfs_sc_cstage_inc(sci); /* Fall through */
  1083. case NILFS_ST_DAT:
  1084. dat_stage:
  1085. err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
  1086. &nilfs_sc_dat_ops);
  1087. if (unlikely(err))
  1088. break;
  1089. if (mode == SC_FLUSH_DAT) {
  1090. nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
  1091. return 0;
  1092. }
  1093. nilfs_sc_cstage_inc(sci); /* Fall through */
  1094. case NILFS_ST_SR:
  1095. if (mode == SC_LSEG_SR) {
  1096. /* Appending a super root */
  1097. err = nilfs_segctor_add_super_root(sci);
  1098. if (unlikely(err))
  1099. break;
  1100. }
  1101. /* End of a logical segment */
  1102. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1103. nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
  1104. return 0;
  1105. case NILFS_ST_DSYNC:
  1106. dsync_mode:
  1107. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1108. ii = sci->sc_dsync_inode;
  1109. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1110. break;
  1111. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1112. if (unlikely(err))
  1113. break;
  1114. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1115. nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
  1116. return 0;
  1117. case NILFS_ST_DONE:
  1118. return 0;
  1119. default:
  1120. BUG();
  1121. }
  1122. break_or_fail:
  1123. return err;
  1124. }
  1125. /**
  1126. * nilfs_segctor_begin_construction - setup segment buffer to make a new log
  1127. * @sci: nilfs_sc_info
  1128. * @nilfs: nilfs object
  1129. */
  1130. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1131. struct the_nilfs *nilfs)
  1132. {
  1133. struct nilfs_segment_buffer *segbuf, *prev;
  1134. __u64 nextnum;
  1135. int err, alloc = 0;
  1136. segbuf = nilfs_segbuf_new(sci->sc_super);
  1137. if (unlikely(!segbuf))
  1138. return -ENOMEM;
  1139. if (list_empty(&sci->sc_write_logs)) {
  1140. nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
  1141. nilfs->ns_pseg_offset, nilfs);
  1142. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1143. nilfs_shift_to_next_segment(nilfs);
  1144. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1145. }
  1146. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1147. nextnum = nilfs->ns_nextnum;
  1148. if (nilfs->ns_segnum == nilfs->ns_nextnum)
  1149. /* Start from the head of a new full segment */
  1150. alloc++;
  1151. } else {
  1152. /* Continue logs */
  1153. prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1154. nilfs_segbuf_map_cont(segbuf, prev);
  1155. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
  1156. nextnum = prev->sb_nextnum;
  1157. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1158. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1159. segbuf->sb_sum.seg_seq++;
  1160. alloc++;
  1161. }
  1162. }
  1163. err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
  1164. if (err)
  1165. goto failed;
  1166. if (alloc) {
  1167. err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
  1168. if (err)
  1169. goto failed;
  1170. }
  1171. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1172. BUG_ON(!list_empty(&sci->sc_segbufs));
  1173. list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
  1174. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1175. return 0;
  1176. failed:
  1177. nilfs_segbuf_free(segbuf);
  1178. return err;
  1179. }
  1180. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1181. struct the_nilfs *nilfs, int nadd)
  1182. {
  1183. struct nilfs_segment_buffer *segbuf, *prev;
  1184. struct inode *sufile = nilfs->ns_sufile;
  1185. __u64 nextnextnum;
  1186. LIST_HEAD(list);
  1187. int err, ret, i;
  1188. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1189. /*
  1190. * Since the segment specified with nextnum might be allocated during
  1191. * the previous construction, the buffer including its segusage may
  1192. * not be dirty. The following call ensures that the buffer is dirty
  1193. * and will pin the buffer on memory until the sufile is written.
  1194. */
  1195. err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
  1196. if (unlikely(err))
  1197. return err;
  1198. for (i = 0; i < nadd; i++) {
  1199. /* extend segment info */
  1200. err = -ENOMEM;
  1201. segbuf = nilfs_segbuf_new(sci->sc_super);
  1202. if (unlikely(!segbuf))
  1203. goto failed;
  1204. /* map this buffer to region of segment on-disk */
  1205. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1206. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1207. /* allocate the next next full segment */
  1208. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1209. if (unlikely(err))
  1210. goto failed_segbuf;
  1211. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1212. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1213. list_add_tail(&segbuf->sb_list, &list);
  1214. prev = segbuf;
  1215. }
  1216. list_splice_tail(&list, &sci->sc_segbufs);
  1217. return 0;
  1218. failed_segbuf:
  1219. nilfs_segbuf_free(segbuf);
  1220. failed:
  1221. list_for_each_entry(segbuf, &list, sb_list) {
  1222. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1223. WARN_ON(ret); /* never fails */
  1224. }
  1225. nilfs_destroy_logs(&list);
  1226. return err;
  1227. }
  1228. static void nilfs_free_incomplete_logs(struct list_head *logs,
  1229. struct the_nilfs *nilfs)
  1230. {
  1231. struct nilfs_segment_buffer *segbuf, *prev;
  1232. struct inode *sufile = nilfs->ns_sufile;
  1233. int ret;
  1234. segbuf = NILFS_FIRST_SEGBUF(logs);
  1235. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1236. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1237. WARN_ON(ret); /* never fails */
  1238. }
  1239. if (atomic_read(&segbuf->sb_err)) {
  1240. /* Case 1: The first segment failed */
  1241. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1242. /*
  1243. * Case 1a: Partial segment appended into an existing
  1244. * segment
  1245. */
  1246. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1247. segbuf->sb_fseg_end);
  1248. else /* Case 1b: New full segment */
  1249. set_nilfs_discontinued(nilfs);
  1250. }
  1251. prev = segbuf;
  1252. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1253. if (prev->sb_nextnum != segbuf->sb_nextnum) {
  1254. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1255. WARN_ON(ret); /* never fails */
  1256. }
  1257. if (atomic_read(&segbuf->sb_err) &&
  1258. segbuf->sb_segnum != nilfs->ns_nextnum)
  1259. /* Case 2: extended segment (!= next) failed */
  1260. nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
  1261. prev = segbuf;
  1262. }
  1263. }
  1264. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1265. struct inode *sufile)
  1266. {
  1267. struct nilfs_segment_buffer *segbuf;
  1268. unsigned long live_blocks;
  1269. int ret;
  1270. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1271. live_blocks = segbuf->sb_sum.nblocks +
  1272. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1273. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1274. live_blocks,
  1275. sci->sc_seg_ctime);
  1276. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1277. }
  1278. }
  1279. static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
  1280. {
  1281. struct nilfs_segment_buffer *segbuf;
  1282. int ret;
  1283. segbuf = NILFS_FIRST_SEGBUF(logs);
  1284. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1285. segbuf->sb_pseg_start -
  1286. segbuf->sb_fseg_start, 0);
  1287. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1288. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1289. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1290. 0, 0);
  1291. WARN_ON(ret); /* always succeed */
  1292. }
  1293. }
  1294. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1295. struct nilfs_segment_buffer *last,
  1296. struct inode *sufile)
  1297. {
  1298. struct nilfs_segment_buffer *segbuf = last;
  1299. int ret;
  1300. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1301. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1302. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1303. WARN_ON(ret);
  1304. }
  1305. nilfs_truncate_logs(&sci->sc_segbufs, last);
  1306. }
  1307. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1308. struct the_nilfs *nilfs, int mode)
  1309. {
  1310. struct nilfs_cstage prev_stage = sci->sc_stage;
  1311. int err, nadd = 1;
  1312. /* Collection retry loop */
  1313. for (;;) {
  1314. sci->sc_nblk_this_inc = 0;
  1315. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1316. err = nilfs_segctor_reset_segment_buffer(sci);
  1317. if (unlikely(err))
  1318. goto failed;
  1319. err = nilfs_segctor_collect_blocks(sci, mode);
  1320. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1321. if (!err)
  1322. break;
  1323. if (unlikely(err != -E2BIG))
  1324. goto failed;
  1325. /* The current segment is filled up */
  1326. if (mode != SC_LSEG_SR ||
  1327. nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE)
  1328. break;
  1329. nilfs_clear_logs(&sci->sc_segbufs);
  1330. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1331. err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1332. sci->sc_freesegs,
  1333. sci->sc_nfreesegs,
  1334. NULL);
  1335. WARN_ON(err); /* do not happen */
  1336. sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
  1337. }
  1338. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1339. if (unlikely(err))
  1340. return err;
  1341. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1342. sci->sc_stage = prev_stage;
  1343. }
  1344. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1345. return 0;
  1346. failed:
  1347. return err;
  1348. }
  1349. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1350. struct buffer_head *new_bh)
  1351. {
  1352. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1353. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1354. /* The caller must release old_bh */
  1355. }
  1356. static int
  1357. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1358. struct nilfs_segment_buffer *segbuf,
  1359. int mode)
  1360. {
  1361. struct inode *inode = NULL;
  1362. sector_t blocknr;
  1363. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1364. unsigned long nblocks = 0, ndatablk = 0;
  1365. const struct nilfs_sc_operations *sc_op = NULL;
  1366. struct nilfs_segsum_pointer ssp;
  1367. struct nilfs_finfo *finfo = NULL;
  1368. union nilfs_binfo binfo;
  1369. struct buffer_head *bh, *bh_org;
  1370. ino_t ino = 0;
  1371. int err = 0;
  1372. if (!nfinfo)
  1373. goto out;
  1374. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1375. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1376. ssp.offset = sizeof(struct nilfs_segment_summary);
  1377. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1378. if (bh == segbuf->sb_super_root)
  1379. break;
  1380. if (!finfo) {
  1381. finfo = nilfs_segctor_map_segsum_entry(
  1382. sci, &ssp, sizeof(*finfo));
  1383. ino = le64_to_cpu(finfo->fi_ino);
  1384. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1385. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1386. inode = bh->b_page->mapping->host;
  1387. if (mode == SC_LSEG_DSYNC)
  1388. sc_op = &nilfs_sc_dsync_ops;
  1389. else if (ino == NILFS_DAT_INO)
  1390. sc_op = &nilfs_sc_dat_ops;
  1391. else /* file blocks */
  1392. sc_op = &nilfs_sc_file_ops;
  1393. }
  1394. bh_org = bh;
  1395. get_bh(bh_org);
  1396. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1397. &binfo);
  1398. if (bh != bh_org)
  1399. nilfs_list_replace_buffer(bh_org, bh);
  1400. brelse(bh_org);
  1401. if (unlikely(err))
  1402. goto failed_bmap;
  1403. if (ndatablk > 0)
  1404. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1405. else
  1406. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1407. blocknr++;
  1408. if (--nblocks == 0) {
  1409. finfo = NULL;
  1410. if (--nfinfo == 0)
  1411. break;
  1412. } else if (ndatablk > 0)
  1413. ndatablk--;
  1414. }
  1415. out:
  1416. return 0;
  1417. failed_bmap:
  1418. return err;
  1419. }
  1420. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1421. {
  1422. struct nilfs_segment_buffer *segbuf;
  1423. int err;
  1424. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1425. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1426. if (unlikely(err))
  1427. return err;
  1428. nilfs_segbuf_fill_in_segsum(segbuf);
  1429. }
  1430. return 0;
  1431. }
  1432. static void nilfs_begin_page_io(struct page *page)
  1433. {
  1434. if (!page || PageWriteback(page))
  1435. /*
  1436. * For split b-tree node pages, this function may be called
  1437. * twice. We ignore the 2nd or later calls by this check.
  1438. */
  1439. return;
  1440. lock_page(page);
  1441. clear_page_dirty_for_io(page);
  1442. set_page_writeback(page);
  1443. unlock_page(page);
  1444. }
  1445. static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
  1446. {
  1447. struct nilfs_segment_buffer *segbuf;
  1448. struct page *bd_page = NULL, *fs_page = NULL;
  1449. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1450. struct buffer_head *bh;
  1451. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1452. b_assoc_buffers) {
  1453. if (bh->b_page != bd_page) {
  1454. if (bd_page) {
  1455. lock_page(bd_page);
  1456. clear_page_dirty_for_io(bd_page);
  1457. set_page_writeback(bd_page);
  1458. unlock_page(bd_page);
  1459. }
  1460. bd_page = bh->b_page;
  1461. }
  1462. }
  1463. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1464. b_assoc_buffers) {
  1465. set_buffer_async_write(bh);
  1466. if (bh == segbuf->sb_super_root) {
  1467. if (bh->b_page != bd_page) {
  1468. lock_page(bd_page);
  1469. clear_page_dirty_for_io(bd_page);
  1470. set_page_writeback(bd_page);
  1471. unlock_page(bd_page);
  1472. bd_page = bh->b_page;
  1473. }
  1474. break;
  1475. }
  1476. if (bh->b_page != fs_page) {
  1477. nilfs_begin_page_io(fs_page);
  1478. fs_page = bh->b_page;
  1479. }
  1480. }
  1481. }
  1482. if (bd_page) {
  1483. lock_page(bd_page);
  1484. clear_page_dirty_for_io(bd_page);
  1485. set_page_writeback(bd_page);
  1486. unlock_page(bd_page);
  1487. }
  1488. nilfs_begin_page_io(fs_page);
  1489. }
  1490. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1491. struct the_nilfs *nilfs)
  1492. {
  1493. int ret;
  1494. ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
  1495. list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
  1496. return ret;
  1497. }
  1498. static void nilfs_end_page_io(struct page *page, int err)
  1499. {
  1500. if (!page)
  1501. return;
  1502. if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
  1503. /*
  1504. * For b-tree node pages, this function may be called twice
  1505. * or more because they might be split in a segment.
  1506. */
  1507. if (PageDirty(page)) {
  1508. /*
  1509. * For pages holding split b-tree node buffers, dirty
  1510. * flag on the buffers may be cleared discretely.
  1511. * In that case, the page is once redirtied for
  1512. * remaining buffers, and it must be cancelled if
  1513. * all the buffers get cleaned later.
  1514. */
  1515. lock_page(page);
  1516. if (nilfs_page_buffers_clean(page))
  1517. __nilfs_clear_page_dirty(page);
  1518. unlock_page(page);
  1519. }
  1520. return;
  1521. }
  1522. if (!err) {
  1523. if (!nilfs_page_buffers_clean(page))
  1524. __set_page_dirty_nobuffers(page);
  1525. ClearPageError(page);
  1526. } else {
  1527. __set_page_dirty_nobuffers(page);
  1528. SetPageError(page);
  1529. }
  1530. end_page_writeback(page);
  1531. }
  1532. static void nilfs_abort_logs(struct list_head *logs, int err)
  1533. {
  1534. struct nilfs_segment_buffer *segbuf;
  1535. struct page *bd_page = NULL, *fs_page = NULL;
  1536. struct buffer_head *bh;
  1537. if (list_empty(logs))
  1538. return;
  1539. list_for_each_entry(segbuf, logs, sb_list) {
  1540. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1541. b_assoc_buffers) {
  1542. if (bh->b_page != bd_page) {
  1543. if (bd_page)
  1544. end_page_writeback(bd_page);
  1545. bd_page = bh->b_page;
  1546. }
  1547. }
  1548. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1549. b_assoc_buffers) {
  1550. clear_buffer_async_write(bh);
  1551. if (bh == segbuf->sb_super_root) {
  1552. if (bh->b_page != bd_page) {
  1553. end_page_writeback(bd_page);
  1554. bd_page = bh->b_page;
  1555. }
  1556. break;
  1557. }
  1558. if (bh->b_page != fs_page) {
  1559. nilfs_end_page_io(fs_page, err);
  1560. fs_page = bh->b_page;
  1561. }
  1562. }
  1563. }
  1564. if (bd_page)
  1565. end_page_writeback(bd_page);
  1566. nilfs_end_page_io(fs_page, err);
  1567. }
  1568. static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
  1569. struct the_nilfs *nilfs, int err)
  1570. {
  1571. LIST_HEAD(logs);
  1572. int ret;
  1573. list_splice_tail_init(&sci->sc_write_logs, &logs);
  1574. ret = nilfs_wait_on_logs(&logs);
  1575. nilfs_abort_logs(&logs, ret ? : err);
  1576. list_splice_tail_init(&sci->sc_segbufs, &logs);
  1577. nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
  1578. nilfs_free_incomplete_logs(&logs, nilfs);
  1579. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1580. ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1581. sci->sc_freesegs,
  1582. sci->sc_nfreesegs,
  1583. NULL);
  1584. WARN_ON(ret); /* do not happen */
  1585. }
  1586. nilfs_destroy_logs(&logs);
  1587. }
  1588. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1589. struct nilfs_segment_buffer *segbuf)
  1590. {
  1591. nilfs->ns_segnum = segbuf->sb_segnum;
  1592. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1593. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1594. + segbuf->sb_sum.nblocks;
  1595. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1596. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1597. }
  1598. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1599. {
  1600. struct nilfs_segment_buffer *segbuf;
  1601. struct page *bd_page = NULL, *fs_page = NULL;
  1602. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  1603. int update_sr = false;
  1604. list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
  1605. struct buffer_head *bh;
  1606. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1607. b_assoc_buffers) {
  1608. set_buffer_uptodate(bh);
  1609. clear_buffer_dirty(bh);
  1610. if (bh->b_page != bd_page) {
  1611. if (bd_page)
  1612. end_page_writeback(bd_page);
  1613. bd_page = bh->b_page;
  1614. }
  1615. }
  1616. /*
  1617. * We assume that the buffers which belong to the same page
  1618. * continue over the buffer list.
  1619. * Under this assumption, the last BHs of pages is
  1620. * identifiable by the discontinuity of bh->b_page
  1621. * (page != fs_page).
  1622. *
  1623. * For B-tree node blocks, however, this assumption is not
  1624. * guaranteed. The cleanup code of B-tree node pages needs
  1625. * special care.
  1626. */
  1627. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1628. b_assoc_buffers) {
  1629. const unsigned long set_bits = BIT(BH_Uptodate);
  1630. const unsigned long clear_bits =
  1631. (BIT(BH_Dirty) | BIT(BH_Async_Write) |
  1632. BIT(BH_Delay) | BIT(BH_NILFS_Volatile) |
  1633. BIT(BH_NILFS_Redirected));
  1634. set_mask_bits(&bh->b_state, clear_bits, set_bits);
  1635. if (bh == segbuf->sb_super_root) {
  1636. if (bh->b_page != bd_page) {
  1637. end_page_writeback(bd_page);
  1638. bd_page = bh->b_page;
  1639. }
  1640. update_sr = true;
  1641. break;
  1642. }
  1643. if (bh->b_page != fs_page) {
  1644. nilfs_end_page_io(fs_page, 0);
  1645. fs_page = bh->b_page;
  1646. }
  1647. }
  1648. if (!nilfs_segbuf_simplex(segbuf)) {
  1649. if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
  1650. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1651. sci->sc_lseg_stime = jiffies;
  1652. }
  1653. if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
  1654. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1655. }
  1656. }
  1657. /*
  1658. * Since pages may continue over multiple segment buffers,
  1659. * end of the last page must be checked outside of the loop.
  1660. */
  1661. if (bd_page)
  1662. end_page_writeback(bd_page);
  1663. nilfs_end_page_io(fs_page, 0);
  1664. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1665. if (nilfs_doing_gc())
  1666. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1667. else
  1668. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1669. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1670. segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1671. nilfs_set_next_segment(nilfs, segbuf);
  1672. if (update_sr) {
  1673. nilfs->ns_flushed_device = 0;
  1674. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1675. segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
  1676. clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  1677. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1678. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1679. nilfs_segctor_clear_metadata_dirty(sci);
  1680. } else
  1681. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1682. }
  1683. static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
  1684. {
  1685. int ret;
  1686. ret = nilfs_wait_on_logs(&sci->sc_write_logs);
  1687. if (!ret) {
  1688. nilfs_segctor_complete_write(sci);
  1689. nilfs_destroy_logs(&sci->sc_write_logs);
  1690. }
  1691. return ret;
  1692. }
  1693. static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
  1694. struct the_nilfs *nilfs)
  1695. {
  1696. struct nilfs_inode_info *ii, *n;
  1697. struct inode *ifile = sci->sc_root->ifile;
  1698. spin_lock(&nilfs->ns_inode_lock);
  1699. retry:
  1700. list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
  1701. if (!ii->i_bh) {
  1702. struct buffer_head *ibh;
  1703. int err;
  1704. spin_unlock(&nilfs->ns_inode_lock);
  1705. err = nilfs_ifile_get_inode_block(
  1706. ifile, ii->vfs_inode.i_ino, &ibh);
  1707. if (unlikely(err)) {
  1708. nilfs_msg(sci->sc_super, KERN_WARNING,
  1709. "log writer: error %d getting inode block (ino=%lu)",
  1710. err, ii->vfs_inode.i_ino);
  1711. return err;
  1712. }
  1713. spin_lock(&nilfs->ns_inode_lock);
  1714. if (likely(!ii->i_bh))
  1715. ii->i_bh = ibh;
  1716. else
  1717. brelse(ibh);
  1718. goto retry;
  1719. }
  1720. // Always redirty the buffer to avoid race condition
  1721. mark_buffer_dirty(ii->i_bh);
  1722. nilfs_mdt_mark_dirty(ifile);
  1723. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1724. set_bit(NILFS_I_BUSY, &ii->i_state);
  1725. list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1726. }
  1727. spin_unlock(&nilfs->ns_inode_lock);
  1728. return 0;
  1729. }
  1730. static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
  1731. struct the_nilfs *nilfs)
  1732. {
  1733. struct nilfs_inode_info *ii, *n;
  1734. int during_mount = !(sci->sc_super->s_flags & MS_ACTIVE);
  1735. int defer_iput = false;
  1736. spin_lock(&nilfs->ns_inode_lock);
  1737. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1738. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1739. test_bit(NILFS_I_DIRTY, &ii->i_state))
  1740. continue;
  1741. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1742. brelse(ii->i_bh);
  1743. ii->i_bh = NULL;
  1744. list_del_init(&ii->i_dirty);
  1745. if (!ii->vfs_inode.i_nlink || during_mount) {
  1746. /*
  1747. * Defer calling iput() to avoid deadlocks if
  1748. * i_nlink == 0 or mount is not yet finished.
  1749. */
  1750. list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
  1751. defer_iput = true;
  1752. } else {
  1753. spin_unlock(&nilfs->ns_inode_lock);
  1754. iput(&ii->vfs_inode);
  1755. spin_lock(&nilfs->ns_inode_lock);
  1756. }
  1757. }
  1758. spin_unlock(&nilfs->ns_inode_lock);
  1759. if (defer_iput)
  1760. schedule_work(&sci->sc_iput_work);
  1761. }
  1762. /*
  1763. * Main procedure of segment constructor
  1764. */
  1765. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  1766. {
  1767. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  1768. int err;
  1769. nilfs_sc_cstage_set(sci, NILFS_ST_INIT);
  1770. sci->sc_cno = nilfs->ns_cno;
  1771. err = nilfs_segctor_collect_dirty_files(sci, nilfs);
  1772. if (unlikely(err))
  1773. goto out;
  1774. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  1775. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1776. if (nilfs_segctor_clean(sci))
  1777. goto out;
  1778. do {
  1779. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  1780. err = nilfs_segctor_begin_construction(sci, nilfs);
  1781. if (unlikely(err))
  1782. goto out;
  1783. /* Update time stamp */
  1784. sci->sc_seg_ctime = get_seconds();
  1785. err = nilfs_segctor_collect(sci, nilfs, mode);
  1786. if (unlikely(err))
  1787. goto failed;
  1788. /* Avoid empty segment */
  1789. if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE &&
  1790. nilfs_segbuf_empty(sci->sc_curseg)) {
  1791. nilfs_segctor_abort_construction(sci, nilfs, 1);
  1792. goto out;
  1793. }
  1794. err = nilfs_segctor_assign(sci, mode);
  1795. if (unlikely(err))
  1796. goto failed;
  1797. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1798. nilfs_segctor_fill_in_file_bmap(sci);
  1799. if (mode == SC_LSEG_SR &&
  1800. nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) {
  1801. err = nilfs_segctor_fill_in_checkpoint(sci);
  1802. if (unlikely(err))
  1803. goto failed_to_write;
  1804. nilfs_segctor_fill_in_super_root(sci, nilfs);
  1805. }
  1806. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  1807. /* Write partial segments */
  1808. nilfs_segctor_prepare_write(sci);
  1809. nilfs_add_checksums_on_logs(&sci->sc_segbufs,
  1810. nilfs->ns_crc_seed);
  1811. err = nilfs_segctor_write(sci, nilfs);
  1812. if (unlikely(err))
  1813. goto failed_to_write;
  1814. if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE ||
  1815. nilfs->ns_blocksize_bits != PAGE_SHIFT) {
  1816. /*
  1817. * At this point, we avoid double buffering
  1818. * for blocksize < pagesize because page dirty
  1819. * flag is turned off during write and dirty
  1820. * buffers are not properly collected for
  1821. * pages crossing over segments.
  1822. */
  1823. err = nilfs_segctor_wait(sci);
  1824. if (err)
  1825. goto failed_to_write;
  1826. }
  1827. } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE);
  1828. out:
  1829. nilfs_segctor_drop_written_files(sci, nilfs);
  1830. return err;
  1831. failed_to_write:
  1832. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1833. nilfs_redirty_inodes(&sci->sc_dirty_files);
  1834. failed:
  1835. if (nilfs_doing_gc())
  1836. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  1837. nilfs_segctor_abort_construction(sci, nilfs, err);
  1838. goto out;
  1839. }
  1840. /**
  1841. * nilfs_segctor_start_timer - set timer of background write
  1842. * @sci: nilfs_sc_info
  1843. *
  1844. * If the timer has already been set, it ignores the new request.
  1845. * This function MUST be called within a section locking the segment
  1846. * semaphore.
  1847. */
  1848. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  1849. {
  1850. spin_lock(&sci->sc_state_lock);
  1851. if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  1852. sci->sc_timer.expires = jiffies + sci->sc_interval;
  1853. add_timer(&sci->sc_timer);
  1854. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  1855. }
  1856. spin_unlock(&sci->sc_state_lock);
  1857. }
  1858. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  1859. {
  1860. spin_lock(&sci->sc_state_lock);
  1861. if (!(sci->sc_flush_request & BIT(bn))) {
  1862. unsigned long prev_req = sci->sc_flush_request;
  1863. sci->sc_flush_request |= BIT(bn);
  1864. if (!prev_req)
  1865. wake_up(&sci->sc_wait_daemon);
  1866. }
  1867. spin_unlock(&sci->sc_state_lock);
  1868. }
  1869. /**
  1870. * nilfs_flush_segment - trigger a segment construction for resource control
  1871. * @sb: super block
  1872. * @ino: inode number of the file to be flushed out.
  1873. */
  1874. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  1875. {
  1876. struct the_nilfs *nilfs = sb->s_fs_info;
  1877. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1878. if (!sci || nilfs_doing_construction())
  1879. return;
  1880. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  1881. /* assign bit 0 to data files */
  1882. }
  1883. struct nilfs_segctor_wait_request {
  1884. wait_queue_t wq;
  1885. __u32 seq;
  1886. int err;
  1887. atomic_t done;
  1888. };
  1889. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  1890. {
  1891. struct nilfs_segctor_wait_request wait_req;
  1892. int err = 0;
  1893. spin_lock(&sci->sc_state_lock);
  1894. init_wait(&wait_req.wq);
  1895. wait_req.err = 0;
  1896. atomic_set(&wait_req.done, 0);
  1897. wait_req.seq = ++sci->sc_seq_request;
  1898. spin_unlock(&sci->sc_state_lock);
  1899. init_waitqueue_entry(&wait_req.wq, current);
  1900. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  1901. set_current_state(TASK_INTERRUPTIBLE);
  1902. wake_up(&sci->sc_wait_daemon);
  1903. for (;;) {
  1904. if (atomic_read(&wait_req.done)) {
  1905. err = wait_req.err;
  1906. break;
  1907. }
  1908. if (!signal_pending(current)) {
  1909. schedule();
  1910. continue;
  1911. }
  1912. err = -ERESTARTSYS;
  1913. break;
  1914. }
  1915. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  1916. return err;
  1917. }
  1918. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  1919. {
  1920. struct nilfs_segctor_wait_request *wrq, *n;
  1921. unsigned long flags;
  1922. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  1923. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  1924. wq.task_list) {
  1925. if (!atomic_read(&wrq->done) &&
  1926. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  1927. wrq->err = err;
  1928. atomic_set(&wrq->done, 1);
  1929. }
  1930. if (atomic_read(&wrq->done)) {
  1931. wrq->wq.func(&wrq->wq,
  1932. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  1933. 0, NULL);
  1934. }
  1935. }
  1936. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  1937. }
  1938. /**
  1939. * nilfs_construct_segment - construct a logical segment
  1940. * @sb: super block
  1941. *
  1942. * Return Value: On success, 0 is retured. On errors, one of the following
  1943. * negative error code is returned.
  1944. *
  1945. * %-EROFS - Read only filesystem.
  1946. *
  1947. * %-EIO - I/O error
  1948. *
  1949. * %-ENOSPC - No space left on device (only in a panic state).
  1950. *
  1951. * %-ERESTARTSYS - Interrupted.
  1952. *
  1953. * %-ENOMEM - Insufficient memory available.
  1954. */
  1955. int nilfs_construct_segment(struct super_block *sb)
  1956. {
  1957. struct the_nilfs *nilfs = sb->s_fs_info;
  1958. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1959. struct nilfs_transaction_info *ti;
  1960. int err;
  1961. if (!sci)
  1962. return -EROFS;
  1963. /* A call inside transactions causes a deadlock. */
  1964. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  1965. err = nilfs_segctor_sync(sci);
  1966. return err;
  1967. }
  1968. /**
  1969. * nilfs_construct_dsync_segment - construct a data-only logical segment
  1970. * @sb: super block
  1971. * @inode: inode whose data blocks should be written out
  1972. * @start: start byte offset
  1973. * @end: end byte offset (inclusive)
  1974. *
  1975. * Return Value: On success, 0 is retured. On errors, one of the following
  1976. * negative error code is returned.
  1977. *
  1978. * %-EROFS - Read only filesystem.
  1979. *
  1980. * %-EIO - I/O error
  1981. *
  1982. * %-ENOSPC - No space left on device (only in a panic state).
  1983. *
  1984. * %-ERESTARTSYS - Interrupted.
  1985. *
  1986. * %-ENOMEM - Insufficient memory available.
  1987. */
  1988. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  1989. loff_t start, loff_t end)
  1990. {
  1991. struct the_nilfs *nilfs = sb->s_fs_info;
  1992. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1993. struct nilfs_inode_info *ii;
  1994. struct nilfs_transaction_info ti;
  1995. int err = 0;
  1996. if (!sci)
  1997. return -EROFS;
  1998. nilfs_transaction_lock(sb, &ti, 0);
  1999. ii = NILFS_I(inode);
  2000. if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
  2001. nilfs_test_opt(nilfs, STRICT_ORDER) ||
  2002. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2003. nilfs_discontinued(nilfs)) {
  2004. nilfs_transaction_unlock(sb);
  2005. err = nilfs_segctor_sync(sci);
  2006. return err;
  2007. }
  2008. spin_lock(&nilfs->ns_inode_lock);
  2009. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  2010. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  2011. spin_unlock(&nilfs->ns_inode_lock);
  2012. nilfs_transaction_unlock(sb);
  2013. return 0;
  2014. }
  2015. spin_unlock(&nilfs->ns_inode_lock);
  2016. sci->sc_dsync_inode = ii;
  2017. sci->sc_dsync_start = start;
  2018. sci->sc_dsync_end = end;
  2019. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  2020. if (!err)
  2021. nilfs->ns_flushed_device = 0;
  2022. nilfs_transaction_unlock(sb);
  2023. return err;
  2024. }
  2025. #define FLUSH_FILE_BIT (0x1) /* data file only */
  2026. #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */
  2027. /**
  2028. * nilfs_segctor_accept - record accepted sequence count of log-write requests
  2029. * @sci: segment constructor object
  2030. */
  2031. static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
  2032. {
  2033. spin_lock(&sci->sc_state_lock);
  2034. sci->sc_seq_accepted = sci->sc_seq_request;
  2035. spin_unlock(&sci->sc_state_lock);
  2036. del_timer_sync(&sci->sc_timer);
  2037. }
  2038. /**
  2039. * nilfs_segctor_notify - notify the result of request to caller threads
  2040. * @sci: segment constructor object
  2041. * @mode: mode of log forming
  2042. * @err: error code to be notified
  2043. */
  2044. static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
  2045. {
  2046. /* Clear requests (even when the construction failed) */
  2047. spin_lock(&sci->sc_state_lock);
  2048. if (mode == SC_LSEG_SR) {
  2049. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  2050. sci->sc_seq_done = sci->sc_seq_accepted;
  2051. nilfs_segctor_wakeup(sci, err);
  2052. sci->sc_flush_request = 0;
  2053. } else {
  2054. if (mode == SC_FLUSH_FILE)
  2055. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  2056. else if (mode == SC_FLUSH_DAT)
  2057. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  2058. /* re-enable timer if checkpoint creation was not done */
  2059. if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2060. time_before(jiffies, sci->sc_timer.expires))
  2061. add_timer(&sci->sc_timer);
  2062. }
  2063. spin_unlock(&sci->sc_state_lock);
  2064. }
  2065. /**
  2066. * nilfs_segctor_construct - form logs and write them to disk
  2067. * @sci: segment constructor object
  2068. * @mode: mode of log forming
  2069. */
  2070. static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
  2071. {
  2072. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2073. struct nilfs_super_block **sbp;
  2074. int err = 0;
  2075. nilfs_segctor_accept(sci);
  2076. if (nilfs_discontinued(nilfs))
  2077. mode = SC_LSEG_SR;
  2078. if (!nilfs_segctor_confirm(sci))
  2079. err = nilfs_segctor_do_construct(sci, mode);
  2080. if (likely(!err)) {
  2081. if (mode != SC_FLUSH_DAT)
  2082. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2083. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2084. nilfs_discontinued(nilfs)) {
  2085. down_write(&nilfs->ns_sem);
  2086. err = -EIO;
  2087. sbp = nilfs_prepare_super(sci->sc_super,
  2088. nilfs_sb_will_flip(nilfs));
  2089. if (likely(sbp)) {
  2090. nilfs_set_log_cursor(sbp[0], nilfs);
  2091. err = nilfs_commit_super(sci->sc_super,
  2092. NILFS_SB_COMMIT);
  2093. }
  2094. up_write(&nilfs->ns_sem);
  2095. }
  2096. }
  2097. nilfs_segctor_notify(sci, mode, err);
  2098. return err;
  2099. }
  2100. static void nilfs_construction_timeout(unsigned long data)
  2101. {
  2102. struct task_struct *p = (struct task_struct *)data;
  2103. wake_up_process(p);
  2104. }
  2105. static void
  2106. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2107. {
  2108. struct nilfs_inode_info *ii, *n;
  2109. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2110. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2111. continue;
  2112. list_del_init(&ii->i_dirty);
  2113. truncate_inode_pages(&ii->vfs_inode.i_data, 0);
  2114. nilfs_btnode_cache_clear(&ii->i_btnode_cache);
  2115. iput(&ii->vfs_inode);
  2116. }
  2117. }
  2118. int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
  2119. void **kbufs)
  2120. {
  2121. struct the_nilfs *nilfs = sb->s_fs_info;
  2122. struct nilfs_sc_info *sci = nilfs->ns_writer;
  2123. struct nilfs_transaction_info ti;
  2124. int err;
  2125. if (unlikely(!sci))
  2126. return -EROFS;
  2127. nilfs_transaction_lock(sb, &ti, 1);
  2128. err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
  2129. if (unlikely(err))
  2130. goto out_unlock;
  2131. err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
  2132. if (unlikely(err)) {
  2133. nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
  2134. goto out_unlock;
  2135. }
  2136. sci->sc_freesegs = kbufs[4];
  2137. sci->sc_nfreesegs = argv[4].v_nmembs;
  2138. list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
  2139. for (;;) {
  2140. err = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2141. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2142. if (likely(!err))
  2143. break;
  2144. nilfs_msg(sb, KERN_WARNING, "error %d cleaning segments", err);
  2145. set_current_state(TASK_INTERRUPTIBLE);
  2146. schedule_timeout(sci->sc_interval);
  2147. }
  2148. if (nilfs_test_opt(nilfs, DISCARD)) {
  2149. int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
  2150. sci->sc_nfreesegs);
  2151. if (ret) {
  2152. nilfs_msg(sb, KERN_WARNING,
  2153. "error %d on discard request, turning discards off for the device",
  2154. ret);
  2155. nilfs_clear_opt(nilfs, DISCARD);
  2156. }
  2157. }
  2158. out_unlock:
  2159. sci->sc_freesegs = NULL;
  2160. sci->sc_nfreesegs = 0;
  2161. nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
  2162. nilfs_transaction_unlock(sb);
  2163. return err;
  2164. }
  2165. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2166. {
  2167. struct nilfs_transaction_info ti;
  2168. nilfs_transaction_lock(sci->sc_super, &ti, 0);
  2169. nilfs_segctor_construct(sci, mode);
  2170. /*
  2171. * Unclosed segment should be retried. We do this using sc_timer.
  2172. * Timeout of sc_timer will invoke complete construction which leads
  2173. * to close the current logical segment.
  2174. */
  2175. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2176. nilfs_segctor_start_timer(sci);
  2177. nilfs_transaction_unlock(sci->sc_super);
  2178. }
  2179. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2180. {
  2181. int mode = 0;
  2182. spin_lock(&sci->sc_state_lock);
  2183. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2184. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2185. spin_unlock(&sci->sc_state_lock);
  2186. if (mode) {
  2187. nilfs_segctor_do_construct(sci, mode);
  2188. spin_lock(&sci->sc_state_lock);
  2189. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2190. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2191. spin_unlock(&sci->sc_state_lock);
  2192. }
  2193. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2194. }
  2195. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2196. {
  2197. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2198. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2199. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2200. return SC_FLUSH_FILE;
  2201. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2202. return SC_FLUSH_DAT;
  2203. }
  2204. return SC_LSEG_SR;
  2205. }
  2206. /**
  2207. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2208. * @arg: pointer to a struct nilfs_sc_info.
  2209. *
  2210. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2211. * to execute segment constructions.
  2212. */
  2213. static int nilfs_segctor_thread(void *arg)
  2214. {
  2215. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2216. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2217. int timeout = 0;
  2218. sci->sc_timer.data = (unsigned long)current;
  2219. sci->sc_timer.function = nilfs_construction_timeout;
  2220. /* start sync. */
  2221. sci->sc_task = current;
  2222. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2223. nilfs_msg(sci->sc_super, KERN_INFO,
  2224. "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
  2225. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2226. spin_lock(&sci->sc_state_lock);
  2227. loop:
  2228. for (;;) {
  2229. int mode;
  2230. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2231. goto end_thread;
  2232. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2233. mode = SC_LSEG_SR;
  2234. else if (sci->sc_flush_request)
  2235. mode = nilfs_segctor_flush_mode(sci);
  2236. else
  2237. break;
  2238. spin_unlock(&sci->sc_state_lock);
  2239. nilfs_segctor_thread_construct(sci, mode);
  2240. spin_lock(&sci->sc_state_lock);
  2241. timeout = 0;
  2242. }
  2243. if (freezing(current)) {
  2244. spin_unlock(&sci->sc_state_lock);
  2245. try_to_freeze();
  2246. spin_lock(&sci->sc_state_lock);
  2247. } else {
  2248. DEFINE_WAIT(wait);
  2249. int should_sleep = 1;
  2250. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2251. TASK_INTERRUPTIBLE);
  2252. if (sci->sc_seq_request != sci->sc_seq_done)
  2253. should_sleep = 0;
  2254. else if (sci->sc_flush_request)
  2255. should_sleep = 0;
  2256. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2257. should_sleep = time_before(jiffies,
  2258. sci->sc_timer.expires);
  2259. if (should_sleep) {
  2260. spin_unlock(&sci->sc_state_lock);
  2261. schedule();
  2262. spin_lock(&sci->sc_state_lock);
  2263. }
  2264. finish_wait(&sci->sc_wait_daemon, &wait);
  2265. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2266. time_after_eq(jiffies, sci->sc_timer.expires));
  2267. if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
  2268. set_nilfs_discontinued(nilfs);
  2269. }
  2270. goto loop;
  2271. end_thread:
  2272. spin_unlock(&sci->sc_state_lock);
  2273. /* end sync. */
  2274. sci->sc_task = NULL;
  2275. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2276. return 0;
  2277. }
  2278. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2279. {
  2280. struct task_struct *t;
  2281. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2282. if (IS_ERR(t)) {
  2283. int err = PTR_ERR(t);
  2284. nilfs_msg(sci->sc_super, KERN_ERR,
  2285. "error %d creating segctord thread", err);
  2286. return err;
  2287. }
  2288. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2289. return 0;
  2290. }
  2291. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2292. __acquires(&sci->sc_state_lock)
  2293. __releases(&sci->sc_state_lock)
  2294. {
  2295. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2296. while (sci->sc_task) {
  2297. wake_up(&sci->sc_wait_daemon);
  2298. spin_unlock(&sci->sc_state_lock);
  2299. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2300. spin_lock(&sci->sc_state_lock);
  2301. }
  2302. }
  2303. /*
  2304. * Setup & clean-up functions
  2305. */
  2306. static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
  2307. struct nilfs_root *root)
  2308. {
  2309. struct the_nilfs *nilfs = sb->s_fs_info;
  2310. struct nilfs_sc_info *sci;
  2311. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2312. if (!sci)
  2313. return NULL;
  2314. sci->sc_super = sb;
  2315. nilfs_get_root(root);
  2316. sci->sc_root = root;
  2317. init_waitqueue_head(&sci->sc_wait_request);
  2318. init_waitqueue_head(&sci->sc_wait_daemon);
  2319. init_waitqueue_head(&sci->sc_wait_task);
  2320. spin_lock_init(&sci->sc_state_lock);
  2321. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2322. INIT_LIST_HEAD(&sci->sc_segbufs);
  2323. INIT_LIST_HEAD(&sci->sc_write_logs);
  2324. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2325. INIT_LIST_HEAD(&sci->sc_iput_queue);
  2326. INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
  2327. init_timer(&sci->sc_timer);
  2328. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2329. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2330. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2331. if (nilfs->ns_interval)
  2332. sci->sc_interval = HZ * nilfs->ns_interval;
  2333. if (nilfs->ns_watermark)
  2334. sci->sc_watermark = nilfs->ns_watermark;
  2335. return sci;
  2336. }
  2337. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2338. {
  2339. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2340. /*
  2341. * The segctord thread was stopped and its timer was removed.
  2342. * But some tasks remain.
  2343. */
  2344. do {
  2345. struct nilfs_transaction_info ti;
  2346. nilfs_transaction_lock(sci->sc_super, &ti, 0);
  2347. ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2348. nilfs_transaction_unlock(sci->sc_super);
  2349. flush_work(&sci->sc_iput_work);
  2350. } while (ret && retrycount-- > 0);
  2351. }
  2352. /**
  2353. * nilfs_segctor_destroy - destroy the segment constructor.
  2354. * @sci: nilfs_sc_info
  2355. *
  2356. * nilfs_segctor_destroy() kills the segctord thread and frees
  2357. * the nilfs_sc_info struct.
  2358. * Caller must hold the segment semaphore.
  2359. */
  2360. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2361. {
  2362. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2363. int flag;
  2364. up_write(&nilfs->ns_segctor_sem);
  2365. spin_lock(&sci->sc_state_lock);
  2366. nilfs_segctor_kill_thread(sci);
  2367. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2368. || sci->sc_seq_request != sci->sc_seq_done);
  2369. spin_unlock(&sci->sc_state_lock);
  2370. if (flush_work(&sci->sc_iput_work))
  2371. flag = true;
  2372. if (flag || !nilfs_segctor_confirm(sci))
  2373. nilfs_segctor_write_out(sci);
  2374. if (!list_empty(&sci->sc_dirty_files)) {
  2375. nilfs_msg(sci->sc_super, KERN_WARNING,
  2376. "disposed unprocessed dirty file(s) when stopping log writer");
  2377. nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
  2378. }
  2379. if (!list_empty(&sci->sc_iput_queue)) {
  2380. nilfs_msg(sci->sc_super, KERN_WARNING,
  2381. "disposed unprocessed inode(s) in iput queue when stopping log writer");
  2382. nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
  2383. }
  2384. WARN_ON(!list_empty(&sci->sc_segbufs));
  2385. WARN_ON(!list_empty(&sci->sc_write_logs));
  2386. nilfs_put_root(sci->sc_root);
  2387. down_write(&nilfs->ns_segctor_sem);
  2388. del_timer_sync(&sci->sc_timer);
  2389. kfree(sci);
  2390. }
  2391. /**
  2392. * nilfs_attach_log_writer - attach log writer
  2393. * @sb: super block instance
  2394. * @root: root object of the current filesystem tree
  2395. *
  2396. * This allocates a log writer object, initializes it, and starts the
  2397. * log writer.
  2398. *
  2399. * Return Value: On success, 0 is returned. On error, one of the following
  2400. * negative error code is returned.
  2401. *
  2402. * %-ENOMEM - Insufficient memory available.
  2403. */
  2404. int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
  2405. {
  2406. struct the_nilfs *nilfs = sb->s_fs_info;
  2407. int err;
  2408. if (nilfs->ns_writer) {
  2409. /*
  2410. * This happens if the filesystem was remounted
  2411. * read/write after nilfs_error degenerated it into a
  2412. * read-only mount.
  2413. */
  2414. nilfs_detach_log_writer(sb);
  2415. }
  2416. nilfs->ns_writer = nilfs_segctor_new(sb, root);
  2417. if (!nilfs->ns_writer)
  2418. return -ENOMEM;
  2419. err = nilfs_segctor_start_thread(nilfs->ns_writer);
  2420. if (err) {
  2421. kfree(nilfs->ns_writer);
  2422. nilfs->ns_writer = NULL;
  2423. }
  2424. return err;
  2425. }
  2426. /**
  2427. * nilfs_detach_log_writer - destroy log writer
  2428. * @sb: super block instance
  2429. *
  2430. * This kills log writer daemon, frees the log writer object, and
  2431. * destroys list of dirty files.
  2432. */
  2433. void nilfs_detach_log_writer(struct super_block *sb)
  2434. {
  2435. struct the_nilfs *nilfs = sb->s_fs_info;
  2436. LIST_HEAD(garbage_list);
  2437. down_write(&nilfs->ns_segctor_sem);
  2438. if (nilfs->ns_writer) {
  2439. nilfs_segctor_destroy(nilfs->ns_writer);
  2440. nilfs->ns_writer = NULL;
  2441. }
  2442. /* Force to free the list of dirty files */
  2443. spin_lock(&nilfs->ns_inode_lock);
  2444. if (!list_empty(&nilfs->ns_dirty_files)) {
  2445. list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
  2446. nilfs_msg(sb, KERN_WARNING,
  2447. "disposed unprocessed dirty file(s) when detaching log writer");
  2448. }
  2449. spin_unlock(&nilfs->ns_inode_lock);
  2450. up_write(&nilfs->ns_segctor_sem);
  2451. nilfs_dispose_list(nilfs, &garbage_list, 1);
  2452. }