fsl_dma.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978
  1. /*
  2. * Freescale DMA ALSA SoC PCM driver
  3. *
  4. * Author: Timur Tabi <timur@freescale.com>
  5. *
  6. * Copyright 2007-2010 Freescale Semiconductor, Inc.
  7. *
  8. * This file is licensed under the terms of the GNU General Public License
  9. * version 2. This program is licensed "as is" without any warranty of any
  10. * kind, whether express or implied.
  11. *
  12. * This driver implements ASoC support for the Elo DMA controller, which is
  13. * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  14. * the PCM driver is what handles the DMA buffer.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/init.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/delay.h>
  22. #include <linux/gfp.h>
  23. #include <linux/of_address.h>
  24. #include <linux/of_irq.h>
  25. #include <linux/of_platform.h>
  26. #include <linux/list.h>
  27. #include <linux/slab.h>
  28. #include <sound/core.h>
  29. #include <sound/pcm.h>
  30. #include <sound/pcm_params.h>
  31. #include <sound/soc.h>
  32. #include <asm/io.h>
  33. #include "fsl_dma.h"
  34. #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
  35. /*
  36. * The formats that the DMA controller supports, which is anything
  37. * that is 8, 16, or 32 bits.
  38. */
  39. #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
  40. SNDRV_PCM_FMTBIT_U8 | \
  41. SNDRV_PCM_FMTBIT_S16_LE | \
  42. SNDRV_PCM_FMTBIT_S16_BE | \
  43. SNDRV_PCM_FMTBIT_U16_LE | \
  44. SNDRV_PCM_FMTBIT_U16_BE | \
  45. SNDRV_PCM_FMTBIT_S24_LE | \
  46. SNDRV_PCM_FMTBIT_S24_BE | \
  47. SNDRV_PCM_FMTBIT_U24_LE | \
  48. SNDRV_PCM_FMTBIT_U24_BE | \
  49. SNDRV_PCM_FMTBIT_S32_LE | \
  50. SNDRV_PCM_FMTBIT_S32_BE | \
  51. SNDRV_PCM_FMTBIT_U32_LE | \
  52. SNDRV_PCM_FMTBIT_U32_BE)
  53. struct dma_object {
  54. struct snd_soc_platform_driver dai;
  55. dma_addr_t ssi_stx_phys;
  56. dma_addr_t ssi_srx_phys;
  57. unsigned int ssi_fifo_depth;
  58. struct ccsr_dma_channel __iomem *channel;
  59. unsigned int irq;
  60. bool assigned;
  61. char path[1];
  62. };
  63. /*
  64. * The number of DMA links to use. Two is the bare minimum, but if you
  65. * have really small links you might need more.
  66. */
  67. #define NUM_DMA_LINKS 2
  68. /** fsl_dma_private: p-substream DMA data
  69. *
  70. * Each substream has a 1-to-1 association with a DMA channel.
  71. *
  72. * The link[] array is first because it needs to be aligned on a 32-byte
  73. * boundary, so putting it first will ensure alignment without padding the
  74. * structure.
  75. *
  76. * @link[]: array of link descriptors
  77. * @dma_channel: pointer to the DMA channel's registers
  78. * @irq: IRQ for this DMA channel
  79. * @substream: pointer to the substream object, needed by the ISR
  80. * @ssi_sxx_phys: bus address of the STX or SRX register to use
  81. * @ld_buf_phys: physical address of the LD buffer
  82. * @current_link: index into link[] of the link currently being processed
  83. * @dma_buf_phys: physical address of the DMA buffer
  84. * @dma_buf_next: physical address of the next period to process
  85. * @dma_buf_end: physical address of the byte after the end of the DMA
  86. * @buffer period_size: the size of a single period
  87. * @num_periods: the number of periods in the DMA buffer
  88. */
  89. struct fsl_dma_private {
  90. struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  91. struct ccsr_dma_channel __iomem *dma_channel;
  92. unsigned int irq;
  93. struct snd_pcm_substream *substream;
  94. dma_addr_t ssi_sxx_phys;
  95. unsigned int ssi_fifo_depth;
  96. dma_addr_t ld_buf_phys;
  97. unsigned int current_link;
  98. dma_addr_t dma_buf_phys;
  99. dma_addr_t dma_buf_next;
  100. dma_addr_t dma_buf_end;
  101. size_t period_size;
  102. unsigned int num_periods;
  103. };
  104. /**
  105. * fsl_dma_hardare: define characteristics of the PCM hardware.
  106. *
  107. * The PCM hardware is the Freescale DMA controller. This structure defines
  108. * the capabilities of that hardware.
  109. *
  110. * Since the sampling rate and data format are not controlled by the DMA
  111. * controller, we specify no limits for those values. The only exception is
  112. * period_bytes_min, which is set to a reasonably low value to prevent the
  113. * DMA controller from generating too many interrupts per second.
  114. *
  115. * Since each link descriptor has a 32-bit byte count field, we set
  116. * period_bytes_max to the largest 32-bit number. We also have no maximum
  117. * number of periods.
  118. *
  119. * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
  120. * limitation in the SSI driver requires the sample rates for playback and
  121. * capture to be the same.
  122. */
  123. static const struct snd_pcm_hardware fsl_dma_hardware = {
  124. .info = SNDRV_PCM_INFO_INTERLEAVED |
  125. SNDRV_PCM_INFO_MMAP |
  126. SNDRV_PCM_INFO_MMAP_VALID |
  127. SNDRV_PCM_INFO_JOINT_DUPLEX |
  128. SNDRV_PCM_INFO_PAUSE,
  129. .formats = FSLDMA_PCM_FORMATS,
  130. .period_bytes_min = 512, /* A reasonable limit */
  131. .period_bytes_max = (u32) -1,
  132. .periods_min = NUM_DMA_LINKS,
  133. .periods_max = (unsigned int) -1,
  134. .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
  135. };
  136. /**
  137. * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
  138. *
  139. * This function should be called by the ISR whenever the DMA controller
  140. * halts data transfer.
  141. */
  142. static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
  143. {
  144. snd_pcm_stop_xrun(substream);
  145. }
  146. /**
  147. * fsl_dma_update_pointers - update LD pointers to point to the next period
  148. *
  149. * As each period is completed, this function changes the the link
  150. * descriptor pointers for that period to point to the next period.
  151. */
  152. static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
  153. {
  154. struct fsl_dma_link_descriptor *link =
  155. &dma_private->link[dma_private->current_link];
  156. /* Update our link descriptors to point to the next period. On a 36-bit
  157. * system, we also need to update the ESAD bits. We also set (keep) the
  158. * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
  159. */
  160. if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  161. link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
  162. #ifdef CONFIG_PHYS_64BIT
  163. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  164. upper_32_bits(dma_private->dma_buf_next));
  165. #endif
  166. } else {
  167. link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
  168. #ifdef CONFIG_PHYS_64BIT
  169. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  170. upper_32_bits(dma_private->dma_buf_next));
  171. #endif
  172. }
  173. /* Update our variables for next time */
  174. dma_private->dma_buf_next += dma_private->period_size;
  175. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  176. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  177. if (++dma_private->current_link >= NUM_DMA_LINKS)
  178. dma_private->current_link = 0;
  179. }
  180. /**
  181. * fsl_dma_isr: interrupt handler for the DMA controller
  182. *
  183. * @irq: IRQ of the DMA channel
  184. * @dev_id: pointer to the dma_private structure for this DMA channel
  185. */
  186. static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
  187. {
  188. struct fsl_dma_private *dma_private = dev_id;
  189. struct snd_pcm_substream *substream = dma_private->substream;
  190. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  191. struct device *dev = rtd->platform->dev;
  192. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  193. irqreturn_t ret = IRQ_NONE;
  194. u32 sr, sr2 = 0;
  195. /* We got an interrupt, so read the status register to see what we
  196. were interrupted for.
  197. */
  198. sr = in_be32(&dma_channel->sr);
  199. if (sr & CCSR_DMA_SR_TE) {
  200. dev_err(dev, "dma transmit error\n");
  201. fsl_dma_abort_stream(substream);
  202. sr2 |= CCSR_DMA_SR_TE;
  203. ret = IRQ_HANDLED;
  204. }
  205. if (sr & CCSR_DMA_SR_CH)
  206. ret = IRQ_HANDLED;
  207. if (sr & CCSR_DMA_SR_PE) {
  208. dev_err(dev, "dma programming error\n");
  209. fsl_dma_abort_stream(substream);
  210. sr2 |= CCSR_DMA_SR_PE;
  211. ret = IRQ_HANDLED;
  212. }
  213. if (sr & CCSR_DMA_SR_EOLNI) {
  214. sr2 |= CCSR_DMA_SR_EOLNI;
  215. ret = IRQ_HANDLED;
  216. }
  217. if (sr & CCSR_DMA_SR_CB)
  218. ret = IRQ_HANDLED;
  219. if (sr & CCSR_DMA_SR_EOSI) {
  220. /* Tell ALSA we completed a period. */
  221. snd_pcm_period_elapsed(substream);
  222. /*
  223. * Update our link descriptors to point to the next period. We
  224. * only need to do this if the number of periods is not equal to
  225. * the number of links.
  226. */
  227. if (dma_private->num_periods != NUM_DMA_LINKS)
  228. fsl_dma_update_pointers(dma_private);
  229. sr2 |= CCSR_DMA_SR_EOSI;
  230. ret = IRQ_HANDLED;
  231. }
  232. if (sr & CCSR_DMA_SR_EOLSI) {
  233. sr2 |= CCSR_DMA_SR_EOLSI;
  234. ret = IRQ_HANDLED;
  235. }
  236. /* Clear the bits that we set */
  237. if (sr2)
  238. out_be32(&dma_channel->sr, sr2);
  239. return ret;
  240. }
  241. /**
  242. * fsl_dma_new: initialize this PCM driver.
  243. *
  244. * This function is called when the codec driver calls snd_soc_new_pcms(),
  245. * once for each .dai_link in the machine driver's snd_soc_card
  246. * structure.
  247. *
  248. * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
  249. * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
  250. * is specified. Therefore, any DMA buffers we allocate will always be in low
  251. * memory, but we support for 36-bit physical addresses anyway.
  252. *
  253. * Regardless of where the memory is actually allocated, since the device can
  254. * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
  255. */
  256. static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
  257. {
  258. struct snd_card *card = rtd->card->snd_card;
  259. struct snd_pcm *pcm = rtd->pcm;
  260. int ret;
  261. ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
  262. if (ret)
  263. return ret;
  264. /* Some codecs have separate DAIs for playback and capture, so we
  265. * should allocate a DMA buffer only for the streams that are valid.
  266. */
  267. if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
  268. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  269. fsl_dma_hardware.buffer_bytes_max,
  270. &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
  271. if (ret) {
  272. dev_err(card->dev, "can't alloc playback dma buffer\n");
  273. return ret;
  274. }
  275. }
  276. if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
  277. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  278. fsl_dma_hardware.buffer_bytes_max,
  279. &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
  280. if (ret) {
  281. dev_err(card->dev, "can't alloc capture dma buffer\n");
  282. snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
  283. return ret;
  284. }
  285. }
  286. return 0;
  287. }
  288. /**
  289. * fsl_dma_open: open a new substream.
  290. *
  291. * Each substream has its own DMA buffer.
  292. *
  293. * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
  294. * descriptors that ping-pong from one period to the next. For example, if
  295. * there are six periods and two link descriptors, this is how they look
  296. * before playback starts:
  297. *
  298. * The last link descriptor
  299. * ____________ points back to the first
  300. * | |
  301. * V |
  302. * ___ ___ |
  303. * | |->| |->|
  304. * |___| |___|
  305. * | |
  306. * | |
  307. * V V
  308. * _________________________________________
  309. * | | | | | | | The DMA buffer is
  310. * | | | | | | | divided into 6 parts
  311. * |______|______|______|______|______|______|
  312. *
  313. * and here's how they look after the first period is finished playing:
  314. *
  315. * ____________
  316. * | |
  317. * V |
  318. * ___ ___ |
  319. * | |->| |->|
  320. * |___| |___|
  321. * | |
  322. * |______________
  323. * | |
  324. * V V
  325. * _________________________________________
  326. * | | | | | | |
  327. * | | | | | | |
  328. * |______|______|______|______|______|______|
  329. *
  330. * The first link descriptor now points to the third period. The DMA
  331. * controller is currently playing the second period. When it finishes, it
  332. * will jump back to the first descriptor and play the third period.
  333. *
  334. * There are four reasons we do this:
  335. *
  336. * 1. The only way to get the DMA controller to automatically restart the
  337. * transfer when it gets to the end of the buffer is to use chaining
  338. * mode. Basic direct mode doesn't offer that feature.
  339. * 2. We need to receive an interrupt at the end of every period. The DMA
  340. * controller can generate an interrupt at the end of every link transfer
  341. * (aka segment). Making each period into a DMA segment will give us the
  342. * interrupts we need.
  343. * 3. By creating only two link descriptors, regardless of the number of
  344. * periods, we do not need to reallocate the link descriptors if the
  345. * number of periods changes.
  346. * 4. All of the audio data is still stored in a single, contiguous DMA
  347. * buffer, which is what ALSA expects. We're just dividing it into
  348. * contiguous parts, and creating a link descriptor for each one.
  349. */
  350. static int fsl_dma_open(struct snd_pcm_substream *substream)
  351. {
  352. struct snd_pcm_runtime *runtime = substream->runtime;
  353. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  354. struct device *dev = rtd->platform->dev;
  355. struct dma_object *dma =
  356. container_of(rtd->platform->driver, struct dma_object, dai);
  357. struct fsl_dma_private *dma_private;
  358. struct ccsr_dma_channel __iomem *dma_channel;
  359. dma_addr_t ld_buf_phys;
  360. u64 temp_link; /* Pointer to next link descriptor */
  361. u32 mr;
  362. unsigned int channel;
  363. int ret = 0;
  364. unsigned int i;
  365. /*
  366. * Reject any DMA buffer whose size is not a multiple of the period
  367. * size. We need to make sure that the DMA buffer can be evenly divided
  368. * into periods.
  369. */
  370. ret = snd_pcm_hw_constraint_integer(runtime,
  371. SNDRV_PCM_HW_PARAM_PERIODS);
  372. if (ret < 0) {
  373. dev_err(dev, "invalid buffer size\n");
  374. return ret;
  375. }
  376. channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  377. if (dma->assigned) {
  378. dev_err(dev, "dma channel already assigned\n");
  379. return -EBUSY;
  380. }
  381. dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
  382. &ld_buf_phys, GFP_KERNEL);
  383. if (!dma_private) {
  384. dev_err(dev, "can't allocate dma private data\n");
  385. return -ENOMEM;
  386. }
  387. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  388. dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
  389. else
  390. dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
  391. dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
  392. dma_private->dma_channel = dma->channel;
  393. dma_private->irq = dma->irq;
  394. dma_private->substream = substream;
  395. dma_private->ld_buf_phys = ld_buf_phys;
  396. dma_private->dma_buf_phys = substream->dma_buffer.addr;
  397. ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
  398. dma_private);
  399. if (ret) {
  400. dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
  401. dma_private->irq, ret);
  402. dma_free_coherent(dev, sizeof(struct fsl_dma_private),
  403. dma_private, dma_private->ld_buf_phys);
  404. return ret;
  405. }
  406. dma->assigned = true;
  407. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  408. snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
  409. runtime->private_data = dma_private;
  410. /* Program the fixed DMA controller parameters */
  411. dma_channel = dma_private->dma_channel;
  412. temp_link = dma_private->ld_buf_phys +
  413. sizeof(struct fsl_dma_link_descriptor);
  414. for (i = 0; i < NUM_DMA_LINKS; i++) {
  415. dma_private->link[i].next = cpu_to_be64(temp_link);
  416. temp_link += sizeof(struct fsl_dma_link_descriptor);
  417. }
  418. /* The last link descriptor points to the first */
  419. dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
  420. /* Tell the DMA controller where the first link descriptor is */
  421. out_be32(&dma_channel->clndar,
  422. CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
  423. out_be32(&dma_channel->eclndar,
  424. CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
  425. /* The manual says the BCR must be clear before enabling EMP */
  426. out_be32(&dma_channel->bcr, 0);
  427. /*
  428. * Program the mode register for interrupts, external master control,
  429. * and source/destination hold. Also clear the Channel Abort bit.
  430. */
  431. mr = in_be32(&dma_channel->mr) &
  432. ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
  433. /*
  434. * We want External Master Start and External Master Pause enabled,
  435. * because the SSI is controlling the DMA controller. We want the DMA
  436. * controller to be set up in advance, and then we signal only the SSI
  437. * to start transferring.
  438. *
  439. * We want End-Of-Segment Interrupts enabled, because this will generate
  440. * an interrupt at the end of each segment (each link descriptor
  441. * represents one segment). Each DMA segment is the same thing as an
  442. * ALSA period, so this is how we get an interrupt at the end of every
  443. * period.
  444. *
  445. * We want Error Interrupt enabled, so that we can get an error if
  446. * the DMA controller is mis-programmed somehow.
  447. */
  448. mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
  449. CCSR_DMA_MR_EMS_EN;
  450. /* For playback, we want the destination address to be held. For
  451. capture, set the source address to be held. */
  452. mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
  453. CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
  454. out_be32(&dma_channel->mr, mr);
  455. return 0;
  456. }
  457. /**
  458. * fsl_dma_hw_params: continue initializing the DMA links
  459. *
  460. * This function obtains hardware parameters about the opened stream and
  461. * programs the DMA controller accordingly.
  462. *
  463. * One drawback of big-endian is that when copying integers of different
  464. * sizes to a fixed-sized register, the address to which the integer must be
  465. * copied is dependent on the size of the integer.
  466. *
  467. * For example, if P is the address of a 32-bit register, and X is a 32-bit
  468. * integer, then X should be copied to address P. However, if X is a 16-bit
  469. * integer, then it should be copied to P+2. If X is an 8-bit register,
  470. * then it should be copied to P+3.
  471. *
  472. * So for playback of 8-bit samples, the DMA controller must transfer single
  473. * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
  474. * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
  475. *
  476. * For 24-bit samples, the offset is 1 byte. However, the DMA controller
  477. * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
  478. * and 8 bytes at a time). So we do not support packed 24-bit samples.
  479. * 24-bit data must be padded to 32 bits.
  480. */
  481. static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
  482. struct snd_pcm_hw_params *hw_params)
  483. {
  484. struct snd_pcm_runtime *runtime = substream->runtime;
  485. struct fsl_dma_private *dma_private = runtime->private_data;
  486. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  487. struct device *dev = rtd->platform->dev;
  488. /* Number of bits per sample */
  489. unsigned int sample_bits =
  490. snd_pcm_format_physical_width(params_format(hw_params));
  491. /* Number of bytes per frame */
  492. unsigned int sample_bytes = sample_bits / 8;
  493. /* Bus address of SSI STX register */
  494. dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
  495. /* Size of the DMA buffer, in bytes */
  496. size_t buffer_size = params_buffer_bytes(hw_params);
  497. /* Number of bytes per period */
  498. size_t period_size = params_period_bytes(hw_params);
  499. /* Pointer to next period */
  500. dma_addr_t temp_addr = substream->dma_buffer.addr;
  501. /* Pointer to DMA controller */
  502. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  503. u32 mr; /* DMA Mode Register */
  504. unsigned int i;
  505. /* Initialize our DMA tracking variables */
  506. dma_private->period_size = period_size;
  507. dma_private->num_periods = params_periods(hw_params);
  508. dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
  509. dma_private->dma_buf_next = dma_private->dma_buf_phys +
  510. (NUM_DMA_LINKS * period_size);
  511. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  512. /* This happens if the number of periods == NUM_DMA_LINKS */
  513. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  514. mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
  515. CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
  516. /* Due to a quirk of the SSI's STX register, the target address
  517. * for the DMA operations depends on the sample size. So we calculate
  518. * that offset here. While we're at it, also tell the DMA controller
  519. * how much data to transfer per sample.
  520. */
  521. switch (sample_bits) {
  522. case 8:
  523. mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
  524. ssi_sxx_phys += 3;
  525. break;
  526. case 16:
  527. mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
  528. ssi_sxx_phys += 2;
  529. break;
  530. case 32:
  531. mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
  532. break;
  533. default:
  534. /* We should never get here */
  535. dev_err(dev, "unsupported sample size %u\n", sample_bits);
  536. return -EINVAL;
  537. }
  538. /*
  539. * BWC determines how many bytes are sent/received before the DMA
  540. * controller checks the SSI to see if it needs to stop. BWC should
  541. * always be a multiple of the frame size, so that we always transmit
  542. * whole frames. Each frame occupies two slots in the FIFO. The
  543. * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
  544. * (MR[BWC] can only represent even powers of two).
  545. *
  546. * To simplify the process, we set BWC to the largest value that is
  547. * less than or equal to the FIFO watermark. For playback, this ensures
  548. * that we transfer the maximum amount without overrunning the FIFO.
  549. * For capture, this ensures that we transfer the maximum amount without
  550. * underrunning the FIFO.
  551. *
  552. * f = SSI FIFO depth
  553. * w = SSI watermark value (which equals f - 2)
  554. * b = DMA bandwidth count (in bytes)
  555. * s = sample size (in bytes, which equals frame_size * 2)
  556. *
  557. * For playback, we never transmit more than the transmit FIFO
  558. * watermark, otherwise we might write more data than the FIFO can hold.
  559. * The watermark is equal to the FIFO depth minus two.
  560. *
  561. * For capture, two equations must hold:
  562. * w > f - (b / s)
  563. * w >= b / s
  564. *
  565. * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
  566. * b = s * w, which is equal to
  567. * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
  568. */
  569. mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
  570. out_be32(&dma_channel->mr, mr);
  571. for (i = 0; i < NUM_DMA_LINKS; i++) {
  572. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  573. link->count = cpu_to_be32(period_size);
  574. /* The snoop bit tells the DMA controller whether it should tell
  575. * the ECM to snoop during a read or write to an address. For
  576. * audio, we use DMA to transfer data between memory and an I/O
  577. * device (the SSI's STX0 or SRX0 register). Snooping is only
  578. * needed if there is a cache, so we need to snoop memory
  579. * addresses only. For playback, that means we snoop the source
  580. * but not the destination. For capture, we snoop the
  581. * destination but not the source.
  582. *
  583. * Note that failing to snoop properly is unlikely to cause
  584. * cache incoherency if the period size is larger than the
  585. * size of L1 cache. This is because filling in one period will
  586. * flush out the data for the previous period. So if you
  587. * increased period_bytes_min to a large enough size, you might
  588. * get more performance by not snooping, and you'll still be
  589. * okay. You'll need to update fsl_dma_update_pointers() also.
  590. */
  591. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  592. link->source_addr = cpu_to_be32(temp_addr);
  593. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  594. upper_32_bits(temp_addr));
  595. link->dest_addr = cpu_to_be32(ssi_sxx_phys);
  596. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
  597. upper_32_bits(ssi_sxx_phys));
  598. } else {
  599. link->source_addr = cpu_to_be32(ssi_sxx_phys);
  600. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
  601. upper_32_bits(ssi_sxx_phys));
  602. link->dest_addr = cpu_to_be32(temp_addr);
  603. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  604. upper_32_bits(temp_addr));
  605. }
  606. temp_addr += period_size;
  607. }
  608. return 0;
  609. }
  610. /**
  611. * fsl_dma_pointer: determine the current position of the DMA transfer
  612. *
  613. * This function is called by ALSA when ALSA wants to know where in the
  614. * stream buffer the hardware currently is.
  615. *
  616. * For playback, the SAR register contains the physical address of the most
  617. * recent DMA transfer. For capture, the value is in the DAR register.
  618. *
  619. * The base address of the buffer is stored in the source_addr field of the
  620. * first link descriptor.
  621. */
  622. static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
  623. {
  624. struct snd_pcm_runtime *runtime = substream->runtime;
  625. struct fsl_dma_private *dma_private = runtime->private_data;
  626. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  627. struct device *dev = rtd->platform->dev;
  628. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  629. dma_addr_t position;
  630. snd_pcm_uframes_t frames;
  631. /* Obtain the current DMA pointer, but don't read the ESAD bits if we
  632. * only have 32-bit DMA addresses. This function is typically called
  633. * in interrupt context, so we need to optimize it.
  634. */
  635. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  636. position = in_be32(&dma_channel->sar);
  637. #ifdef CONFIG_PHYS_64BIT
  638. position |= (u64)(in_be32(&dma_channel->satr) &
  639. CCSR_DMA_ATR_ESAD_MASK) << 32;
  640. #endif
  641. } else {
  642. position = in_be32(&dma_channel->dar);
  643. #ifdef CONFIG_PHYS_64BIT
  644. position |= (u64)(in_be32(&dma_channel->datr) &
  645. CCSR_DMA_ATR_ESAD_MASK) << 32;
  646. #endif
  647. }
  648. /*
  649. * When capture is started, the SSI immediately starts to fill its FIFO.
  650. * This means that the DMA controller is not started until the FIFO is
  651. * full. However, ALSA calls this function before that happens, when
  652. * MR.DAR is still zero. In this case, just return zero to indicate
  653. * that nothing has been received yet.
  654. */
  655. if (!position)
  656. return 0;
  657. if ((position < dma_private->dma_buf_phys) ||
  658. (position > dma_private->dma_buf_end)) {
  659. dev_err(dev, "dma pointer is out of range, halting stream\n");
  660. return SNDRV_PCM_POS_XRUN;
  661. }
  662. frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
  663. /*
  664. * If the current address is just past the end of the buffer, wrap it
  665. * around.
  666. */
  667. if (frames == runtime->buffer_size)
  668. frames = 0;
  669. return frames;
  670. }
  671. /**
  672. * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
  673. *
  674. * Release the resources allocated in fsl_dma_hw_params() and de-program the
  675. * registers.
  676. *
  677. * This function can be called multiple times.
  678. */
  679. static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
  680. {
  681. struct snd_pcm_runtime *runtime = substream->runtime;
  682. struct fsl_dma_private *dma_private = runtime->private_data;
  683. if (dma_private) {
  684. struct ccsr_dma_channel __iomem *dma_channel;
  685. dma_channel = dma_private->dma_channel;
  686. /* Stop the DMA */
  687. out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
  688. out_be32(&dma_channel->mr, 0);
  689. /* Reset all the other registers */
  690. out_be32(&dma_channel->sr, -1);
  691. out_be32(&dma_channel->clndar, 0);
  692. out_be32(&dma_channel->eclndar, 0);
  693. out_be32(&dma_channel->satr, 0);
  694. out_be32(&dma_channel->sar, 0);
  695. out_be32(&dma_channel->datr, 0);
  696. out_be32(&dma_channel->dar, 0);
  697. out_be32(&dma_channel->bcr, 0);
  698. out_be32(&dma_channel->nlndar, 0);
  699. out_be32(&dma_channel->enlndar, 0);
  700. }
  701. return 0;
  702. }
  703. /**
  704. * fsl_dma_close: close the stream.
  705. */
  706. static int fsl_dma_close(struct snd_pcm_substream *substream)
  707. {
  708. struct snd_pcm_runtime *runtime = substream->runtime;
  709. struct fsl_dma_private *dma_private = runtime->private_data;
  710. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  711. struct device *dev = rtd->platform->dev;
  712. struct dma_object *dma =
  713. container_of(rtd->platform->driver, struct dma_object, dai);
  714. if (dma_private) {
  715. if (dma_private->irq)
  716. free_irq(dma_private->irq, dma_private);
  717. /* Deallocate the fsl_dma_private structure */
  718. dma_free_coherent(dev, sizeof(struct fsl_dma_private),
  719. dma_private, dma_private->ld_buf_phys);
  720. substream->runtime->private_data = NULL;
  721. }
  722. dma->assigned = false;
  723. return 0;
  724. }
  725. /*
  726. * Remove this PCM driver.
  727. */
  728. static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
  729. {
  730. struct snd_pcm_substream *substream;
  731. unsigned int i;
  732. for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
  733. substream = pcm->streams[i].substream;
  734. if (substream) {
  735. snd_dma_free_pages(&substream->dma_buffer);
  736. substream->dma_buffer.area = NULL;
  737. substream->dma_buffer.addr = 0;
  738. }
  739. }
  740. }
  741. /**
  742. * find_ssi_node -- returns the SSI node that points to its DMA channel node
  743. *
  744. * Although this DMA driver attempts to operate independently of the other
  745. * devices, it still needs to determine some information about the SSI device
  746. * that it's working with. Unfortunately, the device tree does not contain
  747. * a pointer from the DMA channel node to the SSI node -- the pointer goes the
  748. * other way. So we need to scan the device tree for SSI nodes until we find
  749. * the one that points to the given DMA channel node. It's ugly, but at least
  750. * it's contained in this one function.
  751. */
  752. static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
  753. {
  754. struct device_node *ssi_np, *np;
  755. for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
  756. /* Check each DMA phandle to see if it points to us. We
  757. * assume that device_node pointers are a valid comparison.
  758. */
  759. np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
  760. of_node_put(np);
  761. if (np == dma_channel_np)
  762. return ssi_np;
  763. np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
  764. of_node_put(np);
  765. if (np == dma_channel_np)
  766. return ssi_np;
  767. }
  768. return NULL;
  769. }
  770. static struct snd_pcm_ops fsl_dma_ops = {
  771. .open = fsl_dma_open,
  772. .close = fsl_dma_close,
  773. .ioctl = snd_pcm_lib_ioctl,
  774. .hw_params = fsl_dma_hw_params,
  775. .hw_free = fsl_dma_hw_free,
  776. .pointer = fsl_dma_pointer,
  777. };
  778. static int fsl_soc_dma_probe(struct platform_device *pdev)
  779. {
  780. struct dma_object *dma;
  781. struct device_node *np = pdev->dev.of_node;
  782. struct device_node *ssi_np;
  783. struct resource res;
  784. const uint32_t *iprop;
  785. int ret;
  786. /* Find the SSI node that points to us. */
  787. ssi_np = find_ssi_node(np);
  788. if (!ssi_np) {
  789. dev_err(&pdev->dev, "cannot find parent SSI node\n");
  790. return -ENODEV;
  791. }
  792. ret = of_address_to_resource(ssi_np, 0, &res);
  793. if (ret) {
  794. dev_err(&pdev->dev, "could not determine resources for %s\n",
  795. ssi_np->full_name);
  796. of_node_put(ssi_np);
  797. return ret;
  798. }
  799. dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
  800. if (!dma) {
  801. dev_err(&pdev->dev, "could not allocate dma object\n");
  802. of_node_put(ssi_np);
  803. return -ENOMEM;
  804. }
  805. strcpy(dma->path, np->full_name);
  806. dma->dai.ops = &fsl_dma_ops;
  807. dma->dai.pcm_new = fsl_dma_new;
  808. dma->dai.pcm_free = fsl_dma_free_dma_buffers;
  809. /* Store the SSI-specific information that we need */
  810. dma->ssi_stx_phys = res.start + CCSR_SSI_STX0;
  811. dma->ssi_srx_phys = res.start + CCSR_SSI_SRX0;
  812. iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
  813. if (iprop)
  814. dma->ssi_fifo_depth = be32_to_cpup(iprop);
  815. else
  816. /* Older 8610 DTs didn't have the fifo-depth property */
  817. dma->ssi_fifo_depth = 8;
  818. of_node_put(ssi_np);
  819. ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
  820. if (ret) {
  821. dev_err(&pdev->dev, "could not register platform\n");
  822. kfree(dma);
  823. return ret;
  824. }
  825. dma->channel = of_iomap(np, 0);
  826. dma->irq = irq_of_parse_and_map(np, 0);
  827. dev_set_drvdata(&pdev->dev, dma);
  828. return 0;
  829. }
  830. static int fsl_soc_dma_remove(struct platform_device *pdev)
  831. {
  832. struct dma_object *dma = dev_get_drvdata(&pdev->dev);
  833. snd_soc_unregister_platform(&pdev->dev);
  834. iounmap(dma->channel);
  835. irq_dispose_mapping(dma->irq);
  836. kfree(dma);
  837. return 0;
  838. }
  839. static const struct of_device_id fsl_soc_dma_ids[] = {
  840. { .compatible = "fsl,ssi-dma-channel", },
  841. {}
  842. };
  843. MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
  844. static struct platform_driver fsl_soc_dma_driver = {
  845. .driver = {
  846. .name = "fsl-pcm-audio",
  847. .of_match_table = fsl_soc_dma_ids,
  848. },
  849. .probe = fsl_soc_dma_probe,
  850. .remove = fsl_soc_dma_remove,
  851. };
  852. module_platform_driver(fsl_soc_dma_driver);
  853. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  854. MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
  855. MODULE_LICENSE("GPL v2");