123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934 |
- /* Bottleneck Bandwidth and RTT (BBR) congestion control
- *
- * BBR congestion control computes the sending rate based on the delivery
- * rate (throughput) estimated from ACKs. In a nutshell:
- *
- * On each ACK, update our model of the network path:
- * bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
- * min_rtt = windowed_min(rtt, 10 seconds)
- * pacing_rate = pacing_gain * bottleneck_bandwidth
- * cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
- *
- * The core algorithm does not react directly to packet losses or delays,
- * although BBR may adjust the size of next send per ACK when loss is
- * observed, or adjust the sending rate if it estimates there is a
- * traffic policer, in order to keep the drop rate reasonable.
- *
- * BBR is described in detail in:
- * "BBR: Congestion-Based Congestion Control",
- * Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
- * Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
- *
- * There is a public e-mail list for discussing BBR development and testing:
- * https://groups.google.com/forum/#!forum/bbr-dev
- *
- * NOTE: BBR *must* be used with the fq qdisc ("man tc-fq") with pacing enabled,
- * since pacing is integral to the BBR design and implementation.
- * BBR without pacing would not function properly, and may incur unnecessary
- * high packet loss rates.
- */
- #include <linux/module.h>
- #include <net/tcp.h>
- #include <linux/inet_diag.h>
- #include <linux/inet.h>
- #include <linux/random.h>
- #include <linux/win_minmax.h>
- /* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
- * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
- * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
- * Since the minimum window is >=4 packets, the lower bound isn't
- * an issue. The upper bound isn't an issue with existing technologies.
- */
- #define BW_SCALE 24
- #define BW_UNIT (1 << BW_SCALE)
- #define BBR_SCALE 8 /* scaling factor for fractions in BBR (e.g. gains) */
- #define BBR_UNIT (1 << BBR_SCALE)
- /* BBR has the following modes for deciding how fast to send: */
- enum bbr_mode {
- BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */
- BBR_DRAIN, /* drain any queue created during startup */
- BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */
- BBR_PROBE_RTT, /* cut cwnd to min to probe min_rtt */
- };
- /* BBR congestion control block */
- struct bbr {
- u32 min_rtt_us; /* min RTT in min_rtt_win_sec window */
- u32 min_rtt_stamp; /* timestamp of min_rtt_us */
- u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode */
- struct minmax bw; /* Max recent delivery rate in pkts/uS << 24 */
- u32 rtt_cnt; /* count of packet-timed rounds elapsed */
- u32 next_rtt_delivered; /* scb->tx.delivered at end of round */
- struct skb_mstamp cycle_mstamp; /* time of this cycle phase start */
- u32 mode:3, /* current bbr_mode in state machine */
- prev_ca_state:3, /* CA state on previous ACK */
- packet_conservation:1, /* use packet conservation? */
- restore_cwnd:1, /* decided to revert cwnd to old value */
- round_start:1, /* start of packet-timed tx->ack round? */
- tso_segs_goal:7, /* segments we want in each skb we send */
- idle_restart:1, /* restarting after idle? */
- probe_rtt_round_done:1, /* a BBR_PROBE_RTT round at 4 pkts? */
- unused:5,
- lt_is_sampling:1, /* taking long-term ("LT") samples now? */
- lt_rtt_cnt:7, /* round trips in long-term interval */
- lt_use_bw:1; /* use lt_bw as our bw estimate? */
- u32 lt_bw; /* LT est delivery rate in pkts/uS << 24 */
- u32 lt_last_delivered; /* LT intvl start: tp->delivered */
- u32 lt_last_stamp; /* LT intvl start: tp->delivered_mstamp */
- u32 lt_last_lost; /* LT intvl start: tp->lost */
- u32 pacing_gain:10, /* current gain for setting pacing rate */
- cwnd_gain:10, /* current gain for setting cwnd */
- full_bw_reached:1, /* reached full bw in Startup? */
- full_bw_cnt:2, /* number of rounds without large bw gains */
- cycle_idx:3, /* current index in pacing_gain cycle array */
- has_seen_rtt:1, /* have we seen an RTT sample yet? */
- unused_b:5;
- u32 prior_cwnd; /* prior cwnd upon entering loss recovery */
- u32 full_bw; /* recent bw, to estimate if pipe is full */
- };
- #define CYCLE_LEN 8 /* number of phases in a pacing gain cycle */
- /* Window length of bw filter (in rounds): */
- static const int bbr_bw_rtts = CYCLE_LEN + 2;
- /* Window length of min_rtt filter (in sec): */
- static const u32 bbr_min_rtt_win_sec = 10;
- /* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
- static const u32 bbr_probe_rtt_mode_ms = 200;
- /* Skip TSO below the following bandwidth (bits/sec): */
- static const int bbr_min_tso_rate = 1200000;
- /* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
- * that will allow a smoothly increasing pacing rate that will double each RTT
- * and send the same number of packets per RTT that an un-paced, slow-starting
- * Reno or CUBIC flow would:
- */
- static const int bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1;
- /* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
- * the queue created in BBR_STARTUP in a single round:
- */
- static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
- /* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
- static const int bbr_cwnd_gain = BBR_UNIT * 2;
- /* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
- static const int bbr_pacing_gain[] = {
- BBR_UNIT * 5 / 4, /* probe for more available bw */
- BBR_UNIT * 3 / 4, /* drain queue and/or yield bw to other flows */
- BBR_UNIT, BBR_UNIT, BBR_UNIT, /* cruise at 1.0*bw to utilize pipe, */
- BBR_UNIT, BBR_UNIT, BBR_UNIT /* without creating excess queue... */
- };
- /* Randomize the starting gain cycling phase over N phases: */
- static const u32 bbr_cycle_rand = 7;
- /* Try to keep at least this many packets in flight, if things go smoothly. For
- * smooth functioning, a sliding window protocol ACKing every other packet
- * needs at least 4 packets in flight:
- */
- static const u32 bbr_cwnd_min_target = 4;
- /* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
- /* If bw has increased significantly (1.25x), there may be more bw available: */
- static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
- /* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
- static const u32 bbr_full_bw_cnt = 3;
- /* "long-term" ("LT") bandwidth estimator parameters... */
- /* The minimum number of rounds in an LT bw sampling interval: */
- static const u32 bbr_lt_intvl_min_rtts = 4;
- /* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
- static const u32 bbr_lt_loss_thresh = 50;
- /* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
- static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
- /* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
- static const u32 bbr_lt_bw_diff = 4000 / 8;
- /* If we estimate we're policed, use lt_bw for this many round trips: */
- static const u32 bbr_lt_bw_max_rtts = 48;
- /* Do we estimate that STARTUP filled the pipe? */
- static bool bbr_full_bw_reached(const struct sock *sk)
- {
- const struct bbr *bbr = inet_csk_ca(sk);
- return bbr->full_bw_reached;
- }
- /* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
- static u32 bbr_max_bw(const struct sock *sk)
- {
- struct bbr *bbr = inet_csk_ca(sk);
- return minmax_get(&bbr->bw);
- }
- /* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
- static u32 bbr_bw(const struct sock *sk)
- {
- struct bbr *bbr = inet_csk_ca(sk);
- return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
- }
- /* Return rate in bytes per second, optionally with a gain.
- * The order here is chosen carefully to avoid overflow of u64. This should
- * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
- */
- static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
- {
- rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
- rate *= gain;
- rate >>= BBR_SCALE;
- rate *= USEC_PER_SEC;
- return rate >> BW_SCALE;
- }
- /* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
- static u32 bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
- {
- u64 rate = bw;
- rate = bbr_rate_bytes_per_sec(sk, rate, gain);
- rate = min_t(u64, rate, sk->sk_max_pacing_rate);
- return rate;
- }
- /* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
- static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
- {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bbr *bbr = inet_csk_ca(sk);
- u64 bw;
- u32 rtt_us;
- if (tp->srtt_us) { /* any RTT sample yet? */
- rtt_us = max(tp->srtt_us >> 3, 1U);
- bbr->has_seen_rtt = 1;
- } else { /* no RTT sample yet */
- rtt_us = USEC_PER_MSEC; /* use nominal default RTT */
- }
- bw = (u64)tp->snd_cwnd * BW_UNIT;
- do_div(bw, rtt_us);
- sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
- }
- /* Pace using current bw estimate and a gain factor. In order to help drive the
- * network toward lower queues while maintaining high utilization and low
- * latency, the average pacing rate aims to be slightly (~1%) lower than the
- * estimated bandwidth. This is an important aspect of the design. In this
- * implementation this slightly lower pacing rate is achieved implicitly by not
- * including link-layer headers in the packet size used for the pacing rate.
- */
- static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
- {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bbr *bbr = inet_csk_ca(sk);
- u32 rate = bbr_bw_to_pacing_rate(sk, bw, gain);
- if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
- bbr_init_pacing_rate_from_rtt(sk);
- if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
- sk->sk_pacing_rate = rate;
- }
- /* Return count of segments we want in the skbs we send, or 0 for default. */
- static u32 bbr_tso_segs_goal(struct sock *sk)
- {
- struct bbr *bbr = inet_csk_ca(sk);
- return bbr->tso_segs_goal;
- }
- static void bbr_set_tso_segs_goal(struct sock *sk)
- {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bbr *bbr = inet_csk_ca(sk);
- u32 min_segs;
- min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
- bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),
- 0x7FU);
- }
- /* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
- static void bbr_save_cwnd(struct sock *sk)
- {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bbr *bbr = inet_csk_ca(sk);
- if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
- bbr->prior_cwnd = tp->snd_cwnd; /* this cwnd is good enough */
- else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
- bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
- }
- static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
- {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bbr *bbr = inet_csk_ca(sk);
- if (event == CA_EVENT_TX_START && tp->app_limited) {
- bbr->idle_restart = 1;
- /* Avoid pointless buffer overflows: pace at est. bw if we don't
- * need more speed (we're restarting from idle and app-limited).
- */
- if (bbr->mode == BBR_PROBE_BW)
- bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
- }
- }
- /* Find target cwnd. Right-size the cwnd based on min RTT and the
- * estimated bottleneck bandwidth:
- *
- * cwnd = bw * min_rtt * gain = BDP * gain
- *
- * The key factor, gain, controls the amount of queue. While a small gain
- * builds a smaller queue, it becomes more vulnerable to noise in RTT
- * measurements (e.g., delayed ACKs or other ACK compression effects). This
- * noise may cause BBR to under-estimate the rate.
- *
- * To achieve full performance in high-speed paths, we budget enough cwnd to
- * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
- * - one skb in sending host Qdisc,
- * - one skb in sending host TSO/GSO engine
- * - one skb being received by receiver host LRO/GRO/delayed-ACK engine
- * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
- * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
- * which allows 2 outstanding 2-packet sequences, to try to keep pipe
- * full even with ACK-every-other-packet delayed ACKs.
- */
- static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
- {
- struct bbr *bbr = inet_csk_ca(sk);
- u32 cwnd;
- u64 w;
- /* If we've never had a valid RTT sample, cap cwnd at the initial
- * default. This should only happen when the connection is not using TCP
- * timestamps and has retransmitted all of the SYN/SYNACK/data packets
- * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
- * case we need to slow-start up toward something safe: TCP_INIT_CWND.
- */
- if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */
- return TCP_INIT_CWND; /* be safe: cap at default initial cwnd*/
- w = (u64)bw * bbr->min_rtt_us;
- /* Apply a gain to the given value, then remove the BW_SCALE shift. */
- cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
- /* Allow enough full-sized skbs in flight to utilize end systems. */
- cwnd += 3 * bbr->tso_segs_goal;
- /* Reduce delayed ACKs by rounding up cwnd to the next even number. */
- cwnd = (cwnd + 1) & ~1U;
- return cwnd;
- }
- /* An optimization in BBR to reduce losses: On the first round of recovery, we
- * follow the packet conservation principle: send P packets per P packets acked.
- * After that, we slow-start and send at most 2*P packets per P packets acked.
- * After recovery finishes, or upon undo, we restore the cwnd we had when
- * recovery started (capped by the target cwnd based on estimated BDP).
- *
- * TODO(ycheng/ncardwell): implement a rate-based approach.
- */
- static bool bbr_set_cwnd_to_recover_or_restore(
- struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
- {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bbr *bbr = inet_csk_ca(sk);
- u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
- u32 cwnd = tp->snd_cwnd;
- /* An ACK for P pkts should release at most 2*P packets. We do this
- * in two steps. First, here we deduct the number of lost packets.
- * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
- */
- if (rs->losses > 0)
- cwnd = max_t(s32, cwnd - rs->losses, 1);
- if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
- /* Starting 1st round of Recovery, so do packet conservation. */
- bbr->packet_conservation = 1;
- bbr->next_rtt_delivered = tp->delivered; /* start round now */
- /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
- cwnd = tcp_packets_in_flight(tp) + acked;
- } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
- /* Exiting loss recovery; restore cwnd saved before recovery. */
- bbr->restore_cwnd = 1;
- bbr->packet_conservation = 0;
- }
- bbr->prev_ca_state = state;
- if (bbr->restore_cwnd) {
- /* Restore cwnd after exiting loss recovery or PROBE_RTT. */
- cwnd = max(cwnd, bbr->prior_cwnd);
- bbr->restore_cwnd = 0;
- }
- if (bbr->packet_conservation) {
- *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
- return true; /* yes, using packet conservation */
- }
- *new_cwnd = cwnd;
- return false;
- }
- /* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
- * has drawn us down below target), or snap down to target if we're above it.
- */
- static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
- u32 acked, u32 bw, int gain)
- {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bbr *bbr = inet_csk_ca(sk);
- u32 cwnd = 0, target_cwnd = 0;
- if (!acked)
- return;
- if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
- goto done;
- /* If we're below target cwnd, slow start cwnd toward target cwnd. */
- target_cwnd = bbr_target_cwnd(sk, bw, gain);
- if (bbr_full_bw_reached(sk)) /* only cut cwnd if we filled the pipe */
- cwnd = min(cwnd + acked, target_cwnd);
- else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
- cwnd = cwnd + acked;
- cwnd = max(cwnd, bbr_cwnd_min_target);
- done:
- tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp); /* apply global cap */
- if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */
- tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
- }
- /* End cycle phase if it's time and/or we hit the phase's in-flight target. */
- static bool bbr_is_next_cycle_phase(struct sock *sk,
- const struct rate_sample *rs)
- {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bbr *bbr = inet_csk_ca(sk);
- bool is_full_length =
- skb_mstamp_us_delta(&tp->delivered_mstamp, &bbr->cycle_mstamp) >
- bbr->min_rtt_us;
- u32 inflight, bw;
- /* The pacing_gain of 1.0 paces at the estimated bw to try to fully
- * use the pipe without increasing the queue.
- */
- if (bbr->pacing_gain == BBR_UNIT)
- return is_full_length; /* just use wall clock time */
- inflight = rs->prior_in_flight; /* what was in-flight before ACK? */
- bw = bbr_max_bw(sk);
- /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
- * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
- * small (e.g. on a LAN). We do not persist if packets are lost, since
- * a path with small buffers may not hold that much.
- */
- if (bbr->pacing_gain > BBR_UNIT)
- return is_full_length &&
- (rs->losses || /* perhaps pacing_gain*BDP won't fit */
- inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
- /* A pacing_gain < 1.0 tries to drain extra queue we added if bw
- * probing didn't find more bw. If inflight falls to match BDP then we
- * estimate queue is drained; persisting would underutilize the pipe.
- */
- return is_full_length ||
- inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
- }
- static void bbr_advance_cycle_phase(struct sock *sk)
- {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bbr *bbr = inet_csk_ca(sk);
- bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
- bbr->cycle_mstamp = tp->delivered_mstamp;
- bbr->pacing_gain = bbr->lt_use_bw ? BBR_UNIT :
- bbr_pacing_gain[bbr->cycle_idx];
- }
- /* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
- static void bbr_update_cycle_phase(struct sock *sk,
- const struct rate_sample *rs)
- {
- struct bbr *bbr = inet_csk_ca(sk);
- if (bbr->mode == BBR_PROBE_BW && bbr_is_next_cycle_phase(sk, rs))
- bbr_advance_cycle_phase(sk);
- }
- static void bbr_reset_startup_mode(struct sock *sk)
- {
- struct bbr *bbr = inet_csk_ca(sk);
- bbr->mode = BBR_STARTUP;
- bbr->pacing_gain = bbr_high_gain;
- bbr->cwnd_gain = bbr_high_gain;
- }
- static void bbr_reset_probe_bw_mode(struct sock *sk)
- {
- struct bbr *bbr = inet_csk_ca(sk);
- bbr->mode = BBR_PROBE_BW;
- bbr->pacing_gain = BBR_UNIT;
- bbr->cwnd_gain = bbr_cwnd_gain;
- bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
- bbr_advance_cycle_phase(sk); /* flip to next phase of gain cycle */
- }
- static void bbr_reset_mode(struct sock *sk)
- {
- if (!bbr_full_bw_reached(sk))
- bbr_reset_startup_mode(sk);
- else
- bbr_reset_probe_bw_mode(sk);
- }
- /* Start a new long-term sampling interval. */
- static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
- {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bbr *bbr = inet_csk_ca(sk);
- bbr->lt_last_stamp = tp->delivered_mstamp.stamp_jiffies;
- bbr->lt_last_delivered = tp->delivered;
- bbr->lt_last_lost = tp->lost;
- bbr->lt_rtt_cnt = 0;
- }
- /* Completely reset long-term bandwidth sampling. */
- static void bbr_reset_lt_bw_sampling(struct sock *sk)
- {
- struct bbr *bbr = inet_csk_ca(sk);
- bbr->lt_bw = 0;
- bbr->lt_use_bw = 0;
- bbr->lt_is_sampling = false;
- bbr_reset_lt_bw_sampling_interval(sk);
- }
- /* Long-term bw sampling interval is done. Estimate whether we're policed. */
- static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
- {
- struct bbr *bbr = inet_csk_ca(sk);
- u32 diff;
- if (bbr->lt_bw) { /* do we have bw from a previous interval? */
- /* Is new bw close to the lt_bw from the previous interval? */
- diff = abs(bw - bbr->lt_bw);
- if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
- (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
- bbr_lt_bw_diff)) {
- /* All criteria are met; estimate we're policed. */
- bbr->lt_bw = (bw + bbr->lt_bw) >> 1; /* avg 2 intvls */
- bbr->lt_use_bw = 1;
- bbr->pacing_gain = BBR_UNIT; /* try to avoid drops */
- bbr->lt_rtt_cnt = 0;
- return;
- }
- }
- bbr->lt_bw = bw;
- bbr_reset_lt_bw_sampling_interval(sk);
- }
- /* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
- * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
- * explicitly models their policed rate, to reduce unnecessary losses. We
- * estimate that we're policed if we see 2 consecutive sampling intervals with
- * consistent throughput and high packet loss. If we think we're being policed,
- * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
- */
- static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
- {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bbr *bbr = inet_csk_ca(sk);
- u32 lost, delivered;
- u64 bw;
- s32 t;
- if (bbr->lt_use_bw) { /* already using long-term rate, lt_bw? */
- if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
- ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
- bbr_reset_lt_bw_sampling(sk); /* stop using lt_bw */
- bbr_reset_probe_bw_mode(sk); /* restart gain cycling */
- }
- return;
- }
- /* Wait for the first loss before sampling, to let the policer exhaust
- * its tokens and estimate the steady-state rate allowed by the policer.
- * Starting samples earlier includes bursts that over-estimate the bw.
- */
- if (!bbr->lt_is_sampling) {
- if (!rs->losses)
- return;
- bbr_reset_lt_bw_sampling_interval(sk);
- bbr->lt_is_sampling = true;
- }
- /* To avoid underestimates, reset sampling if we run out of data. */
- if (rs->is_app_limited) {
- bbr_reset_lt_bw_sampling(sk);
- return;
- }
- if (bbr->round_start)
- bbr->lt_rtt_cnt++; /* count round trips in this interval */
- if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
- return; /* sampling interval needs to be longer */
- if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
- bbr_reset_lt_bw_sampling(sk); /* interval is too long */
- return;
- }
- /* End sampling interval when a packet is lost, so we estimate the
- * policer tokens were exhausted. Stopping the sampling before the
- * tokens are exhausted under-estimates the policed rate.
- */
- if (!rs->losses)
- return;
- /* Calculate packets lost and delivered in sampling interval. */
- lost = tp->lost - bbr->lt_last_lost;
- delivered = tp->delivered - bbr->lt_last_delivered;
- /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
- if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
- return;
- /* Find average delivery rate in this sampling interval. */
- t = (s32)(tp->delivered_mstamp.stamp_jiffies - bbr->lt_last_stamp);
- if (t < 1)
- return; /* interval is less than one jiffy, so wait */
- t = jiffies_to_usecs(t);
- /* Interval long enough for jiffies_to_usecs() to return a bogus 0? */
- if (t < 1) {
- bbr_reset_lt_bw_sampling(sk); /* interval too long; reset */
- return;
- }
- bw = (u64)delivered * BW_UNIT;
- do_div(bw, t);
- bbr_lt_bw_interval_done(sk, bw);
- }
- /* Estimate the bandwidth based on how fast packets are delivered */
- static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
- {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bbr *bbr = inet_csk_ca(sk);
- u64 bw;
- bbr->round_start = 0;
- if (rs->delivered < 0 || rs->interval_us <= 0)
- return; /* Not a valid observation */
- /* See if we've reached the next RTT */
- if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
- bbr->next_rtt_delivered = tp->delivered;
- bbr->rtt_cnt++;
- bbr->round_start = 1;
- bbr->packet_conservation = 0;
- }
- bbr_lt_bw_sampling(sk, rs);
- /* Divide delivered by the interval to find a (lower bound) bottleneck
- * bandwidth sample. Delivered is in packets and interval_us in uS and
- * ratio will be <<1 for most connections. So delivered is first scaled.
- */
- bw = (u64)rs->delivered * BW_UNIT;
- do_div(bw, rs->interval_us);
- /* If this sample is application-limited, it is likely to have a very
- * low delivered count that represents application behavior rather than
- * the available network rate. Such a sample could drag down estimated
- * bw, causing needless slow-down. Thus, to continue to send at the
- * last measured network rate, we filter out app-limited samples unless
- * they describe the path bw at least as well as our bw model.
- *
- * So the goal during app-limited phase is to proceed with the best
- * network rate no matter how long. We automatically leave this
- * phase when app writes faster than the network can deliver :)
- */
- if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
- /* Incorporate new sample into our max bw filter. */
- minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
- }
- }
- /* Estimate when the pipe is full, using the change in delivery rate: BBR
- * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
- * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
- * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
- * higher rwin, 3: we get higher delivery rate samples. Or transient
- * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
- * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
- */
- static void bbr_check_full_bw_reached(struct sock *sk,
- const struct rate_sample *rs)
- {
- struct bbr *bbr = inet_csk_ca(sk);
- u32 bw_thresh;
- if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
- return;
- bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
- if (bbr_max_bw(sk) >= bw_thresh) {
- bbr->full_bw = bbr_max_bw(sk);
- bbr->full_bw_cnt = 0;
- return;
- }
- ++bbr->full_bw_cnt;
- bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt;
- }
- /* If pipe is probably full, drain the queue and then enter steady-state. */
- static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
- {
- struct bbr *bbr = inet_csk_ca(sk);
- if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
- bbr->mode = BBR_DRAIN; /* drain queue we created */
- bbr->pacing_gain = bbr_drain_gain; /* pace slow to drain */
- bbr->cwnd_gain = bbr_high_gain; /* maintain cwnd */
- } /* fall through to check if in-flight is already small: */
- if (bbr->mode == BBR_DRAIN &&
- tcp_packets_in_flight(tcp_sk(sk)) <=
- bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
- bbr_reset_probe_bw_mode(sk); /* we estimate queue is drained */
- }
- /* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
- * periodically drain the bottleneck queue, to converge to measure the true
- * min_rtt (unloaded propagation delay). This allows the flows to keep queues
- * small (reducing queuing delay and packet loss) and achieve fairness among
- * BBR flows.
- *
- * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
- * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
- * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
- * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
- * re-enter the previous mode. BBR uses 200ms to approximately bound the
- * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
- *
- * Note that flows need only pay 2% if they are busy sending over the last 10
- * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
- * natural silences or low-rate periods within 10 seconds where the rate is low
- * enough for long enough to drain its queue in the bottleneck. We pick up
- * these min RTT measurements opportunistically with our min_rtt filter. :-)
- */
- static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
- {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bbr *bbr = inet_csk_ca(sk);
- bool filter_expired;
- /* Track min RTT seen in the min_rtt_win_sec filter window: */
- filter_expired = after(tcp_time_stamp,
- bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
- if (rs->rtt_us >= 0 &&
- (rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {
- bbr->min_rtt_us = rs->rtt_us;
- bbr->min_rtt_stamp = tcp_time_stamp;
- }
- if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
- !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
- bbr->mode = BBR_PROBE_RTT; /* dip, drain queue */
- bbr->pacing_gain = BBR_UNIT;
- bbr->cwnd_gain = BBR_UNIT;
- bbr_save_cwnd(sk); /* note cwnd so we can restore it */
- bbr->probe_rtt_done_stamp = 0;
- }
- if (bbr->mode == BBR_PROBE_RTT) {
- /* Ignore low rate samples during this mode. */
- tp->app_limited =
- (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
- /* Maintain min packets in flight for max(200 ms, 1 round). */
- if (!bbr->probe_rtt_done_stamp &&
- tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
- bbr->probe_rtt_done_stamp = tcp_time_stamp +
- msecs_to_jiffies(bbr_probe_rtt_mode_ms);
- bbr->probe_rtt_round_done = 0;
- bbr->next_rtt_delivered = tp->delivered;
- } else if (bbr->probe_rtt_done_stamp) {
- if (bbr->round_start)
- bbr->probe_rtt_round_done = 1;
- if (bbr->probe_rtt_round_done &&
- after(tcp_time_stamp, bbr->probe_rtt_done_stamp)) {
- bbr->min_rtt_stamp = tcp_time_stamp;
- bbr->restore_cwnd = 1; /* snap to prior_cwnd */
- bbr_reset_mode(sk);
- }
- }
- }
- /* Restart after idle ends only once we process a new S/ACK for data */
- if (rs->delivered > 0)
- bbr->idle_restart = 0;
- }
- static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
- {
- bbr_update_bw(sk, rs);
- bbr_update_cycle_phase(sk, rs);
- bbr_check_full_bw_reached(sk, rs);
- bbr_check_drain(sk, rs);
- bbr_update_min_rtt(sk, rs);
- }
- static void bbr_main(struct sock *sk, const struct rate_sample *rs)
- {
- struct bbr *bbr = inet_csk_ca(sk);
- u32 bw;
- bbr_update_model(sk, rs);
- bw = bbr_bw(sk);
- bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
- bbr_set_tso_segs_goal(sk);
- bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
- }
- static void bbr_init(struct sock *sk)
- {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bbr *bbr = inet_csk_ca(sk);
- bbr->prior_cwnd = 0;
- bbr->tso_segs_goal = 0; /* default segs per skb until first ACK */
- bbr->rtt_cnt = 0;
- bbr->next_rtt_delivered = 0;
- bbr->prev_ca_state = TCP_CA_Open;
- bbr->packet_conservation = 0;
- bbr->probe_rtt_done_stamp = 0;
- bbr->probe_rtt_round_done = 0;
- bbr->min_rtt_us = tcp_min_rtt(tp);
- bbr->min_rtt_stamp = tcp_time_stamp;
- minmax_reset(&bbr->bw, bbr->rtt_cnt, 0); /* init max bw to 0 */
- bbr->has_seen_rtt = 0;
- bbr_init_pacing_rate_from_rtt(sk);
- bbr->restore_cwnd = 0;
- bbr->round_start = 0;
- bbr->idle_restart = 0;
- bbr->full_bw_reached = 0;
- bbr->full_bw = 0;
- bbr->full_bw_cnt = 0;
- bbr->cycle_mstamp.v64 = 0;
- bbr->cycle_idx = 0;
- bbr_reset_lt_bw_sampling(sk);
- bbr_reset_startup_mode(sk);
- }
- static u32 bbr_sndbuf_expand(struct sock *sk)
- {
- /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
- return 3;
- }
- /* In theory BBR does not need to undo the cwnd since it does not
- * always reduce cwnd on losses (see bbr_main()). Keep it for now.
- */
- static u32 bbr_undo_cwnd(struct sock *sk)
- {
- struct bbr *bbr = inet_csk_ca(sk);
- bbr->full_bw = 0; /* spurious slow-down; reset full pipe detection */
- bbr->full_bw_cnt = 0;
- bbr_reset_lt_bw_sampling(sk);
- return tcp_sk(sk)->snd_cwnd;
- }
- /* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
- static u32 bbr_ssthresh(struct sock *sk)
- {
- bbr_save_cwnd(sk);
- return TCP_INFINITE_SSTHRESH; /* BBR does not use ssthresh */
- }
- static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
- union tcp_cc_info *info)
- {
- if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
- ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bbr *bbr = inet_csk_ca(sk);
- u64 bw = bbr_bw(sk);
- bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
- memset(&info->bbr, 0, sizeof(info->bbr));
- info->bbr.bbr_bw_lo = (u32)bw;
- info->bbr.bbr_bw_hi = (u32)(bw >> 32);
- info->bbr.bbr_min_rtt = bbr->min_rtt_us;
- info->bbr.bbr_pacing_gain = bbr->pacing_gain;
- info->bbr.bbr_cwnd_gain = bbr->cwnd_gain;
- *attr = INET_DIAG_BBRINFO;
- return sizeof(info->bbr);
- }
- return 0;
- }
- static void bbr_set_state(struct sock *sk, u8 new_state)
- {
- struct bbr *bbr = inet_csk_ca(sk);
- if (new_state == TCP_CA_Loss) {
- struct rate_sample rs = { .losses = 1 };
- bbr->prev_ca_state = TCP_CA_Loss;
- bbr->full_bw = 0;
- bbr->round_start = 1; /* treat RTO like end of a round */
- bbr_lt_bw_sampling(sk, &rs);
- }
- }
- static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
- .flags = TCP_CONG_NON_RESTRICTED,
- .name = "bbr",
- .owner = THIS_MODULE,
- .init = bbr_init,
- .cong_control = bbr_main,
- .sndbuf_expand = bbr_sndbuf_expand,
- .undo_cwnd = bbr_undo_cwnd,
- .cwnd_event = bbr_cwnd_event,
- .ssthresh = bbr_ssthresh,
- .tso_segs_goal = bbr_tso_segs_goal,
- .get_info = bbr_get_info,
- .set_state = bbr_set_state,
- };
- static int __init bbr_register(void)
- {
- BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
- return tcp_register_congestion_control(&tcp_bbr_cong_ops);
- }
- static void __exit bbr_unregister(void)
- {
- tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
- }
- module_init(bbr_register);
- module_exit(bbr_unregister);
- MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
- MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
- MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
- MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
- MODULE_LICENSE("Dual BSD/GPL");
- MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");
|