swiotlb-xen.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702
  1. /*
  2. * Copyright 2010
  3. * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  4. *
  5. * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License v2.0 as published by
  9. * the Free Software Foundation
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * PV guests under Xen are running in an non-contiguous memory architecture.
  17. *
  18. * When PCI pass-through is utilized, this necessitates an IOMMU for
  19. * translating bus (DMA) to virtual and vice-versa and also providing a
  20. * mechanism to have contiguous pages for device drivers operations (say DMA
  21. * operations).
  22. *
  23. * Specifically, under Xen the Linux idea of pages is an illusion. It
  24. * assumes that pages start at zero and go up to the available memory. To
  25. * help with that, the Linux Xen MMU provides a lookup mechanism to
  26. * translate the page frame numbers (PFN) to machine frame numbers (MFN)
  27. * and vice-versa. The MFN are the "real" frame numbers. Furthermore
  28. * memory is not contiguous. Xen hypervisor stitches memory for guests
  29. * from different pools, which means there is no guarantee that PFN==MFN
  30. * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
  31. * allocated in descending order (high to low), meaning the guest might
  32. * never get any MFN's under the 4GB mark.
  33. *
  34. */
  35. #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
  36. #include <linux/bootmem.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/export.h>
  39. #include <xen/swiotlb-xen.h>
  40. #include <xen/page.h>
  41. #include <xen/xen-ops.h>
  42. #include <xen/hvc-console.h>
  43. #include <asm/dma-mapping.h>
  44. #include <asm/xen/page-coherent.h>
  45. #include <trace/events/swiotlb.h>
  46. /*
  47. * Used to do a quick range check in swiotlb_tbl_unmap_single and
  48. * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  49. * API.
  50. */
  51. #ifndef CONFIG_X86
  52. static unsigned long dma_alloc_coherent_mask(struct device *dev,
  53. gfp_t gfp)
  54. {
  55. unsigned long dma_mask = 0;
  56. dma_mask = dev->coherent_dma_mask;
  57. if (!dma_mask)
  58. dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
  59. return dma_mask;
  60. }
  61. #endif
  62. static char *xen_io_tlb_start, *xen_io_tlb_end;
  63. static unsigned long xen_io_tlb_nslabs;
  64. /*
  65. * Quick lookup value of the bus address of the IOTLB.
  66. */
  67. static u64 start_dma_addr;
  68. /*
  69. * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
  70. * can be 32bit when dma_addr_t is 64bit leading to a loss in
  71. * information if the shift is done before casting to 64bit.
  72. */
  73. static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
  74. {
  75. unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
  76. dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
  77. dma |= paddr & ~XEN_PAGE_MASK;
  78. return dma;
  79. }
  80. static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
  81. {
  82. unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
  83. dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
  84. phys_addr_t paddr = dma;
  85. paddr |= baddr & ~XEN_PAGE_MASK;
  86. return paddr;
  87. }
  88. static inline dma_addr_t xen_virt_to_bus(void *address)
  89. {
  90. return xen_phys_to_bus(virt_to_phys(address));
  91. }
  92. static int check_pages_physically_contiguous(unsigned long xen_pfn,
  93. unsigned int offset,
  94. size_t length)
  95. {
  96. unsigned long next_bfn;
  97. int i;
  98. int nr_pages;
  99. next_bfn = pfn_to_bfn(xen_pfn);
  100. nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
  101. for (i = 1; i < nr_pages; i++) {
  102. if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
  103. return 0;
  104. }
  105. return 1;
  106. }
  107. static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
  108. {
  109. unsigned long xen_pfn = XEN_PFN_DOWN(p);
  110. unsigned int offset = p & ~XEN_PAGE_MASK;
  111. if (offset + size <= XEN_PAGE_SIZE)
  112. return 0;
  113. if (check_pages_physically_contiguous(xen_pfn, offset, size))
  114. return 0;
  115. return 1;
  116. }
  117. static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
  118. {
  119. unsigned long bfn = XEN_PFN_DOWN(dma_addr);
  120. unsigned long xen_pfn = bfn_to_local_pfn(bfn);
  121. phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
  122. /* If the address is outside our domain, it CAN
  123. * have the same virtual address as another address
  124. * in our domain. Therefore _only_ check address within our domain.
  125. */
  126. if (pfn_valid(PFN_DOWN(paddr))) {
  127. return paddr >= virt_to_phys(xen_io_tlb_start) &&
  128. paddr < virt_to_phys(xen_io_tlb_end);
  129. }
  130. return 0;
  131. }
  132. static int max_dma_bits = 32;
  133. static int
  134. xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
  135. {
  136. int i, rc;
  137. int dma_bits;
  138. dma_addr_t dma_handle;
  139. phys_addr_t p = virt_to_phys(buf);
  140. dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
  141. i = 0;
  142. do {
  143. int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
  144. do {
  145. rc = xen_create_contiguous_region(
  146. p + (i << IO_TLB_SHIFT),
  147. get_order(slabs << IO_TLB_SHIFT),
  148. dma_bits, &dma_handle);
  149. } while (rc && dma_bits++ < max_dma_bits);
  150. if (rc)
  151. return rc;
  152. i += slabs;
  153. } while (i < nslabs);
  154. return 0;
  155. }
  156. static unsigned long xen_set_nslabs(unsigned long nr_tbl)
  157. {
  158. if (!nr_tbl) {
  159. xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
  160. xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
  161. } else
  162. xen_io_tlb_nslabs = nr_tbl;
  163. return xen_io_tlb_nslabs << IO_TLB_SHIFT;
  164. }
  165. enum xen_swiotlb_err {
  166. XEN_SWIOTLB_UNKNOWN = 0,
  167. XEN_SWIOTLB_ENOMEM,
  168. XEN_SWIOTLB_EFIXUP
  169. };
  170. static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
  171. {
  172. switch (err) {
  173. case XEN_SWIOTLB_ENOMEM:
  174. return "Cannot allocate Xen-SWIOTLB buffer\n";
  175. case XEN_SWIOTLB_EFIXUP:
  176. return "Failed to get contiguous memory for DMA from Xen!\n"\
  177. "You either: don't have the permissions, do not have"\
  178. " enough free memory under 4GB, or the hypervisor memory"\
  179. " is too fragmented!";
  180. default:
  181. break;
  182. }
  183. return "";
  184. }
  185. int __ref xen_swiotlb_init(int verbose, bool early)
  186. {
  187. unsigned long bytes, order;
  188. int rc = -ENOMEM;
  189. enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
  190. unsigned int repeat = 3;
  191. xen_io_tlb_nslabs = swiotlb_nr_tbl();
  192. retry:
  193. bytes = xen_set_nslabs(xen_io_tlb_nslabs);
  194. order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
  195. /*
  196. * Get IO TLB memory from any location.
  197. */
  198. if (early)
  199. xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
  200. else {
  201. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  202. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  203. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  204. xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
  205. if (xen_io_tlb_start)
  206. break;
  207. order--;
  208. }
  209. if (order != get_order(bytes)) {
  210. pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
  211. (PAGE_SIZE << order) >> 20);
  212. xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
  213. bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
  214. }
  215. }
  216. if (!xen_io_tlb_start) {
  217. m_ret = XEN_SWIOTLB_ENOMEM;
  218. goto error;
  219. }
  220. xen_io_tlb_end = xen_io_tlb_start + bytes;
  221. /*
  222. * And replace that memory with pages under 4GB.
  223. */
  224. rc = xen_swiotlb_fixup(xen_io_tlb_start,
  225. bytes,
  226. xen_io_tlb_nslabs);
  227. if (rc) {
  228. if (early)
  229. free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
  230. else {
  231. free_pages((unsigned long)xen_io_tlb_start, order);
  232. xen_io_tlb_start = NULL;
  233. }
  234. m_ret = XEN_SWIOTLB_EFIXUP;
  235. goto error;
  236. }
  237. start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
  238. if (early) {
  239. if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
  240. verbose))
  241. panic("Cannot allocate SWIOTLB buffer");
  242. rc = 0;
  243. } else
  244. rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
  245. return rc;
  246. error:
  247. if (repeat--) {
  248. xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
  249. (xen_io_tlb_nslabs >> 1));
  250. pr_info("Lowering to %luMB\n",
  251. (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
  252. goto retry;
  253. }
  254. pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
  255. if (early)
  256. panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
  257. else
  258. free_pages((unsigned long)xen_io_tlb_start, order);
  259. return rc;
  260. }
  261. void *
  262. xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  263. dma_addr_t *dma_handle, gfp_t flags,
  264. unsigned long attrs)
  265. {
  266. void *ret;
  267. int order = get_order(size);
  268. u64 dma_mask = DMA_BIT_MASK(32);
  269. phys_addr_t phys;
  270. dma_addr_t dev_addr;
  271. /*
  272. * Ignore region specifiers - the kernel's ideas of
  273. * pseudo-phys memory layout has nothing to do with the
  274. * machine physical layout. We can't allocate highmem
  275. * because we can't return a pointer to it.
  276. */
  277. flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
  278. /* On ARM this function returns an ioremap'ped virtual address for
  279. * which virt_to_phys doesn't return the corresponding physical
  280. * address. In fact on ARM virt_to_phys only works for kernel direct
  281. * mapped RAM memory. Also see comment below.
  282. */
  283. ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
  284. if (!ret)
  285. return ret;
  286. if (hwdev && hwdev->coherent_dma_mask)
  287. dma_mask = dma_alloc_coherent_mask(hwdev, flags);
  288. /* At this point dma_handle is the physical address, next we are
  289. * going to set it to the machine address.
  290. * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
  291. * to *dma_handle. */
  292. phys = *dma_handle;
  293. dev_addr = xen_phys_to_bus(phys);
  294. if (((dev_addr + size - 1 <= dma_mask)) &&
  295. !range_straddles_page_boundary(phys, size))
  296. *dma_handle = dev_addr;
  297. else {
  298. if (xen_create_contiguous_region(phys, order,
  299. fls64(dma_mask), dma_handle) != 0) {
  300. xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
  301. return NULL;
  302. }
  303. }
  304. memset(ret, 0, size);
  305. return ret;
  306. }
  307. EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
  308. void
  309. xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  310. dma_addr_t dev_addr, unsigned long attrs)
  311. {
  312. int order = get_order(size);
  313. phys_addr_t phys;
  314. u64 dma_mask = DMA_BIT_MASK(32);
  315. if (hwdev && hwdev->coherent_dma_mask)
  316. dma_mask = hwdev->coherent_dma_mask;
  317. /* do not use virt_to_phys because on ARM it doesn't return you the
  318. * physical address */
  319. phys = xen_bus_to_phys(dev_addr);
  320. if (((dev_addr + size - 1 <= dma_mask)) ||
  321. range_straddles_page_boundary(phys, size))
  322. xen_destroy_contiguous_region(phys, order);
  323. xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
  324. }
  325. EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
  326. /*
  327. * Map a single buffer of the indicated size for DMA in streaming mode. The
  328. * physical address to use is returned.
  329. *
  330. * Once the device is given the dma address, the device owns this memory until
  331. * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
  332. */
  333. dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
  334. unsigned long offset, size_t size,
  335. enum dma_data_direction dir,
  336. unsigned long attrs)
  337. {
  338. phys_addr_t map, phys = page_to_phys(page) + offset;
  339. dma_addr_t dev_addr = xen_phys_to_bus(phys);
  340. BUG_ON(dir == DMA_NONE);
  341. /*
  342. * If the address happens to be in the device's DMA window,
  343. * we can safely return the device addr and not worry about bounce
  344. * buffering it.
  345. */
  346. if (dma_capable(dev, dev_addr, size) &&
  347. !range_straddles_page_boundary(phys, size) &&
  348. !xen_arch_need_swiotlb(dev, phys, dev_addr) &&
  349. (swiotlb_force != SWIOTLB_FORCE)) {
  350. /* we are not interested in the dma_addr returned by
  351. * xen_dma_map_page, only in the potential cache flushes executed
  352. * by the function. */
  353. xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
  354. return dev_addr;
  355. }
  356. /*
  357. * Oh well, have to allocate and map a bounce buffer.
  358. */
  359. trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
  360. map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
  361. if (map == SWIOTLB_MAP_ERROR)
  362. return DMA_ERROR_CODE;
  363. dev_addr = xen_phys_to_bus(map);
  364. xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
  365. dev_addr, map & ~PAGE_MASK, size, dir, attrs);
  366. /*
  367. * Ensure that the address returned is DMA'ble
  368. */
  369. if (!dma_capable(dev, dev_addr, size)) {
  370. swiotlb_tbl_unmap_single(dev, map, size, dir);
  371. dev_addr = 0;
  372. }
  373. return dev_addr;
  374. }
  375. EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
  376. /*
  377. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  378. * match what was provided for in a previous xen_swiotlb_map_page call. All
  379. * other usages are undefined.
  380. *
  381. * After this call, reads by the cpu to the buffer are guaranteed to see
  382. * whatever the device wrote there.
  383. */
  384. static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  385. size_t size, enum dma_data_direction dir,
  386. unsigned long attrs)
  387. {
  388. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  389. BUG_ON(dir == DMA_NONE);
  390. xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
  391. /* NOTE: We use dev_addr here, not paddr! */
  392. if (is_xen_swiotlb_buffer(dev_addr)) {
  393. swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
  394. return;
  395. }
  396. if (dir != DMA_FROM_DEVICE)
  397. return;
  398. /*
  399. * phys_to_virt doesn't work with hihgmem page but we could
  400. * call dma_mark_clean() with hihgmem page here. However, we
  401. * are fine since dma_mark_clean() is null on POWERPC. We can
  402. * make dma_mark_clean() take a physical address if necessary.
  403. */
  404. dma_mark_clean(phys_to_virt(paddr), size);
  405. }
  406. void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  407. size_t size, enum dma_data_direction dir,
  408. unsigned long attrs)
  409. {
  410. xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
  411. }
  412. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
  413. /*
  414. * Make physical memory consistent for a single streaming mode DMA translation
  415. * after a transfer.
  416. *
  417. * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
  418. * using the cpu, yet do not wish to teardown the dma mapping, you must
  419. * call this function before doing so. At the next point you give the dma
  420. * address back to the card, you must first perform a
  421. * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
  422. */
  423. static void
  424. xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  425. size_t size, enum dma_data_direction dir,
  426. enum dma_sync_target target)
  427. {
  428. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  429. BUG_ON(dir == DMA_NONE);
  430. if (target == SYNC_FOR_CPU)
  431. xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
  432. /* NOTE: We use dev_addr here, not paddr! */
  433. if (is_xen_swiotlb_buffer(dev_addr))
  434. swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
  435. if (target == SYNC_FOR_DEVICE)
  436. xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
  437. if (dir != DMA_FROM_DEVICE)
  438. return;
  439. dma_mark_clean(phys_to_virt(paddr), size);
  440. }
  441. void
  442. xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  443. size_t size, enum dma_data_direction dir)
  444. {
  445. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  446. }
  447. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
  448. void
  449. xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  450. size_t size, enum dma_data_direction dir)
  451. {
  452. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  453. }
  454. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
  455. /*
  456. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  457. * This is the scatter-gather version of the above xen_swiotlb_map_page
  458. * interface. Here the scatter gather list elements are each tagged with the
  459. * appropriate dma address and length. They are obtained via
  460. * sg_dma_{address,length}(SG).
  461. *
  462. * NOTE: An implementation may be able to use a smaller number of
  463. * DMA address/length pairs than there are SG table elements.
  464. * (for example via virtual mapping capabilities)
  465. * The routine returns the number of addr/length pairs actually
  466. * used, at most nents.
  467. *
  468. * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
  469. * same here.
  470. */
  471. int
  472. xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  473. int nelems, enum dma_data_direction dir,
  474. unsigned long attrs)
  475. {
  476. struct scatterlist *sg;
  477. int i;
  478. BUG_ON(dir == DMA_NONE);
  479. for_each_sg(sgl, sg, nelems, i) {
  480. phys_addr_t paddr = sg_phys(sg);
  481. dma_addr_t dev_addr = xen_phys_to_bus(paddr);
  482. if (swiotlb_force == SWIOTLB_FORCE ||
  483. xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
  484. !dma_capable(hwdev, dev_addr, sg->length) ||
  485. range_straddles_page_boundary(paddr, sg->length)) {
  486. phys_addr_t map = swiotlb_tbl_map_single(hwdev,
  487. start_dma_addr,
  488. sg_phys(sg),
  489. sg->length,
  490. dir);
  491. if (map == SWIOTLB_MAP_ERROR) {
  492. dev_warn(hwdev, "swiotlb buffer is full\n");
  493. /* Don't panic here, we expect map_sg users
  494. to do proper error handling. */
  495. xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  496. attrs);
  497. sg_dma_len(sgl) = 0;
  498. return 0;
  499. }
  500. dev_addr = xen_phys_to_bus(map);
  501. xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
  502. dev_addr,
  503. map & ~PAGE_MASK,
  504. sg->length,
  505. dir,
  506. attrs);
  507. sg->dma_address = dev_addr;
  508. } else {
  509. /* we are not interested in the dma_addr returned by
  510. * xen_dma_map_page, only in the potential cache flushes executed
  511. * by the function. */
  512. xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
  513. dev_addr,
  514. paddr & ~PAGE_MASK,
  515. sg->length,
  516. dir,
  517. attrs);
  518. sg->dma_address = dev_addr;
  519. }
  520. sg_dma_len(sg) = sg->length;
  521. }
  522. return nelems;
  523. }
  524. EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
  525. /*
  526. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  527. * concerning calls here are the same as for swiotlb_unmap_page() above.
  528. */
  529. void
  530. xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  531. int nelems, enum dma_data_direction dir,
  532. unsigned long attrs)
  533. {
  534. struct scatterlist *sg;
  535. int i;
  536. BUG_ON(dir == DMA_NONE);
  537. for_each_sg(sgl, sg, nelems, i)
  538. xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
  539. }
  540. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
  541. /*
  542. * Make physical memory consistent for a set of streaming mode DMA translations
  543. * after a transfer.
  544. *
  545. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  546. * and usage.
  547. */
  548. static void
  549. xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  550. int nelems, enum dma_data_direction dir,
  551. enum dma_sync_target target)
  552. {
  553. struct scatterlist *sg;
  554. int i;
  555. for_each_sg(sgl, sg, nelems, i)
  556. xen_swiotlb_sync_single(hwdev, sg->dma_address,
  557. sg_dma_len(sg), dir, target);
  558. }
  559. void
  560. xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  561. int nelems, enum dma_data_direction dir)
  562. {
  563. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  564. }
  565. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
  566. void
  567. xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  568. int nelems, enum dma_data_direction dir)
  569. {
  570. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  571. }
  572. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
  573. int
  574. xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  575. {
  576. return !dma_addr;
  577. }
  578. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
  579. /*
  580. * Return whether the given device DMA address mask can be supported
  581. * properly. For example, if your device can only drive the low 24-bits
  582. * during bus mastering, then you would pass 0x00ffffff as the mask to
  583. * this function.
  584. */
  585. int
  586. xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
  587. {
  588. return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
  589. }
  590. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
  591. int
  592. xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
  593. {
  594. if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
  595. return -EIO;
  596. *dev->dma_mask = dma_mask;
  597. return 0;
  598. }
  599. EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);
  600. /*
  601. * Create userspace mapping for the DMA-coherent memory.
  602. * This function should be called with the pages from the current domain only,
  603. * passing pages mapped from other domains would lead to memory corruption.
  604. */
  605. int
  606. xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma,
  607. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  608. unsigned long attrs)
  609. {
  610. #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
  611. if (__generic_dma_ops(dev)->mmap)
  612. return __generic_dma_ops(dev)->mmap(dev, vma, cpu_addr,
  613. dma_addr, size, attrs);
  614. #endif
  615. return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
  616. }
  617. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mmap);