mr.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953
  1. /*
  2. * Copyright(c) 2016 Intel Corporation.
  3. *
  4. * This file is provided under a dual BSD/GPLv2 license. When using or
  5. * redistributing this file, you may do so under either license.
  6. *
  7. * GPL LICENSE SUMMARY
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of version 2 of the GNU General Public License as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * BSD LICENSE
  19. *
  20. * Redistribution and use in source and binary forms, with or without
  21. * modification, are permitted provided that the following conditions
  22. * are met:
  23. *
  24. * - Redistributions of source code must retain the above copyright
  25. * notice, this list of conditions and the following disclaimer.
  26. * - Redistributions in binary form must reproduce the above copyright
  27. * notice, this list of conditions and the following disclaimer in
  28. * the documentation and/or other materials provided with the
  29. * distribution.
  30. * - Neither the name of Intel Corporation nor the names of its
  31. * contributors may be used to endorse or promote products derived
  32. * from this software without specific prior written permission.
  33. *
  34. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45. *
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/vmalloc.h>
  49. #include <rdma/ib_umem.h>
  50. #include <rdma/rdma_vt.h>
  51. #include "vt.h"
  52. #include "mr.h"
  53. /**
  54. * rvt_driver_mr_init - Init MR resources per driver
  55. * @rdi: rvt dev struct
  56. *
  57. * Do any intilization needed when a driver registers with rdmavt.
  58. *
  59. * Return: 0 on success or errno on failure
  60. */
  61. int rvt_driver_mr_init(struct rvt_dev_info *rdi)
  62. {
  63. unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
  64. unsigned lk_tab_size;
  65. int i;
  66. /*
  67. * The top hfi1_lkey_table_size bits are used to index the
  68. * table. The lower 8 bits can be owned by the user (copied from
  69. * the LKEY). The remaining bits act as a generation number or tag.
  70. */
  71. if (!lkey_table_size)
  72. return -EINVAL;
  73. spin_lock_init(&rdi->lkey_table.lock);
  74. /* ensure generation is at least 4 bits */
  75. if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
  76. rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
  77. lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
  78. rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
  79. lkey_table_size = rdi->dparms.lkey_table_size;
  80. }
  81. rdi->lkey_table.max = 1 << lkey_table_size;
  82. lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
  83. rdi->lkey_table.table = (struct rvt_mregion __rcu **)
  84. vmalloc_node(lk_tab_size, rdi->dparms.node);
  85. if (!rdi->lkey_table.table)
  86. return -ENOMEM;
  87. RCU_INIT_POINTER(rdi->dma_mr, NULL);
  88. for (i = 0; i < rdi->lkey_table.max; i++)
  89. RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
  90. return 0;
  91. }
  92. /**
  93. *rvt_mr_exit: clean up MR
  94. *@rdi: rvt dev structure
  95. *
  96. * called when drivers have unregistered or perhaps failed to register with us
  97. */
  98. void rvt_mr_exit(struct rvt_dev_info *rdi)
  99. {
  100. if (rdi->dma_mr)
  101. rvt_pr_err(rdi, "DMA MR not null!\n");
  102. vfree(rdi->lkey_table.table);
  103. }
  104. static void rvt_deinit_mregion(struct rvt_mregion *mr)
  105. {
  106. int i = mr->mapsz;
  107. mr->mapsz = 0;
  108. while (i)
  109. kfree(mr->map[--i]);
  110. }
  111. static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
  112. int count)
  113. {
  114. int m, i = 0;
  115. struct rvt_dev_info *dev = ib_to_rvt(pd->device);
  116. mr->mapsz = 0;
  117. m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
  118. for (; i < m; i++) {
  119. mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
  120. dev->dparms.node);
  121. if (!mr->map[i]) {
  122. rvt_deinit_mregion(mr);
  123. return -ENOMEM;
  124. }
  125. mr->mapsz++;
  126. }
  127. init_completion(&mr->comp);
  128. /* count returning the ptr to user */
  129. atomic_set(&mr->refcount, 1);
  130. atomic_set(&mr->lkey_invalid, 0);
  131. mr->pd = pd;
  132. mr->max_segs = count;
  133. return 0;
  134. }
  135. /**
  136. * rvt_alloc_lkey - allocate an lkey
  137. * @mr: memory region that this lkey protects
  138. * @dma_region: 0->normal key, 1->restricted DMA key
  139. *
  140. * Returns 0 if successful, otherwise returns -errno.
  141. *
  142. * Increments mr reference count as required.
  143. *
  144. * Sets the lkey field mr for non-dma regions.
  145. *
  146. */
  147. static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
  148. {
  149. unsigned long flags;
  150. u32 r;
  151. u32 n;
  152. int ret = 0;
  153. struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
  154. struct rvt_lkey_table *rkt = &dev->lkey_table;
  155. rvt_get_mr(mr);
  156. spin_lock_irqsave(&rkt->lock, flags);
  157. /* special case for dma_mr lkey == 0 */
  158. if (dma_region) {
  159. struct rvt_mregion *tmr;
  160. tmr = rcu_access_pointer(dev->dma_mr);
  161. if (!tmr) {
  162. rcu_assign_pointer(dev->dma_mr, mr);
  163. mr->lkey_published = 1;
  164. } else {
  165. rvt_put_mr(mr);
  166. }
  167. goto success;
  168. }
  169. /* Find the next available LKEY */
  170. r = rkt->next;
  171. n = r;
  172. for (;;) {
  173. if (!rcu_access_pointer(rkt->table[r]))
  174. break;
  175. r = (r + 1) & (rkt->max - 1);
  176. if (r == n)
  177. goto bail;
  178. }
  179. rkt->next = (r + 1) & (rkt->max - 1);
  180. /*
  181. * Make sure lkey is never zero which is reserved to indicate an
  182. * unrestricted LKEY.
  183. */
  184. rkt->gen++;
  185. /*
  186. * bits are capped to ensure enough bits for generation number
  187. */
  188. mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
  189. ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
  190. << 8);
  191. if (mr->lkey == 0) {
  192. mr->lkey |= 1 << 8;
  193. rkt->gen++;
  194. }
  195. rcu_assign_pointer(rkt->table[r], mr);
  196. mr->lkey_published = 1;
  197. success:
  198. spin_unlock_irqrestore(&rkt->lock, flags);
  199. out:
  200. return ret;
  201. bail:
  202. rvt_put_mr(mr);
  203. spin_unlock_irqrestore(&rkt->lock, flags);
  204. ret = -ENOMEM;
  205. goto out;
  206. }
  207. /**
  208. * rvt_free_lkey - free an lkey
  209. * @mr: mr to free from tables
  210. */
  211. static void rvt_free_lkey(struct rvt_mregion *mr)
  212. {
  213. unsigned long flags;
  214. u32 lkey = mr->lkey;
  215. u32 r;
  216. struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
  217. struct rvt_lkey_table *rkt = &dev->lkey_table;
  218. int freed = 0;
  219. spin_lock_irqsave(&rkt->lock, flags);
  220. if (!mr->lkey_published)
  221. goto out;
  222. if (lkey == 0) {
  223. RCU_INIT_POINTER(dev->dma_mr, NULL);
  224. } else {
  225. r = lkey >> (32 - dev->dparms.lkey_table_size);
  226. RCU_INIT_POINTER(rkt->table[r], NULL);
  227. }
  228. mr->lkey_published = 0;
  229. freed++;
  230. out:
  231. spin_unlock_irqrestore(&rkt->lock, flags);
  232. if (freed) {
  233. synchronize_rcu();
  234. rvt_put_mr(mr);
  235. }
  236. }
  237. static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
  238. {
  239. struct rvt_mr *mr;
  240. int rval = -ENOMEM;
  241. int m;
  242. /* Allocate struct plus pointers to first level page tables. */
  243. m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
  244. mr = kzalloc(sizeof(*mr) + m * sizeof(mr->mr.map[0]), GFP_KERNEL);
  245. if (!mr)
  246. goto bail;
  247. rval = rvt_init_mregion(&mr->mr, pd, count);
  248. if (rval)
  249. goto bail;
  250. /*
  251. * ib_reg_phys_mr() will initialize mr->ibmr except for
  252. * lkey and rkey.
  253. */
  254. rval = rvt_alloc_lkey(&mr->mr, 0);
  255. if (rval)
  256. goto bail_mregion;
  257. mr->ibmr.lkey = mr->mr.lkey;
  258. mr->ibmr.rkey = mr->mr.lkey;
  259. done:
  260. return mr;
  261. bail_mregion:
  262. rvt_deinit_mregion(&mr->mr);
  263. bail:
  264. kfree(mr);
  265. mr = ERR_PTR(rval);
  266. goto done;
  267. }
  268. static void __rvt_free_mr(struct rvt_mr *mr)
  269. {
  270. rvt_deinit_mregion(&mr->mr);
  271. rvt_free_lkey(&mr->mr);
  272. kfree(mr);
  273. }
  274. /**
  275. * rvt_get_dma_mr - get a DMA memory region
  276. * @pd: protection domain for this memory region
  277. * @acc: access flags
  278. *
  279. * Return: the memory region on success, otherwise returns an errno.
  280. * Note that all DMA addresses should be created via the
  281. * struct ib_dma_mapping_ops functions (see dma.c).
  282. */
  283. struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
  284. {
  285. struct rvt_mr *mr;
  286. struct ib_mr *ret;
  287. int rval;
  288. if (ibpd_to_rvtpd(pd)->user)
  289. return ERR_PTR(-EPERM);
  290. mr = kzalloc(sizeof(*mr), GFP_KERNEL);
  291. if (!mr) {
  292. ret = ERR_PTR(-ENOMEM);
  293. goto bail;
  294. }
  295. rval = rvt_init_mregion(&mr->mr, pd, 0);
  296. if (rval) {
  297. ret = ERR_PTR(rval);
  298. goto bail;
  299. }
  300. rval = rvt_alloc_lkey(&mr->mr, 1);
  301. if (rval) {
  302. ret = ERR_PTR(rval);
  303. goto bail_mregion;
  304. }
  305. mr->mr.access_flags = acc;
  306. ret = &mr->ibmr;
  307. done:
  308. return ret;
  309. bail_mregion:
  310. rvt_deinit_mregion(&mr->mr);
  311. bail:
  312. kfree(mr);
  313. goto done;
  314. }
  315. /**
  316. * rvt_reg_user_mr - register a userspace memory region
  317. * @pd: protection domain for this memory region
  318. * @start: starting userspace address
  319. * @length: length of region to register
  320. * @mr_access_flags: access flags for this memory region
  321. * @udata: unused by the driver
  322. *
  323. * Return: the memory region on success, otherwise returns an errno.
  324. */
  325. struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
  326. u64 virt_addr, int mr_access_flags,
  327. struct ib_udata *udata)
  328. {
  329. struct rvt_mr *mr;
  330. struct ib_umem *umem;
  331. struct scatterlist *sg;
  332. int n, m, entry;
  333. struct ib_mr *ret;
  334. if (length == 0)
  335. return ERR_PTR(-EINVAL);
  336. umem = ib_umem_get(pd->uobject->context, start, length,
  337. mr_access_flags, 0);
  338. if (IS_ERR(umem))
  339. return (void *)umem;
  340. n = umem->nmap;
  341. mr = __rvt_alloc_mr(n, pd);
  342. if (IS_ERR(mr)) {
  343. ret = (struct ib_mr *)mr;
  344. goto bail_umem;
  345. }
  346. mr->mr.user_base = start;
  347. mr->mr.iova = virt_addr;
  348. mr->mr.length = length;
  349. mr->mr.offset = ib_umem_offset(umem);
  350. mr->mr.access_flags = mr_access_flags;
  351. mr->umem = umem;
  352. if (is_power_of_2(umem->page_size))
  353. mr->mr.page_shift = ilog2(umem->page_size);
  354. m = 0;
  355. n = 0;
  356. for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
  357. void *vaddr;
  358. vaddr = page_address(sg_page(sg));
  359. if (!vaddr) {
  360. ret = ERR_PTR(-EINVAL);
  361. goto bail_inval;
  362. }
  363. mr->mr.map[m]->segs[n].vaddr = vaddr;
  364. mr->mr.map[m]->segs[n].length = umem->page_size;
  365. n++;
  366. if (n == RVT_SEGSZ) {
  367. m++;
  368. n = 0;
  369. }
  370. }
  371. return &mr->ibmr;
  372. bail_inval:
  373. __rvt_free_mr(mr);
  374. bail_umem:
  375. ib_umem_release(umem);
  376. return ret;
  377. }
  378. /**
  379. * rvt_dereg_mr - unregister and free a memory region
  380. * @ibmr: the memory region to free
  381. *
  382. *
  383. * Note that this is called to free MRs created by rvt_get_dma_mr()
  384. * or rvt_reg_user_mr().
  385. *
  386. * Returns 0 on success.
  387. */
  388. int rvt_dereg_mr(struct ib_mr *ibmr)
  389. {
  390. struct rvt_mr *mr = to_imr(ibmr);
  391. struct rvt_dev_info *rdi = ib_to_rvt(ibmr->pd->device);
  392. int ret = 0;
  393. unsigned long timeout;
  394. rvt_free_lkey(&mr->mr);
  395. rvt_put_mr(&mr->mr); /* will set completion if last */
  396. timeout = wait_for_completion_timeout(&mr->mr.comp, 5 * HZ);
  397. if (!timeout) {
  398. rvt_pr_err(rdi,
  399. "rvt_dereg_mr timeout mr %p pd %p refcount %u\n",
  400. mr, mr->mr.pd, atomic_read(&mr->mr.refcount));
  401. rvt_get_mr(&mr->mr);
  402. ret = -EBUSY;
  403. goto out;
  404. }
  405. rvt_deinit_mregion(&mr->mr);
  406. if (mr->umem)
  407. ib_umem_release(mr->umem);
  408. kfree(mr);
  409. out:
  410. return ret;
  411. }
  412. /**
  413. * rvt_alloc_mr - Allocate a memory region usable with the
  414. * @pd: protection domain for this memory region
  415. * @mr_type: mem region type
  416. * @max_num_sg: Max number of segments allowed
  417. *
  418. * Return: the memory region on success, otherwise return an errno.
  419. */
  420. struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
  421. enum ib_mr_type mr_type,
  422. u32 max_num_sg)
  423. {
  424. struct rvt_mr *mr;
  425. if (mr_type != IB_MR_TYPE_MEM_REG)
  426. return ERR_PTR(-EINVAL);
  427. mr = __rvt_alloc_mr(max_num_sg, pd);
  428. if (IS_ERR(mr))
  429. return (struct ib_mr *)mr;
  430. return &mr->ibmr;
  431. }
  432. /**
  433. * rvt_set_page - page assignment function called by ib_sg_to_pages
  434. * @ibmr: memory region
  435. * @addr: dma address of mapped page
  436. *
  437. * Return: 0 on success
  438. */
  439. static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
  440. {
  441. struct rvt_mr *mr = to_imr(ibmr);
  442. u32 ps = 1 << mr->mr.page_shift;
  443. u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
  444. int m, n;
  445. if (unlikely(mapped_segs == mr->mr.max_segs))
  446. return -ENOMEM;
  447. if (mr->mr.length == 0) {
  448. mr->mr.user_base = addr;
  449. mr->mr.iova = addr;
  450. }
  451. m = mapped_segs / RVT_SEGSZ;
  452. n = mapped_segs % RVT_SEGSZ;
  453. mr->mr.map[m]->segs[n].vaddr = (void *)addr;
  454. mr->mr.map[m]->segs[n].length = ps;
  455. mr->mr.length += ps;
  456. return 0;
  457. }
  458. /**
  459. * rvt_map_mr_sg - map sg list and set it the memory region
  460. * @ibmr: memory region
  461. * @sg: dma mapped scatterlist
  462. * @sg_nents: number of entries in sg
  463. * @sg_offset: offset in bytes into sg
  464. *
  465. * Return: number of sg elements mapped to the memory region
  466. */
  467. int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
  468. int sg_nents, unsigned int *sg_offset)
  469. {
  470. struct rvt_mr *mr = to_imr(ibmr);
  471. mr->mr.length = 0;
  472. mr->mr.page_shift = PAGE_SHIFT;
  473. return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
  474. rvt_set_page);
  475. }
  476. /**
  477. * rvt_fast_reg_mr - fast register physical MR
  478. * @qp: the queue pair where the work request comes from
  479. * @ibmr: the memory region to be registered
  480. * @key: updated key for this memory region
  481. * @access: access flags for this memory region
  482. *
  483. * Returns 0 on success.
  484. */
  485. int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
  486. int access)
  487. {
  488. struct rvt_mr *mr = to_imr(ibmr);
  489. if (qp->ibqp.pd != mr->mr.pd)
  490. return -EACCES;
  491. /* not applicable to dma MR or user MR */
  492. if (!mr->mr.lkey || mr->umem)
  493. return -EINVAL;
  494. if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
  495. return -EINVAL;
  496. ibmr->lkey = key;
  497. ibmr->rkey = key;
  498. mr->mr.lkey = key;
  499. mr->mr.access_flags = access;
  500. atomic_set(&mr->mr.lkey_invalid, 0);
  501. return 0;
  502. }
  503. EXPORT_SYMBOL(rvt_fast_reg_mr);
  504. /**
  505. * rvt_invalidate_rkey - invalidate an MR rkey
  506. * @qp: queue pair associated with the invalidate op
  507. * @rkey: rkey to invalidate
  508. *
  509. * Returns 0 on success.
  510. */
  511. int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
  512. {
  513. struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
  514. struct rvt_lkey_table *rkt = &dev->lkey_table;
  515. struct rvt_mregion *mr;
  516. if (rkey == 0)
  517. return -EINVAL;
  518. rcu_read_lock();
  519. mr = rcu_dereference(
  520. rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
  521. if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
  522. goto bail;
  523. atomic_set(&mr->lkey_invalid, 1);
  524. rcu_read_unlock();
  525. return 0;
  526. bail:
  527. rcu_read_unlock();
  528. return -EINVAL;
  529. }
  530. EXPORT_SYMBOL(rvt_invalidate_rkey);
  531. /**
  532. * rvt_alloc_fmr - allocate a fast memory region
  533. * @pd: the protection domain for this memory region
  534. * @mr_access_flags: access flags for this memory region
  535. * @fmr_attr: fast memory region attributes
  536. *
  537. * Return: the memory region on success, otherwise returns an errno.
  538. */
  539. struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
  540. struct ib_fmr_attr *fmr_attr)
  541. {
  542. struct rvt_fmr *fmr;
  543. int m;
  544. struct ib_fmr *ret;
  545. int rval = -ENOMEM;
  546. /* Allocate struct plus pointers to first level page tables. */
  547. m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
  548. fmr = kzalloc(sizeof(*fmr) + m * sizeof(fmr->mr.map[0]), GFP_KERNEL);
  549. if (!fmr)
  550. goto bail;
  551. rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages);
  552. if (rval)
  553. goto bail;
  554. /*
  555. * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
  556. * rkey.
  557. */
  558. rval = rvt_alloc_lkey(&fmr->mr, 0);
  559. if (rval)
  560. goto bail_mregion;
  561. fmr->ibfmr.rkey = fmr->mr.lkey;
  562. fmr->ibfmr.lkey = fmr->mr.lkey;
  563. /*
  564. * Resources are allocated but no valid mapping (RKEY can't be
  565. * used).
  566. */
  567. fmr->mr.access_flags = mr_access_flags;
  568. fmr->mr.max_segs = fmr_attr->max_pages;
  569. fmr->mr.page_shift = fmr_attr->page_shift;
  570. ret = &fmr->ibfmr;
  571. done:
  572. return ret;
  573. bail_mregion:
  574. rvt_deinit_mregion(&fmr->mr);
  575. bail:
  576. kfree(fmr);
  577. ret = ERR_PTR(rval);
  578. goto done;
  579. }
  580. /**
  581. * rvt_map_phys_fmr - set up a fast memory region
  582. * @ibmfr: the fast memory region to set up
  583. * @page_list: the list of pages to associate with the fast memory region
  584. * @list_len: the number of pages to associate with the fast memory region
  585. * @iova: the virtual address of the start of the fast memory region
  586. *
  587. * This may be called from interrupt context.
  588. *
  589. * Return: 0 on success
  590. */
  591. int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
  592. int list_len, u64 iova)
  593. {
  594. struct rvt_fmr *fmr = to_ifmr(ibfmr);
  595. struct rvt_lkey_table *rkt;
  596. unsigned long flags;
  597. int m, n, i;
  598. u32 ps;
  599. struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
  600. i = atomic_read(&fmr->mr.refcount);
  601. if (i > 2)
  602. return -EBUSY;
  603. if (list_len > fmr->mr.max_segs)
  604. return -EINVAL;
  605. rkt = &rdi->lkey_table;
  606. spin_lock_irqsave(&rkt->lock, flags);
  607. fmr->mr.user_base = iova;
  608. fmr->mr.iova = iova;
  609. ps = 1 << fmr->mr.page_shift;
  610. fmr->mr.length = list_len * ps;
  611. m = 0;
  612. n = 0;
  613. for (i = 0; i < list_len; i++) {
  614. fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
  615. fmr->mr.map[m]->segs[n].length = ps;
  616. if (++n == RVT_SEGSZ) {
  617. m++;
  618. n = 0;
  619. }
  620. }
  621. spin_unlock_irqrestore(&rkt->lock, flags);
  622. return 0;
  623. }
  624. /**
  625. * rvt_unmap_fmr - unmap fast memory regions
  626. * @fmr_list: the list of fast memory regions to unmap
  627. *
  628. * Return: 0 on success.
  629. */
  630. int rvt_unmap_fmr(struct list_head *fmr_list)
  631. {
  632. struct rvt_fmr *fmr;
  633. struct rvt_lkey_table *rkt;
  634. unsigned long flags;
  635. struct rvt_dev_info *rdi;
  636. list_for_each_entry(fmr, fmr_list, ibfmr.list) {
  637. rdi = ib_to_rvt(fmr->ibfmr.device);
  638. rkt = &rdi->lkey_table;
  639. spin_lock_irqsave(&rkt->lock, flags);
  640. fmr->mr.user_base = 0;
  641. fmr->mr.iova = 0;
  642. fmr->mr.length = 0;
  643. spin_unlock_irqrestore(&rkt->lock, flags);
  644. }
  645. return 0;
  646. }
  647. /**
  648. * rvt_dealloc_fmr - deallocate a fast memory region
  649. * @ibfmr: the fast memory region to deallocate
  650. *
  651. * Return: 0 on success.
  652. */
  653. int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
  654. {
  655. struct rvt_fmr *fmr = to_ifmr(ibfmr);
  656. int ret = 0;
  657. unsigned long timeout;
  658. rvt_free_lkey(&fmr->mr);
  659. rvt_put_mr(&fmr->mr); /* will set completion if last */
  660. timeout = wait_for_completion_timeout(&fmr->mr.comp, 5 * HZ);
  661. if (!timeout) {
  662. rvt_get_mr(&fmr->mr);
  663. ret = -EBUSY;
  664. goto out;
  665. }
  666. rvt_deinit_mregion(&fmr->mr);
  667. kfree(fmr);
  668. out:
  669. return ret;
  670. }
  671. /**
  672. * rvt_lkey_ok - check IB SGE for validity and initialize
  673. * @rkt: table containing lkey to check SGE against
  674. * @pd: protection domain
  675. * @isge: outgoing internal SGE
  676. * @sge: SGE to check
  677. * @acc: access flags
  678. *
  679. * Check the IB SGE for validity and initialize our internal version
  680. * of it.
  681. *
  682. * Return: 1 if valid and successful, otherwise returns 0.
  683. *
  684. * increments the reference count upon success
  685. *
  686. */
  687. int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
  688. struct rvt_sge *isge, struct ib_sge *sge, int acc)
  689. {
  690. struct rvt_mregion *mr;
  691. unsigned n, m;
  692. size_t off;
  693. struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
  694. /*
  695. * We use LKEY == zero for kernel virtual addresses
  696. * (see rvt_get_dma_mr and dma.c).
  697. */
  698. rcu_read_lock();
  699. if (sge->lkey == 0) {
  700. if (pd->user)
  701. goto bail;
  702. mr = rcu_dereference(dev->dma_mr);
  703. if (!mr)
  704. goto bail;
  705. atomic_inc(&mr->refcount);
  706. rcu_read_unlock();
  707. isge->mr = mr;
  708. isge->vaddr = (void *)sge->addr;
  709. isge->length = sge->length;
  710. isge->sge_length = sge->length;
  711. isge->m = 0;
  712. isge->n = 0;
  713. goto ok;
  714. }
  715. mr = rcu_dereference(
  716. rkt->table[(sge->lkey >> (32 - dev->dparms.lkey_table_size))]);
  717. if (unlikely(!mr || atomic_read(&mr->lkey_invalid) ||
  718. mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
  719. goto bail;
  720. off = sge->addr - mr->user_base;
  721. if (unlikely(sge->addr < mr->user_base ||
  722. off + sge->length > mr->length ||
  723. (mr->access_flags & acc) != acc))
  724. goto bail;
  725. atomic_inc(&mr->refcount);
  726. rcu_read_unlock();
  727. off += mr->offset;
  728. if (mr->page_shift) {
  729. /*
  730. * page sizes are uniform power of 2 so no loop is necessary
  731. * entries_spanned_by_off is the number of times the loop below
  732. * would have executed.
  733. */
  734. size_t entries_spanned_by_off;
  735. entries_spanned_by_off = off >> mr->page_shift;
  736. off -= (entries_spanned_by_off << mr->page_shift);
  737. m = entries_spanned_by_off / RVT_SEGSZ;
  738. n = entries_spanned_by_off % RVT_SEGSZ;
  739. } else {
  740. m = 0;
  741. n = 0;
  742. while (off >= mr->map[m]->segs[n].length) {
  743. off -= mr->map[m]->segs[n].length;
  744. n++;
  745. if (n >= RVT_SEGSZ) {
  746. m++;
  747. n = 0;
  748. }
  749. }
  750. }
  751. isge->mr = mr;
  752. isge->vaddr = mr->map[m]->segs[n].vaddr + off;
  753. isge->length = mr->map[m]->segs[n].length - off;
  754. isge->sge_length = sge->length;
  755. isge->m = m;
  756. isge->n = n;
  757. ok:
  758. return 1;
  759. bail:
  760. rcu_read_unlock();
  761. return 0;
  762. }
  763. EXPORT_SYMBOL(rvt_lkey_ok);
  764. /**
  765. * rvt_rkey_ok - check the IB virtual address, length, and RKEY
  766. * @qp: qp for validation
  767. * @sge: SGE state
  768. * @len: length of data
  769. * @vaddr: virtual address to place data
  770. * @rkey: rkey to check
  771. * @acc: access flags
  772. *
  773. * Return: 1 if successful, otherwise 0.
  774. *
  775. * increments the reference count upon success
  776. */
  777. int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
  778. u32 len, u64 vaddr, u32 rkey, int acc)
  779. {
  780. struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
  781. struct rvt_lkey_table *rkt = &dev->lkey_table;
  782. struct rvt_mregion *mr;
  783. unsigned n, m;
  784. size_t off;
  785. /*
  786. * We use RKEY == zero for kernel virtual addresses
  787. * (see rvt_get_dma_mr and dma.c).
  788. */
  789. rcu_read_lock();
  790. if (rkey == 0) {
  791. struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
  792. struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
  793. if (pd->user)
  794. goto bail;
  795. mr = rcu_dereference(rdi->dma_mr);
  796. if (!mr)
  797. goto bail;
  798. atomic_inc(&mr->refcount);
  799. rcu_read_unlock();
  800. sge->mr = mr;
  801. sge->vaddr = (void *)vaddr;
  802. sge->length = len;
  803. sge->sge_length = len;
  804. sge->m = 0;
  805. sge->n = 0;
  806. goto ok;
  807. }
  808. mr = rcu_dereference(
  809. rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
  810. if (unlikely(!mr || atomic_read(&mr->lkey_invalid) ||
  811. mr->lkey != rkey || qp->ibqp.pd != mr->pd))
  812. goto bail;
  813. off = vaddr - mr->iova;
  814. if (unlikely(vaddr < mr->iova || off + len > mr->length ||
  815. (mr->access_flags & acc) == 0))
  816. goto bail;
  817. atomic_inc(&mr->refcount);
  818. rcu_read_unlock();
  819. off += mr->offset;
  820. if (mr->page_shift) {
  821. /*
  822. * page sizes are uniform power of 2 so no loop is necessary
  823. * entries_spanned_by_off is the number of times the loop below
  824. * would have executed.
  825. */
  826. size_t entries_spanned_by_off;
  827. entries_spanned_by_off = off >> mr->page_shift;
  828. off -= (entries_spanned_by_off << mr->page_shift);
  829. m = entries_spanned_by_off / RVT_SEGSZ;
  830. n = entries_spanned_by_off % RVT_SEGSZ;
  831. } else {
  832. m = 0;
  833. n = 0;
  834. while (off >= mr->map[m]->segs[n].length) {
  835. off -= mr->map[m]->segs[n].length;
  836. n++;
  837. if (n >= RVT_SEGSZ) {
  838. m++;
  839. n = 0;
  840. }
  841. }
  842. }
  843. sge->mr = mr;
  844. sge->vaddr = mr->map[m]->segs[n].vaddr + off;
  845. sge->length = mr->map[m]->segs[n].length - off;
  846. sge->sge_length = len;
  847. sge->m = m;
  848. sge->n = n;
  849. ok:
  850. return 1;
  851. bail:
  852. rcu_read_unlock();
  853. return 0;
  854. }
  855. EXPORT_SYMBOL(rvt_rkey_ok);