mem.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785
  1. /*
  2. * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <linux/module.h>
  33. #include <linux/moduleparam.h>
  34. #include <rdma/ib_umem.h>
  35. #include <linux/atomic.h>
  36. #include <rdma/ib_user_verbs.h>
  37. #include "iw_cxgb4.h"
  38. int use_dsgl = 0;
  39. module_param(use_dsgl, int, 0644);
  40. MODULE_PARM_DESC(use_dsgl, "Use DSGL for PBL/FastReg (default=0)");
  41. #define T4_ULPTX_MIN_IO 32
  42. #define C4IW_MAX_INLINE_SIZE 96
  43. #define T4_ULPTX_MAX_DMA 1024
  44. #define C4IW_INLINE_THRESHOLD 128
  45. static int inline_threshold = C4IW_INLINE_THRESHOLD;
  46. module_param(inline_threshold, int, 0644);
  47. MODULE_PARM_DESC(inline_threshold, "inline vs dsgl threshold (default=128)");
  48. static int mr_exceeds_hw_limits(struct c4iw_dev *dev, u64 length)
  49. {
  50. return (is_t4(dev->rdev.lldi.adapter_type) ||
  51. is_t5(dev->rdev.lldi.adapter_type)) &&
  52. length >= 8*1024*1024*1024ULL;
  53. }
  54. static int _c4iw_write_mem_dma_aligned(struct c4iw_rdev *rdev, u32 addr,
  55. u32 len, dma_addr_t data,
  56. int wait, struct sk_buff *skb)
  57. {
  58. struct ulp_mem_io *req;
  59. struct ulptx_sgl *sgl;
  60. u8 wr_len;
  61. int ret = 0;
  62. struct c4iw_wr_wait wr_wait;
  63. addr &= 0x7FFFFFF;
  64. if (wait)
  65. c4iw_init_wr_wait(&wr_wait);
  66. wr_len = roundup(sizeof(*req) + sizeof(*sgl), 16);
  67. if (!skb) {
  68. skb = alloc_skb(wr_len, GFP_KERNEL | __GFP_NOFAIL);
  69. if (!skb)
  70. return -ENOMEM;
  71. }
  72. set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
  73. req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
  74. memset(req, 0, wr_len);
  75. INIT_ULPTX_WR(req, wr_len, 0, 0);
  76. req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) |
  77. (wait ? FW_WR_COMPL_F : 0));
  78. req->wr.wr_lo = wait ? (__force __be64)(unsigned long) &wr_wait : 0L;
  79. req->wr.wr_mid = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16)));
  80. req->cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE) |
  81. T5_ULP_MEMIO_ORDER_V(1) |
  82. T5_ULP_MEMIO_FID_V(rdev->lldi.rxq_ids[0]));
  83. req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(len>>5));
  84. req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr), 16));
  85. req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr));
  86. sgl = (struct ulptx_sgl *)(req + 1);
  87. sgl->cmd_nsge = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
  88. ULPTX_NSGE_V(1));
  89. sgl->len0 = cpu_to_be32(len);
  90. sgl->addr0 = cpu_to_be64(data);
  91. ret = c4iw_ofld_send(rdev, skb);
  92. if (ret)
  93. return ret;
  94. if (wait)
  95. ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
  96. return ret;
  97. }
  98. static int _c4iw_write_mem_inline(struct c4iw_rdev *rdev, u32 addr, u32 len,
  99. void *data, struct sk_buff *skb)
  100. {
  101. struct ulp_mem_io *req;
  102. struct ulptx_idata *sc;
  103. u8 wr_len, *to_dp, *from_dp;
  104. int copy_len, num_wqe, i, ret = 0;
  105. struct c4iw_wr_wait wr_wait;
  106. __be32 cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE));
  107. if (is_t4(rdev->lldi.adapter_type))
  108. cmd |= cpu_to_be32(ULP_MEMIO_ORDER_F);
  109. else
  110. cmd |= cpu_to_be32(T5_ULP_MEMIO_IMM_F);
  111. addr &= 0x7FFFFFF;
  112. PDBG("%s addr 0x%x len %u\n", __func__, addr, len);
  113. num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE);
  114. c4iw_init_wr_wait(&wr_wait);
  115. for (i = 0; i < num_wqe; i++) {
  116. copy_len = len > C4IW_MAX_INLINE_SIZE ? C4IW_MAX_INLINE_SIZE :
  117. len;
  118. wr_len = roundup(sizeof *req + sizeof *sc +
  119. roundup(copy_len, T4_ULPTX_MIN_IO), 16);
  120. if (!skb) {
  121. skb = alloc_skb(wr_len, GFP_KERNEL | __GFP_NOFAIL);
  122. if (!skb)
  123. return -ENOMEM;
  124. }
  125. set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
  126. req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
  127. memset(req, 0, wr_len);
  128. INIT_ULPTX_WR(req, wr_len, 0, 0);
  129. if (i == (num_wqe-1)) {
  130. req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) |
  131. FW_WR_COMPL_F);
  132. req->wr.wr_lo = (__force __be64)(unsigned long)&wr_wait;
  133. } else
  134. req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR));
  135. req->wr.wr_mid = cpu_to_be32(
  136. FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16)));
  137. req->cmd = cmd;
  138. req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(
  139. DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO)));
  140. req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr),
  141. 16));
  142. req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr + i * 3));
  143. sc = (struct ulptx_idata *)(req + 1);
  144. sc->cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM));
  145. sc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO));
  146. to_dp = (u8 *)(sc + 1);
  147. from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE;
  148. if (data)
  149. memcpy(to_dp, from_dp, copy_len);
  150. else
  151. memset(to_dp, 0, copy_len);
  152. if (copy_len % T4_ULPTX_MIN_IO)
  153. memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO -
  154. (copy_len % T4_ULPTX_MIN_IO));
  155. ret = c4iw_ofld_send(rdev, skb);
  156. skb = NULL;
  157. if (ret)
  158. return ret;
  159. len -= C4IW_MAX_INLINE_SIZE;
  160. }
  161. ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
  162. return ret;
  163. }
  164. static int _c4iw_write_mem_dma(struct c4iw_rdev *rdev, u32 addr, u32 len,
  165. void *data, struct sk_buff *skb)
  166. {
  167. u32 remain = len;
  168. u32 dmalen;
  169. int ret = 0;
  170. dma_addr_t daddr;
  171. dma_addr_t save;
  172. daddr = dma_map_single(&rdev->lldi.pdev->dev, data, len, DMA_TO_DEVICE);
  173. if (dma_mapping_error(&rdev->lldi.pdev->dev, daddr))
  174. return -1;
  175. save = daddr;
  176. while (remain > inline_threshold) {
  177. if (remain < T4_ULPTX_MAX_DMA) {
  178. if (remain & ~T4_ULPTX_MIN_IO)
  179. dmalen = remain & ~(T4_ULPTX_MIN_IO-1);
  180. else
  181. dmalen = remain;
  182. } else
  183. dmalen = T4_ULPTX_MAX_DMA;
  184. remain -= dmalen;
  185. ret = _c4iw_write_mem_dma_aligned(rdev, addr, dmalen, daddr,
  186. !remain, skb);
  187. if (ret)
  188. goto out;
  189. addr += dmalen >> 5;
  190. data += dmalen;
  191. daddr += dmalen;
  192. }
  193. if (remain)
  194. ret = _c4iw_write_mem_inline(rdev, addr, remain, data, skb);
  195. out:
  196. dma_unmap_single(&rdev->lldi.pdev->dev, save, len, DMA_TO_DEVICE);
  197. return ret;
  198. }
  199. /*
  200. * write len bytes of data into addr (32B aligned address)
  201. * If data is NULL, clear len byte of memory to zero.
  202. */
  203. static int write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len,
  204. void *data, struct sk_buff *skb)
  205. {
  206. if (is_t5(rdev->lldi.adapter_type) && use_dsgl) {
  207. if (len > inline_threshold) {
  208. if (_c4iw_write_mem_dma(rdev, addr, len, data, skb)) {
  209. printk_ratelimited(KERN_WARNING
  210. "%s: dma map"
  211. " failure (non fatal)\n",
  212. pci_name(rdev->lldi.pdev));
  213. return _c4iw_write_mem_inline(rdev, addr, len,
  214. data, skb);
  215. } else {
  216. return 0;
  217. }
  218. } else
  219. return _c4iw_write_mem_inline(rdev, addr,
  220. len, data, skb);
  221. } else
  222. return _c4iw_write_mem_inline(rdev, addr, len, data, skb);
  223. }
  224. /*
  225. * Build and write a TPT entry.
  226. * IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size,
  227. * pbl_size and pbl_addr
  228. * OUT: stag index
  229. */
  230. static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry,
  231. u32 *stag, u8 stag_state, u32 pdid,
  232. enum fw_ri_stag_type type, enum fw_ri_mem_perms perm,
  233. int bind_enabled, u32 zbva, u64 to,
  234. u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr,
  235. struct sk_buff *skb)
  236. {
  237. int err;
  238. struct fw_ri_tpte tpt;
  239. u32 stag_idx;
  240. static atomic_t key;
  241. if (c4iw_fatal_error(rdev))
  242. return -EIO;
  243. stag_state = stag_state > 0;
  244. stag_idx = (*stag) >> 8;
  245. if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) {
  246. stag_idx = c4iw_get_resource(&rdev->resource.tpt_table);
  247. if (!stag_idx) {
  248. mutex_lock(&rdev->stats.lock);
  249. rdev->stats.stag.fail++;
  250. mutex_unlock(&rdev->stats.lock);
  251. return -ENOMEM;
  252. }
  253. mutex_lock(&rdev->stats.lock);
  254. rdev->stats.stag.cur += 32;
  255. if (rdev->stats.stag.cur > rdev->stats.stag.max)
  256. rdev->stats.stag.max = rdev->stats.stag.cur;
  257. mutex_unlock(&rdev->stats.lock);
  258. *stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff);
  259. }
  260. PDBG("%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n",
  261. __func__, stag_state, type, pdid, stag_idx);
  262. /* write TPT entry */
  263. if (reset_tpt_entry)
  264. memset(&tpt, 0, sizeof(tpt));
  265. else {
  266. tpt.valid_to_pdid = cpu_to_be32(FW_RI_TPTE_VALID_F |
  267. FW_RI_TPTE_STAGKEY_V((*stag & FW_RI_TPTE_STAGKEY_M)) |
  268. FW_RI_TPTE_STAGSTATE_V(stag_state) |
  269. FW_RI_TPTE_STAGTYPE_V(type) | FW_RI_TPTE_PDID_V(pdid));
  270. tpt.locread_to_qpid = cpu_to_be32(FW_RI_TPTE_PERM_V(perm) |
  271. (bind_enabled ? FW_RI_TPTE_MWBINDEN_F : 0) |
  272. FW_RI_TPTE_ADDRTYPE_V((zbva ? FW_RI_ZERO_BASED_TO :
  273. FW_RI_VA_BASED_TO))|
  274. FW_RI_TPTE_PS_V(page_size));
  275. tpt.nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32(
  276. FW_RI_TPTE_PBLADDR_V(PBL_OFF(rdev, pbl_addr)>>3));
  277. tpt.len_lo = cpu_to_be32((u32)(len & 0xffffffffUL));
  278. tpt.va_hi = cpu_to_be32((u32)(to >> 32));
  279. tpt.va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL));
  280. tpt.dca_mwbcnt_pstag = cpu_to_be32(0);
  281. tpt.len_hi = cpu_to_be32((u32)(len >> 32));
  282. }
  283. err = write_adapter_mem(rdev, stag_idx +
  284. (rdev->lldi.vr->stag.start >> 5),
  285. sizeof(tpt), &tpt, skb);
  286. if (reset_tpt_entry) {
  287. c4iw_put_resource(&rdev->resource.tpt_table, stag_idx);
  288. mutex_lock(&rdev->stats.lock);
  289. rdev->stats.stag.cur -= 32;
  290. mutex_unlock(&rdev->stats.lock);
  291. }
  292. return err;
  293. }
  294. static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl,
  295. u32 pbl_addr, u32 pbl_size)
  296. {
  297. int err;
  298. PDBG("%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n",
  299. __func__, pbl_addr, rdev->lldi.vr->pbl.start,
  300. pbl_size);
  301. err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl, NULL);
  302. return err;
  303. }
  304. static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size,
  305. u32 pbl_addr, struct sk_buff *skb)
  306. {
  307. return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0,
  308. pbl_size, pbl_addr, skb);
  309. }
  310. static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid)
  311. {
  312. *stag = T4_STAG_UNSET;
  313. return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0,
  314. 0UL, 0, 0, 0, 0, NULL);
  315. }
  316. static int deallocate_window(struct c4iw_rdev *rdev, u32 stag,
  317. struct sk_buff *skb)
  318. {
  319. return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0,
  320. 0, skb);
  321. }
  322. static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid,
  323. u32 pbl_size, u32 pbl_addr)
  324. {
  325. *stag = T4_STAG_UNSET;
  326. return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0,
  327. 0UL, 0, 0, pbl_size, pbl_addr, NULL);
  328. }
  329. static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag)
  330. {
  331. u32 mmid;
  332. mhp->attr.state = 1;
  333. mhp->attr.stag = stag;
  334. mmid = stag >> 8;
  335. mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
  336. PDBG("%s mmid 0x%x mhp %p\n", __func__, mmid, mhp);
  337. return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid);
  338. }
  339. static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
  340. struct c4iw_mr *mhp, int shift)
  341. {
  342. u32 stag = T4_STAG_UNSET;
  343. int ret;
  344. ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
  345. FW_RI_STAG_NSMR, mhp->attr.len ?
  346. mhp->attr.perms : 0,
  347. mhp->attr.mw_bind_enable, mhp->attr.zbva,
  348. mhp->attr.va_fbo, mhp->attr.len ?
  349. mhp->attr.len : -1, shift - 12,
  350. mhp->attr.pbl_size, mhp->attr.pbl_addr, NULL);
  351. if (ret)
  352. return ret;
  353. ret = finish_mem_reg(mhp, stag);
  354. if (ret) {
  355. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  356. mhp->attr.pbl_addr, mhp->dereg_skb);
  357. mhp->dereg_skb = NULL;
  358. }
  359. return ret;
  360. }
  361. static int alloc_pbl(struct c4iw_mr *mhp, int npages)
  362. {
  363. mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev,
  364. npages << 3);
  365. if (!mhp->attr.pbl_addr)
  366. return -ENOMEM;
  367. mhp->attr.pbl_size = npages;
  368. return 0;
  369. }
  370. struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc)
  371. {
  372. struct c4iw_dev *rhp;
  373. struct c4iw_pd *php;
  374. struct c4iw_mr *mhp;
  375. int ret;
  376. u32 stag = T4_STAG_UNSET;
  377. PDBG("%s ib_pd %p\n", __func__, pd);
  378. php = to_c4iw_pd(pd);
  379. rhp = php->rhp;
  380. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  381. if (!mhp)
  382. return ERR_PTR(-ENOMEM);
  383. mhp->dereg_skb = alloc_skb(SGE_MAX_WR_LEN, GFP_KERNEL);
  384. if (!mhp->dereg_skb) {
  385. ret = -ENOMEM;
  386. goto err0;
  387. }
  388. mhp->rhp = rhp;
  389. mhp->attr.pdid = php->pdid;
  390. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  391. mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND;
  392. mhp->attr.zbva = 0;
  393. mhp->attr.va_fbo = 0;
  394. mhp->attr.page_size = 0;
  395. mhp->attr.len = ~0ULL;
  396. mhp->attr.pbl_size = 0;
  397. ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid,
  398. FW_RI_STAG_NSMR, mhp->attr.perms,
  399. mhp->attr.mw_bind_enable, 0, 0, ~0ULL, 0, 0, 0,
  400. NULL);
  401. if (ret)
  402. goto err1;
  403. ret = finish_mem_reg(mhp, stag);
  404. if (ret)
  405. goto err2;
  406. return &mhp->ibmr;
  407. err2:
  408. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  409. mhp->attr.pbl_addr, mhp->dereg_skb);
  410. err1:
  411. kfree_skb(mhp->dereg_skb);
  412. err0:
  413. kfree(mhp);
  414. return ERR_PTR(ret);
  415. }
  416. struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
  417. u64 virt, int acc, struct ib_udata *udata)
  418. {
  419. __be64 *pages;
  420. int shift, n, len;
  421. int i, k, entry;
  422. int err = 0;
  423. struct scatterlist *sg;
  424. struct c4iw_dev *rhp;
  425. struct c4iw_pd *php;
  426. struct c4iw_mr *mhp;
  427. PDBG("%s ib_pd %p\n", __func__, pd);
  428. if (length == ~0ULL)
  429. return ERR_PTR(-EINVAL);
  430. if ((length + start) < start)
  431. return ERR_PTR(-EINVAL);
  432. php = to_c4iw_pd(pd);
  433. rhp = php->rhp;
  434. if (mr_exceeds_hw_limits(rhp, length))
  435. return ERR_PTR(-EINVAL);
  436. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  437. if (!mhp)
  438. return ERR_PTR(-ENOMEM);
  439. mhp->dereg_skb = alloc_skb(SGE_MAX_WR_LEN, GFP_KERNEL);
  440. if (!mhp->dereg_skb) {
  441. kfree(mhp);
  442. return ERR_PTR(-ENOMEM);
  443. }
  444. mhp->rhp = rhp;
  445. mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0);
  446. if (IS_ERR(mhp->umem)) {
  447. err = PTR_ERR(mhp->umem);
  448. kfree_skb(mhp->dereg_skb);
  449. kfree(mhp);
  450. return ERR_PTR(err);
  451. }
  452. shift = ffs(mhp->umem->page_size) - 1;
  453. n = mhp->umem->nmap;
  454. err = alloc_pbl(mhp, n);
  455. if (err)
  456. goto err;
  457. pages = (__be64 *) __get_free_page(GFP_KERNEL);
  458. if (!pages) {
  459. err = -ENOMEM;
  460. goto err_pbl;
  461. }
  462. i = n = 0;
  463. for_each_sg(mhp->umem->sg_head.sgl, sg, mhp->umem->nmap, entry) {
  464. len = sg_dma_len(sg) >> shift;
  465. for (k = 0; k < len; ++k) {
  466. pages[i++] = cpu_to_be64(sg_dma_address(sg) +
  467. mhp->umem->page_size * k);
  468. if (i == PAGE_SIZE / sizeof *pages) {
  469. err = write_pbl(&mhp->rhp->rdev,
  470. pages,
  471. mhp->attr.pbl_addr + (n << 3), i);
  472. if (err)
  473. goto pbl_done;
  474. n += i;
  475. i = 0;
  476. }
  477. }
  478. }
  479. if (i)
  480. err = write_pbl(&mhp->rhp->rdev, pages,
  481. mhp->attr.pbl_addr + (n << 3), i);
  482. pbl_done:
  483. free_page((unsigned long) pages);
  484. if (err)
  485. goto err_pbl;
  486. mhp->attr.pdid = php->pdid;
  487. mhp->attr.zbva = 0;
  488. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  489. mhp->attr.va_fbo = virt;
  490. mhp->attr.page_size = shift - 12;
  491. mhp->attr.len = length;
  492. err = register_mem(rhp, php, mhp, shift);
  493. if (err)
  494. goto err_pbl;
  495. return &mhp->ibmr;
  496. err_pbl:
  497. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  498. mhp->attr.pbl_size << 3);
  499. err:
  500. ib_umem_release(mhp->umem);
  501. kfree_skb(mhp->dereg_skb);
  502. kfree(mhp);
  503. return ERR_PTR(err);
  504. }
  505. struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
  506. struct ib_udata *udata)
  507. {
  508. struct c4iw_dev *rhp;
  509. struct c4iw_pd *php;
  510. struct c4iw_mw *mhp;
  511. u32 mmid;
  512. u32 stag = 0;
  513. int ret;
  514. if (type != IB_MW_TYPE_1)
  515. return ERR_PTR(-EINVAL);
  516. php = to_c4iw_pd(pd);
  517. rhp = php->rhp;
  518. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  519. if (!mhp)
  520. return ERR_PTR(-ENOMEM);
  521. mhp->dereg_skb = alloc_skb(SGE_MAX_WR_LEN, GFP_KERNEL);
  522. if (!mhp->dereg_skb) {
  523. ret = -ENOMEM;
  524. goto free_mhp;
  525. }
  526. ret = allocate_window(&rhp->rdev, &stag, php->pdid);
  527. if (ret)
  528. goto free_skb;
  529. mhp->rhp = rhp;
  530. mhp->attr.pdid = php->pdid;
  531. mhp->attr.type = FW_RI_STAG_MW;
  532. mhp->attr.stag = stag;
  533. mmid = (stag) >> 8;
  534. mhp->ibmw.rkey = stag;
  535. if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
  536. ret = -ENOMEM;
  537. goto dealloc_win;
  538. }
  539. PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
  540. return &(mhp->ibmw);
  541. dealloc_win:
  542. deallocate_window(&rhp->rdev, mhp->attr.stag, mhp->dereg_skb);
  543. free_skb:
  544. kfree_skb(mhp->dereg_skb);
  545. free_mhp:
  546. kfree(mhp);
  547. return ERR_PTR(ret);
  548. }
  549. int c4iw_dealloc_mw(struct ib_mw *mw)
  550. {
  551. struct c4iw_dev *rhp;
  552. struct c4iw_mw *mhp;
  553. u32 mmid;
  554. mhp = to_c4iw_mw(mw);
  555. rhp = mhp->rhp;
  556. mmid = (mw->rkey) >> 8;
  557. remove_handle(rhp, &rhp->mmidr, mmid);
  558. deallocate_window(&rhp->rdev, mhp->attr.stag, mhp->dereg_skb);
  559. kfree_skb(mhp->dereg_skb);
  560. kfree(mhp);
  561. PDBG("%s ib_mw %p mmid 0x%x ptr %p\n", __func__, mw, mmid, mhp);
  562. return 0;
  563. }
  564. struct ib_mr *c4iw_alloc_mr(struct ib_pd *pd,
  565. enum ib_mr_type mr_type,
  566. u32 max_num_sg)
  567. {
  568. struct c4iw_dev *rhp;
  569. struct c4iw_pd *php;
  570. struct c4iw_mr *mhp;
  571. u32 mmid;
  572. u32 stag = 0;
  573. int ret = 0;
  574. int length = roundup(max_num_sg * sizeof(u64), 32);
  575. php = to_c4iw_pd(pd);
  576. rhp = php->rhp;
  577. if (mr_type != IB_MR_TYPE_MEM_REG ||
  578. max_num_sg > t4_max_fr_depth(&rhp->rdev.lldi.ulptx_memwrite_dsgl &&
  579. use_dsgl))
  580. return ERR_PTR(-EINVAL);
  581. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  582. if (!mhp) {
  583. ret = -ENOMEM;
  584. goto err;
  585. }
  586. mhp->mpl = dma_alloc_coherent(&rhp->rdev.lldi.pdev->dev,
  587. length, &mhp->mpl_addr, GFP_KERNEL);
  588. if (!mhp->mpl) {
  589. ret = -ENOMEM;
  590. goto err_mpl;
  591. }
  592. mhp->max_mpl_len = length;
  593. mhp->rhp = rhp;
  594. ret = alloc_pbl(mhp, max_num_sg);
  595. if (ret)
  596. goto err1;
  597. mhp->attr.pbl_size = max_num_sg;
  598. ret = allocate_stag(&rhp->rdev, &stag, php->pdid,
  599. mhp->attr.pbl_size, mhp->attr.pbl_addr);
  600. if (ret)
  601. goto err2;
  602. mhp->attr.pdid = php->pdid;
  603. mhp->attr.type = FW_RI_STAG_NSMR;
  604. mhp->attr.stag = stag;
  605. mhp->attr.state = 0;
  606. mmid = (stag) >> 8;
  607. mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
  608. if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
  609. ret = -ENOMEM;
  610. goto err3;
  611. }
  612. PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
  613. return &(mhp->ibmr);
  614. err3:
  615. dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size,
  616. mhp->attr.pbl_addr, mhp->dereg_skb);
  617. err2:
  618. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  619. mhp->attr.pbl_size << 3);
  620. err1:
  621. dma_free_coherent(&mhp->rhp->rdev.lldi.pdev->dev,
  622. mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr);
  623. err_mpl:
  624. kfree(mhp);
  625. err:
  626. return ERR_PTR(ret);
  627. }
  628. static int c4iw_set_page(struct ib_mr *ibmr, u64 addr)
  629. {
  630. struct c4iw_mr *mhp = to_c4iw_mr(ibmr);
  631. if (unlikely(mhp->mpl_len == mhp->attr.pbl_size))
  632. return -ENOMEM;
  633. mhp->mpl[mhp->mpl_len++] = addr;
  634. return 0;
  635. }
  636. int c4iw_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
  637. unsigned int *sg_offset)
  638. {
  639. struct c4iw_mr *mhp = to_c4iw_mr(ibmr);
  640. mhp->mpl_len = 0;
  641. return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, c4iw_set_page);
  642. }
  643. int c4iw_dereg_mr(struct ib_mr *ib_mr)
  644. {
  645. struct c4iw_dev *rhp;
  646. struct c4iw_mr *mhp;
  647. u32 mmid;
  648. PDBG("%s ib_mr %p\n", __func__, ib_mr);
  649. mhp = to_c4iw_mr(ib_mr);
  650. rhp = mhp->rhp;
  651. mmid = mhp->attr.stag >> 8;
  652. remove_handle(rhp, &rhp->mmidr, mmid);
  653. if (mhp->mpl)
  654. dma_free_coherent(&mhp->rhp->rdev.lldi.pdev->dev,
  655. mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr);
  656. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  657. mhp->attr.pbl_addr, mhp->dereg_skb);
  658. if (mhp->attr.pbl_size)
  659. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  660. mhp->attr.pbl_size << 3);
  661. if (mhp->kva)
  662. kfree((void *) (unsigned long) mhp->kva);
  663. if (mhp->umem)
  664. ib_umem_release(mhp->umem);
  665. PDBG("%s mmid 0x%x ptr %p\n", __func__, mmid, mhp);
  666. kfree(mhp);
  667. return 0;
  668. }
  669. void c4iw_invalidate_mr(struct c4iw_dev *rhp, u32 rkey)
  670. {
  671. struct c4iw_mr *mhp;
  672. unsigned long flags;
  673. spin_lock_irqsave(&rhp->lock, flags);
  674. mhp = get_mhp(rhp, rkey >> 8);
  675. if (mhp)
  676. mhp->attr.state = 0;
  677. spin_unlock_irqrestore(&rhp->lock, flags);
  678. }