amd64_edac.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *pci_ctl;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /* Per-node stuff */
  14. static struct ecc_settings **ecc_stngs;
  15. /*
  16. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  17. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  18. * or higher value'.
  19. *
  20. *FIXME: Produce a better mapping/linearisation.
  21. */
  22. static const struct scrubrate {
  23. u32 scrubval; /* bit pattern for scrub rate */
  24. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  25. } scrubrates[] = {
  26. { 0x01, 1600000000UL},
  27. { 0x02, 800000000UL},
  28. { 0x03, 400000000UL},
  29. { 0x04, 200000000UL},
  30. { 0x05, 100000000UL},
  31. { 0x06, 50000000UL},
  32. { 0x07, 25000000UL},
  33. { 0x08, 12284069UL},
  34. { 0x09, 6274509UL},
  35. { 0x0A, 3121951UL},
  36. { 0x0B, 1560975UL},
  37. { 0x0C, 781440UL},
  38. { 0x0D, 390720UL},
  39. { 0x0E, 195300UL},
  40. { 0x0F, 97650UL},
  41. { 0x10, 48854UL},
  42. { 0x11, 24427UL},
  43. { 0x12, 12213UL},
  44. { 0x13, 6101UL},
  45. { 0x14, 3051UL},
  46. { 0x15, 1523UL},
  47. { 0x16, 761UL},
  48. { 0x00, 0UL}, /* scrubbing off */
  49. };
  50. int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  51. u32 *val, const char *func)
  52. {
  53. int err = 0;
  54. err = pci_read_config_dword(pdev, offset, val);
  55. if (err)
  56. amd64_warn("%s: error reading F%dx%03x.\n",
  57. func, PCI_FUNC(pdev->devfn), offset);
  58. return err;
  59. }
  60. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  61. u32 val, const char *func)
  62. {
  63. int err = 0;
  64. err = pci_write_config_dword(pdev, offset, val);
  65. if (err)
  66. amd64_warn("%s: error writing to F%dx%03x.\n",
  67. func, PCI_FUNC(pdev->devfn), offset);
  68. return err;
  69. }
  70. /*
  71. * Select DCT to which PCI cfg accesses are routed
  72. */
  73. static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
  74. {
  75. u32 reg = 0;
  76. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  77. reg &= (pvt->model == 0x30) ? ~3 : ~1;
  78. reg |= dct;
  79. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  80. }
  81. /*
  82. *
  83. * Depending on the family, F2 DCT reads need special handling:
  84. *
  85. * K8: has a single DCT only and no address offsets >= 0x100
  86. *
  87. * F10h: each DCT has its own set of regs
  88. * DCT0 -> F2x040..
  89. * DCT1 -> F2x140..
  90. *
  91. * F16h: has only 1 DCT
  92. *
  93. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  94. */
  95. static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
  96. int offset, u32 *val)
  97. {
  98. switch (pvt->fam) {
  99. case 0xf:
  100. if (dct || offset >= 0x100)
  101. return -EINVAL;
  102. break;
  103. case 0x10:
  104. if (dct) {
  105. /*
  106. * Note: If ganging is enabled, barring the regs
  107. * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
  108. * return 0. (cf. Section 2.8.1 F10h BKDG)
  109. */
  110. if (dct_ganging_enabled(pvt))
  111. return 0;
  112. offset += 0x100;
  113. }
  114. break;
  115. case 0x15:
  116. /*
  117. * F15h: F2x1xx addresses do not map explicitly to DCT1.
  118. * We should select which DCT we access using F1x10C[DctCfgSel]
  119. */
  120. dct = (dct && pvt->model == 0x30) ? 3 : dct;
  121. f15h_select_dct(pvt, dct);
  122. break;
  123. case 0x16:
  124. if (dct)
  125. return -EINVAL;
  126. break;
  127. default:
  128. break;
  129. }
  130. return amd64_read_pci_cfg(pvt->F2, offset, val);
  131. }
  132. /*
  133. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  134. * hardware and can involve L2 cache, dcache as well as the main memory. With
  135. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  136. * functionality.
  137. *
  138. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  139. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  140. * bytes/sec for the setting.
  141. *
  142. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  143. * other archs, we might not have access to the caches directly.
  144. */
  145. /*
  146. * scan the scrub rate mapping table for a close or matching bandwidth value to
  147. * issue. If requested is too big, then use last maximum value found.
  148. */
  149. static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
  150. {
  151. u32 scrubval;
  152. int i;
  153. /*
  154. * map the configured rate (new_bw) to a value specific to the AMD64
  155. * memory controller and apply to register. Search for the first
  156. * bandwidth entry that is greater or equal than the setting requested
  157. * and program that. If at last entry, turn off DRAM scrubbing.
  158. *
  159. * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
  160. * by falling back to the last element in scrubrates[].
  161. */
  162. for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
  163. /*
  164. * skip scrub rates which aren't recommended
  165. * (see F10 BKDG, F3x58)
  166. */
  167. if (scrubrates[i].scrubval < min_rate)
  168. continue;
  169. if (scrubrates[i].bandwidth <= new_bw)
  170. break;
  171. }
  172. scrubval = scrubrates[i].scrubval;
  173. if (pvt->fam == 0x15 && pvt->model == 0x60) {
  174. f15h_select_dct(pvt, 0);
  175. pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
  176. f15h_select_dct(pvt, 1);
  177. pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
  178. } else {
  179. pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
  180. }
  181. if (scrubval)
  182. return scrubrates[i].bandwidth;
  183. return 0;
  184. }
  185. static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  186. {
  187. struct amd64_pvt *pvt = mci->pvt_info;
  188. u32 min_scrubrate = 0x5;
  189. if (pvt->fam == 0xf)
  190. min_scrubrate = 0x0;
  191. if (pvt->fam == 0x15) {
  192. /* Erratum #505 */
  193. if (pvt->model < 0x10)
  194. f15h_select_dct(pvt, 0);
  195. if (pvt->model == 0x60)
  196. min_scrubrate = 0x6;
  197. }
  198. return __set_scrub_rate(pvt, bw, min_scrubrate);
  199. }
  200. static int get_scrub_rate(struct mem_ctl_info *mci)
  201. {
  202. struct amd64_pvt *pvt = mci->pvt_info;
  203. u32 scrubval = 0;
  204. int i, retval = -EINVAL;
  205. if (pvt->fam == 0x15) {
  206. /* Erratum #505 */
  207. if (pvt->model < 0x10)
  208. f15h_select_dct(pvt, 0);
  209. if (pvt->model == 0x60)
  210. amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
  211. } else
  212. amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
  213. scrubval = scrubval & 0x001F;
  214. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  215. if (scrubrates[i].scrubval == scrubval) {
  216. retval = scrubrates[i].bandwidth;
  217. break;
  218. }
  219. }
  220. return retval;
  221. }
  222. /*
  223. * returns true if the SysAddr given by sys_addr matches the
  224. * DRAM base/limit associated with node_id
  225. */
  226. static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
  227. {
  228. u64 addr;
  229. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  230. * all ones if the most significant implemented address bit is 1.
  231. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  232. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  233. * Application Programming.
  234. */
  235. addr = sys_addr & 0x000000ffffffffffull;
  236. return ((addr >= get_dram_base(pvt, nid)) &&
  237. (addr <= get_dram_limit(pvt, nid)));
  238. }
  239. /*
  240. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  241. * mem_ctl_info structure for the node that the SysAddr maps to.
  242. *
  243. * On failure, return NULL.
  244. */
  245. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  246. u64 sys_addr)
  247. {
  248. struct amd64_pvt *pvt;
  249. u8 node_id;
  250. u32 intlv_en, bits;
  251. /*
  252. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  253. * 3.4.4.2) registers to map the SysAddr to a node ID.
  254. */
  255. pvt = mci->pvt_info;
  256. /*
  257. * The value of this field should be the same for all DRAM Base
  258. * registers. Therefore we arbitrarily choose to read it from the
  259. * register for node 0.
  260. */
  261. intlv_en = dram_intlv_en(pvt, 0);
  262. if (intlv_en == 0) {
  263. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  264. if (base_limit_match(pvt, sys_addr, node_id))
  265. goto found;
  266. }
  267. goto err_no_match;
  268. }
  269. if (unlikely((intlv_en != 0x01) &&
  270. (intlv_en != 0x03) &&
  271. (intlv_en != 0x07))) {
  272. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  273. return NULL;
  274. }
  275. bits = (((u32) sys_addr) >> 12) & intlv_en;
  276. for (node_id = 0; ; ) {
  277. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  278. break; /* intlv_sel field matches */
  279. if (++node_id >= DRAM_RANGES)
  280. goto err_no_match;
  281. }
  282. /* sanity test for sys_addr */
  283. if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
  284. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  285. "range for node %d with node interleaving enabled.\n",
  286. __func__, sys_addr, node_id);
  287. return NULL;
  288. }
  289. found:
  290. return edac_mc_find((int)node_id);
  291. err_no_match:
  292. edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
  293. (unsigned long)sys_addr);
  294. return NULL;
  295. }
  296. /*
  297. * compute the CS base address of the @csrow on the DRAM controller @dct.
  298. * For details see F2x[5C:40] in the processor's BKDG
  299. */
  300. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  301. u64 *base, u64 *mask)
  302. {
  303. u64 csbase, csmask, base_bits, mask_bits;
  304. u8 addr_shift;
  305. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
  306. csbase = pvt->csels[dct].csbases[csrow];
  307. csmask = pvt->csels[dct].csmasks[csrow];
  308. base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
  309. mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
  310. addr_shift = 4;
  311. /*
  312. * F16h and F15h, models 30h and later need two addr_shift values:
  313. * 8 for high and 6 for low (cf. F16h BKDG).
  314. */
  315. } else if (pvt->fam == 0x16 ||
  316. (pvt->fam == 0x15 && pvt->model >= 0x30)) {
  317. csbase = pvt->csels[dct].csbases[csrow];
  318. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  319. *base = (csbase & GENMASK_ULL(15, 5)) << 6;
  320. *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
  321. *mask = ~0ULL;
  322. /* poke holes for the csmask */
  323. *mask &= ~((GENMASK_ULL(15, 5) << 6) |
  324. (GENMASK_ULL(30, 19) << 8));
  325. *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
  326. *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
  327. return;
  328. } else {
  329. csbase = pvt->csels[dct].csbases[csrow];
  330. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  331. addr_shift = 8;
  332. if (pvt->fam == 0x15)
  333. base_bits = mask_bits =
  334. GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
  335. else
  336. base_bits = mask_bits =
  337. GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
  338. }
  339. *base = (csbase & base_bits) << addr_shift;
  340. *mask = ~0ULL;
  341. /* poke holes for the csmask */
  342. *mask &= ~(mask_bits << addr_shift);
  343. /* OR them in */
  344. *mask |= (csmask & mask_bits) << addr_shift;
  345. }
  346. #define for_each_chip_select(i, dct, pvt) \
  347. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  348. #define chip_select_base(i, dct, pvt) \
  349. pvt->csels[dct].csbases[i]
  350. #define for_each_chip_select_mask(i, dct, pvt) \
  351. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  352. /*
  353. * @input_addr is an InputAddr associated with the node given by mci. Return the
  354. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  355. */
  356. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  357. {
  358. struct amd64_pvt *pvt;
  359. int csrow;
  360. u64 base, mask;
  361. pvt = mci->pvt_info;
  362. for_each_chip_select(csrow, 0, pvt) {
  363. if (!csrow_enabled(csrow, 0, pvt))
  364. continue;
  365. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  366. mask = ~mask;
  367. if ((input_addr & mask) == (base & mask)) {
  368. edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
  369. (unsigned long)input_addr, csrow,
  370. pvt->mc_node_id);
  371. return csrow;
  372. }
  373. }
  374. edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  375. (unsigned long)input_addr, pvt->mc_node_id);
  376. return -1;
  377. }
  378. /*
  379. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  380. * for the node represented by mci. Info is passed back in *hole_base,
  381. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  382. * info is invalid. Info may be invalid for either of the following reasons:
  383. *
  384. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  385. * Address Register does not exist.
  386. *
  387. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  388. * indicating that its contents are not valid.
  389. *
  390. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  391. * complete 32-bit values despite the fact that the bitfields in the DHAR
  392. * only represent bits 31-24 of the base and offset values.
  393. */
  394. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  395. u64 *hole_offset, u64 *hole_size)
  396. {
  397. struct amd64_pvt *pvt = mci->pvt_info;
  398. /* only revE and later have the DRAM Hole Address Register */
  399. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
  400. edac_dbg(1, " revision %d for node %d does not support DHAR\n",
  401. pvt->ext_model, pvt->mc_node_id);
  402. return 1;
  403. }
  404. /* valid for Fam10h and above */
  405. if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  406. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
  407. return 1;
  408. }
  409. if (!dhar_valid(pvt)) {
  410. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
  411. pvt->mc_node_id);
  412. return 1;
  413. }
  414. /* This node has Memory Hoisting */
  415. /* +------------------+--------------------+--------------------+-----
  416. * | memory | DRAM hole | relocated |
  417. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  418. * | | | DRAM hole |
  419. * | | | [0x100000000, |
  420. * | | | (0x100000000+ |
  421. * | | | (0xffffffff-x))] |
  422. * +------------------+--------------------+--------------------+-----
  423. *
  424. * Above is a diagram of physical memory showing the DRAM hole and the
  425. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  426. * starts at address x (the base address) and extends through address
  427. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  428. * addresses in the hole so that they start at 0x100000000.
  429. */
  430. *hole_base = dhar_base(pvt);
  431. *hole_size = (1ULL << 32) - *hole_base;
  432. *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
  433. : k8_dhar_offset(pvt);
  434. edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  435. pvt->mc_node_id, (unsigned long)*hole_base,
  436. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  437. return 0;
  438. }
  439. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  440. /*
  441. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  442. * assumed that sys_addr maps to the node given by mci.
  443. *
  444. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  445. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  446. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  447. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  448. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  449. * These parts of the documentation are unclear. I interpret them as follows:
  450. *
  451. * When node n receives a SysAddr, it processes the SysAddr as follows:
  452. *
  453. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  454. * Limit registers for node n. If the SysAddr is not within the range
  455. * specified by the base and limit values, then node n ignores the Sysaddr
  456. * (since it does not map to node n). Otherwise continue to step 2 below.
  457. *
  458. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  459. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  460. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  461. * hole. If not, skip to step 3 below. Else get the value of the
  462. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  463. * offset defined by this value from the SysAddr.
  464. *
  465. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  466. * Base register for node n. To obtain the DramAddr, subtract the base
  467. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  468. */
  469. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  470. {
  471. struct amd64_pvt *pvt = mci->pvt_info;
  472. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  473. int ret;
  474. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  475. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  476. &hole_size);
  477. if (!ret) {
  478. if ((sys_addr >= (1ULL << 32)) &&
  479. (sys_addr < ((1ULL << 32) + hole_size))) {
  480. /* use DHAR to translate SysAddr to DramAddr */
  481. dram_addr = sys_addr - hole_offset;
  482. edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  483. (unsigned long)sys_addr,
  484. (unsigned long)dram_addr);
  485. return dram_addr;
  486. }
  487. }
  488. /*
  489. * Translate the SysAddr to a DramAddr as shown near the start of
  490. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  491. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  492. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  493. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  494. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  495. * Programmer's Manual Volume 1 Application Programming.
  496. */
  497. dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
  498. edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  499. (unsigned long)sys_addr, (unsigned long)dram_addr);
  500. return dram_addr;
  501. }
  502. /*
  503. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  504. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  505. * for node interleaving.
  506. */
  507. static int num_node_interleave_bits(unsigned intlv_en)
  508. {
  509. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  510. int n;
  511. BUG_ON(intlv_en > 7);
  512. n = intlv_shift_table[intlv_en];
  513. return n;
  514. }
  515. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  516. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  517. {
  518. struct amd64_pvt *pvt;
  519. int intlv_shift;
  520. u64 input_addr;
  521. pvt = mci->pvt_info;
  522. /*
  523. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  524. * concerning translating a DramAddr to an InputAddr.
  525. */
  526. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  527. input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
  528. (dram_addr & 0xfff);
  529. edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  530. intlv_shift, (unsigned long)dram_addr,
  531. (unsigned long)input_addr);
  532. return input_addr;
  533. }
  534. /*
  535. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  536. * assumed that @sys_addr maps to the node given by mci.
  537. */
  538. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  539. {
  540. u64 input_addr;
  541. input_addr =
  542. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  543. edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
  544. (unsigned long)sys_addr, (unsigned long)input_addr);
  545. return input_addr;
  546. }
  547. /* Map the Error address to a PAGE and PAGE OFFSET. */
  548. static inline void error_address_to_page_and_offset(u64 error_address,
  549. struct err_info *err)
  550. {
  551. err->page = (u32) (error_address >> PAGE_SHIFT);
  552. err->offset = ((u32) error_address) & ~PAGE_MASK;
  553. }
  554. /*
  555. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  556. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  557. * of a node that detected an ECC memory error. mci represents the node that
  558. * the error address maps to (possibly different from the node that detected
  559. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  560. * error.
  561. */
  562. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  563. {
  564. int csrow;
  565. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  566. if (csrow == -1)
  567. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  568. "address 0x%lx\n", (unsigned long)sys_addr);
  569. return csrow;
  570. }
  571. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  572. /*
  573. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  574. * are ECC capable.
  575. */
  576. static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
  577. {
  578. u8 bit;
  579. unsigned long edac_cap = EDAC_FLAG_NONE;
  580. bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
  581. ? 19
  582. : 17;
  583. if (pvt->dclr0 & BIT(bit))
  584. edac_cap = EDAC_FLAG_SECDED;
  585. return edac_cap;
  586. }
  587. static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
  588. static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
  589. {
  590. edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  591. if (pvt->dram_type == MEM_LRDDR3) {
  592. u32 dcsm = pvt->csels[chan].csmasks[0];
  593. /*
  594. * It's assumed all LRDIMMs in a DCT are going to be of
  595. * same 'type' until proven otherwise. So, use a cs
  596. * value of '0' here to get dcsm value.
  597. */
  598. edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
  599. }
  600. edac_dbg(1, "All DIMMs support ECC:%s\n",
  601. (dclr & BIT(19)) ? "yes" : "no");
  602. edac_dbg(1, " PAR/ERR parity: %s\n",
  603. (dclr & BIT(8)) ? "enabled" : "disabled");
  604. if (pvt->fam == 0x10)
  605. edac_dbg(1, " DCT 128bit mode width: %s\n",
  606. (dclr & BIT(11)) ? "128b" : "64b");
  607. edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  608. (dclr & BIT(12)) ? "yes" : "no",
  609. (dclr & BIT(13)) ? "yes" : "no",
  610. (dclr & BIT(14)) ? "yes" : "no",
  611. (dclr & BIT(15)) ? "yes" : "no");
  612. }
  613. /* Display and decode various NB registers for debug purposes. */
  614. static void dump_misc_regs(struct amd64_pvt *pvt)
  615. {
  616. edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  617. edac_dbg(1, " NB two channel DRAM capable: %s\n",
  618. (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
  619. edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
  620. (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
  621. (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
  622. debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
  623. edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  624. edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
  625. pvt->dhar, dhar_base(pvt),
  626. (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
  627. : f10_dhar_offset(pvt));
  628. edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  629. debug_display_dimm_sizes(pvt, 0);
  630. /* everything below this point is Fam10h and above */
  631. if (pvt->fam == 0xf)
  632. return;
  633. debug_display_dimm_sizes(pvt, 1);
  634. amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
  635. /* Only if NOT ganged does dclr1 have valid info */
  636. if (!dct_ganging_enabled(pvt))
  637. debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
  638. }
  639. /*
  640. * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  641. */
  642. static void prep_chip_selects(struct amd64_pvt *pvt)
  643. {
  644. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
  645. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  646. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  647. } else if (pvt->fam == 0x15 && pvt->model == 0x30) {
  648. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
  649. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
  650. } else {
  651. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  652. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  653. }
  654. }
  655. /*
  656. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  657. */
  658. static void read_dct_base_mask(struct amd64_pvt *pvt)
  659. {
  660. int cs;
  661. prep_chip_selects(pvt);
  662. for_each_chip_select(cs, 0, pvt) {
  663. int reg0 = DCSB0 + (cs * 4);
  664. int reg1 = DCSB1 + (cs * 4);
  665. u32 *base0 = &pvt->csels[0].csbases[cs];
  666. u32 *base1 = &pvt->csels[1].csbases[cs];
  667. if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
  668. edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
  669. cs, *base0, reg0);
  670. if (pvt->fam == 0xf)
  671. continue;
  672. if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
  673. edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
  674. cs, *base1, (pvt->fam == 0x10) ? reg1
  675. : reg0);
  676. }
  677. for_each_chip_select_mask(cs, 0, pvt) {
  678. int reg0 = DCSM0 + (cs * 4);
  679. int reg1 = DCSM1 + (cs * 4);
  680. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  681. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  682. if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
  683. edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
  684. cs, *mask0, reg0);
  685. if (pvt->fam == 0xf)
  686. continue;
  687. if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
  688. edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
  689. cs, *mask1, (pvt->fam == 0x10) ? reg1
  690. : reg0);
  691. }
  692. }
  693. static void determine_memory_type(struct amd64_pvt *pvt)
  694. {
  695. u32 dram_ctrl, dcsm;
  696. switch (pvt->fam) {
  697. case 0xf:
  698. if (pvt->ext_model >= K8_REV_F)
  699. goto ddr3;
  700. pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  701. return;
  702. case 0x10:
  703. if (pvt->dchr0 & DDR3_MODE)
  704. goto ddr3;
  705. pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  706. return;
  707. case 0x15:
  708. if (pvt->model < 0x60)
  709. goto ddr3;
  710. /*
  711. * Model 0x60h needs special handling:
  712. *
  713. * We use a Chip Select value of '0' to obtain dcsm.
  714. * Theoretically, it is possible to populate LRDIMMs of different
  715. * 'Rank' value on a DCT. But this is not the common case. So,
  716. * it's reasonable to assume all DIMMs are going to be of same
  717. * 'type' until proven otherwise.
  718. */
  719. amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
  720. dcsm = pvt->csels[0].csmasks[0];
  721. if (((dram_ctrl >> 8) & 0x7) == 0x2)
  722. pvt->dram_type = MEM_DDR4;
  723. else if (pvt->dclr0 & BIT(16))
  724. pvt->dram_type = MEM_DDR3;
  725. else if (dcsm & 0x3)
  726. pvt->dram_type = MEM_LRDDR3;
  727. else
  728. pvt->dram_type = MEM_RDDR3;
  729. return;
  730. case 0x16:
  731. goto ddr3;
  732. default:
  733. WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
  734. pvt->dram_type = MEM_EMPTY;
  735. }
  736. return;
  737. ddr3:
  738. pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  739. }
  740. /* Get the number of DCT channels the memory controller is using. */
  741. static int k8_early_channel_count(struct amd64_pvt *pvt)
  742. {
  743. int flag;
  744. if (pvt->ext_model >= K8_REV_F)
  745. /* RevF (NPT) and later */
  746. flag = pvt->dclr0 & WIDTH_128;
  747. else
  748. /* RevE and earlier */
  749. flag = pvt->dclr0 & REVE_WIDTH_128;
  750. /* not used */
  751. pvt->dclr1 = 0;
  752. return (flag) ? 2 : 1;
  753. }
  754. /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
  755. static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
  756. {
  757. u16 mce_nid = amd_get_nb_id(m->extcpu);
  758. struct mem_ctl_info *mci;
  759. u8 start_bit = 1;
  760. u8 end_bit = 47;
  761. u64 addr;
  762. mci = edac_mc_find(mce_nid);
  763. if (!mci)
  764. return 0;
  765. pvt = mci->pvt_info;
  766. if (pvt->fam == 0xf) {
  767. start_bit = 3;
  768. end_bit = 39;
  769. }
  770. addr = m->addr & GENMASK_ULL(end_bit, start_bit);
  771. /*
  772. * Erratum 637 workaround
  773. */
  774. if (pvt->fam == 0x15) {
  775. u64 cc6_base, tmp_addr;
  776. u32 tmp;
  777. u8 intlv_en;
  778. if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
  779. return addr;
  780. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
  781. intlv_en = tmp >> 21 & 0x7;
  782. /* add [47:27] + 3 trailing bits */
  783. cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
  784. /* reverse and add DramIntlvEn */
  785. cc6_base |= intlv_en ^ 0x7;
  786. /* pin at [47:24] */
  787. cc6_base <<= 24;
  788. if (!intlv_en)
  789. return cc6_base | (addr & GENMASK_ULL(23, 0));
  790. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
  791. /* faster log2 */
  792. tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
  793. /* OR DramIntlvSel into bits [14:12] */
  794. tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
  795. /* add remaining [11:0] bits from original MC4_ADDR */
  796. tmp_addr |= addr & GENMASK_ULL(11, 0);
  797. return cc6_base | tmp_addr;
  798. }
  799. return addr;
  800. }
  801. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  802. unsigned int device,
  803. struct pci_dev *related)
  804. {
  805. struct pci_dev *dev = NULL;
  806. while ((dev = pci_get_device(vendor, device, dev))) {
  807. if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
  808. (dev->bus->number == related->bus->number) &&
  809. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  810. break;
  811. }
  812. return dev;
  813. }
  814. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  815. {
  816. struct amd_northbridge *nb;
  817. struct pci_dev *f1 = NULL;
  818. unsigned int pci_func;
  819. int off = range << 3;
  820. u32 llim;
  821. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  822. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  823. if (pvt->fam == 0xf)
  824. return;
  825. if (!dram_rw(pvt, range))
  826. return;
  827. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  828. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  829. /* F15h: factor in CC6 save area by reading dst node's limit reg */
  830. if (pvt->fam != 0x15)
  831. return;
  832. nb = node_to_amd_nb(dram_dst_node(pvt, range));
  833. if (WARN_ON(!nb))
  834. return;
  835. if (pvt->model == 0x60)
  836. pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
  837. else if (pvt->model == 0x30)
  838. pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
  839. else
  840. pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
  841. f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
  842. if (WARN_ON(!f1))
  843. return;
  844. amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
  845. pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
  846. /* {[39:27],111b} */
  847. pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
  848. pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
  849. /* [47:40] */
  850. pvt->ranges[range].lim.hi |= llim >> 13;
  851. pci_dev_put(f1);
  852. }
  853. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  854. struct err_info *err)
  855. {
  856. struct amd64_pvt *pvt = mci->pvt_info;
  857. error_address_to_page_and_offset(sys_addr, err);
  858. /*
  859. * Find out which node the error address belongs to. This may be
  860. * different from the node that detected the error.
  861. */
  862. err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
  863. if (!err->src_mci) {
  864. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  865. (unsigned long)sys_addr);
  866. err->err_code = ERR_NODE;
  867. return;
  868. }
  869. /* Now map the sys_addr to a CSROW */
  870. err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
  871. if (err->csrow < 0) {
  872. err->err_code = ERR_CSROW;
  873. return;
  874. }
  875. /* CHIPKILL enabled */
  876. if (pvt->nbcfg & NBCFG_CHIPKILL) {
  877. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  878. if (err->channel < 0) {
  879. /*
  880. * Syndrome didn't map, so we don't know which of the
  881. * 2 DIMMs is in error. So we need to ID 'both' of them
  882. * as suspect.
  883. */
  884. amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
  885. "possible error reporting race\n",
  886. err->syndrome);
  887. err->err_code = ERR_CHANNEL;
  888. return;
  889. }
  890. } else {
  891. /*
  892. * non-chipkill ecc mode
  893. *
  894. * The k8 documentation is unclear about how to determine the
  895. * channel number when using non-chipkill memory. This method
  896. * was obtained from email communication with someone at AMD.
  897. * (Wish the email was placed in this comment - norsk)
  898. */
  899. err->channel = ((sys_addr & BIT(3)) != 0);
  900. }
  901. }
  902. static int ddr2_cs_size(unsigned i, bool dct_width)
  903. {
  904. unsigned shift = 0;
  905. if (i <= 2)
  906. shift = i;
  907. else if (!(i & 0x1))
  908. shift = i >> 1;
  909. else
  910. shift = (i + 1) >> 1;
  911. return 128 << (shift + !!dct_width);
  912. }
  913. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  914. unsigned cs_mode, int cs_mask_nr)
  915. {
  916. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  917. if (pvt->ext_model >= K8_REV_F) {
  918. WARN_ON(cs_mode > 11);
  919. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  920. }
  921. else if (pvt->ext_model >= K8_REV_D) {
  922. unsigned diff;
  923. WARN_ON(cs_mode > 10);
  924. /*
  925. * the below calculation, besides trying to win an obfuscated C
  926. * contest, maps cs_mode values to DIMM chip select sizes. The
  927. * mappings are:
  928. *
  929. * cs_mode CS size (mb)
  930. * ======= ============
  931. * 0 32
  932. * 1 64
  933. * 2 128
  934. * 3 128
  935. * 4 256
  936. * 5 512
  937. * 6 256
  938. * 7 512
  939. * 8 1024
  940. * 9 1024
  941. * 10 2048
  942. *
  943. * Basically, it calculates a value with which to shift the
  944. * smallest CS size of 32MB.
  945. *
  946. * ddr[23]_cs_size have a similar purpose.
  947. */
  948. diff = cs_mode/3 + (unsigned)(cs_mode > 5);
  949. return 32 << (cs_mode - diff);
  950. }
  951. else {
  952. WARN_ON(cs_mode > 6);
  953. return 32 << cs_mode;
  954. }
  955. }
  956. /*
  957. * Get the number of DCT channels in use.
  958. *
  959. * Return:
  960. * number of Memory Channels in operation
  961. * Pass back:
  962. * contents of the DCL0_LOW register
  963. */
  964. static int f1x_early_channel_count(struct amd64_pvt *pvt)
  965. {
  966. int i, j, channels = 0;
  967. /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
  968. if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
  969. return 2;
  970. /*
  971. * Need to check if in unganged mode: In such, there are 2 channels,
  972. * but they are not in 128 bit mode and thus the above 'dclr0' status
  973. * bit will be OFF.
  974. *
  975. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  976. * their CSEnable bit on. If so, then SINGLE DIMM case.
  977. */
  978. edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
  979. /*
  980. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  981. * is more than just one DIMM present in unganged mode. Need to check
  982. * both controllers since DIMMs can be placed in either one.
  983. */
  984. for (i = 0; i < 2; i++) {
  985. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  986. for (j = 0; j < 4; j++) {
  987. if (DBAM_DIMM(j, dbam) > 0) {
  988. channels++;
  989. break;
  990. }
  991. }
  992. }
  993. if (channels > 2)
  994. channels = 2;
  995. amd64_info("MCT channel count: %d\n", channels);
  996. return channels;
  997. }
  998. static int ddr3_cs_size(unsigned i, bool dct_width)
  999. {
  1000. unsigned shift = 0;
  1001. int cs_size = 0;
  1002. if (i == 0 || i == 3 || i == 4)
  1003. cs_size = -1;
  1004. else if (i <= 2)
  1005. shift = i;
  1006. else if (i == 12)
  1007. shift = 7;
  1008. else if (!(i & 0x1))
  1009. shift = i >> 1;
  1010. else
  1011. shift = (i + 1) >> 1;
  1012. if (cs_size != -1)
  1013. cs_size = (128 * (1 << !!dct_width)) << shift;
  1014. return cs_size;
  1015. }
  1016. static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
  1017. {
  1018. unsigned shift = 0;
  1019. int cs_size = 0;
  1020. if (i < 4 || i == 6)
  1021. cs_size = -1;
  1022. else if (i == 12)
  1023. shift = 7;
  1024. else if (!(i & 0x1))
  1025. shift = i >> 1;
  1026. else
  1027. shift = (i + 1) >> 1;
  1028. if (cs_size != -1)
  1029. cs_size = rank_multiply * (128 << shift);
  1030. return cs_size;
  1031. }
  1032. static int ddr4_cs_size(unsigned i)
  1033. {
  1034. int cs_size = 0;
  1035. if (i == 0)
  1036. cs_size = -1;
  1037. else if (i == 1)
  1038. cs_size = 1024;
  1039. else
  1040. /* Min cs_size = 1G */
  1041. cs_size = 1024 * (1 << (i >> 1));
  1042. return cs_size;
  1043. }
  1044. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1045. unsigned cs_mode, int cs_mask_nr)
  1046. {
  1047. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  1048. WARN_ON(cs_mode > 11);
  1049. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  1050. return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
  1051. else
  1052. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  1053. }
  1054. /*
  1055. * F15h supports only 64bit DCT interfaces
  1056. */
  1057. static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1058. unsigned cs_mode, int cs_mask_nr)
  1059. {
  1060. WARN_ON(cs_mode > 12);
  1061. return ddr3_cs_size(cs_mode, false);
  1062. }
  1063. /* F15h M60h supports DDR4 mapping as well.. */
  1064. static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1065. unsigned cs_mode, int cs_mask_nr)
  1066. {
  1067. int cs_size;
  1068. u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
  1069. WARN_ON(cs_mode > 12);
  1070. if (pvt->dram_type == MEM_DDR4) {
  1071. if (cs_mode > 9)
  1072. return -1;
  1073. cs_size = ddr4_cs_size(cs_mode);
  1074. } else if (pvt->dram_type == MEM_LRDDR3) {
  1075. unsigned rank_multiply = dcsm & 0xf;
  1076. if (rank_multiply == 3)
  1077. rank_multiply = 4;
  1078. cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
  1079. } else {
  1080. /* Minimum cs size is 512mb for F15hM60h*/
  1081. if (cs_mode == 0x1)
  1082. return -1;
  1083. cs_size = ddr3_cs_size(cs_mode, false);
  1084. }
  1085. return cs_size;
  1086. }
  1087. /*
  1088. * F16h and F15h model 30h have only limited cs_modes.
  1089. */
  1090. static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1091. unsigned cs_mode, int cs_mask_nr)
  1092. {
  1093. WARN_ON(cs_mode > 12);
  1094. if (cs_mode == 6 || cs_mode == 8 ||
  1095. cs_mode == 9 || cs_mode == 12)
  1096. return -1;
  1097. else
  1098. return ddr3_cs_size(cs_mode, false);
  1099. }
  1100. static void read_dram_ctl_register(struct amd64_pvt *pvt)
  1101. {
  1102. if (pvt->fam == 0xf)
  1103. return;
  1104. if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  1105. edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  1106. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  1107. edac_dbg(0, " DCTs operate in %s mode\n",
  1108. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
  1109. if (!dct_ganging_enabled(pvt))
  1110. edac_dbg(0, " Address range split per DCT: %s\n",
  1111. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  1112. edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
  1113. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  1114. (dct_memory_cleared(pvt) ? "yes" : "no"));
  1115. edac_dbg(0, " channel interleave: %s, "
  1116. "interleave bits selector: 0x%x\n",
  1117. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  1118. dct_sel_interleave_addr(pvt));
  1119. }
  1120. amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
  1121. }
  1122. /*
  1123. * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
  1124. * 2.10.12 Memory Interleaving Modes).
  1125. */
  1126. static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1127. u8 intlv_en, int num_dcts_intlv,
  1128. u32 dct_sel)
  1129. {
  1130. u8 channel = 0;
  1131. u8 select;
  1132. if (!(intlv_en))
  1133. return (u8)(dct_sel);
  1134. if (num_dcts_intlv == 2) {
  1135. select = (sys_addr >> 8) & 0x3;
  1136. channel = select ? 0x3 : 0;
  1137. } else if (num_dcts_intlv == 4) {
  1138. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1139. switch (intlv_addr) {
  1140. case 0x4:
  1141. channel = (sys_addr >> 8) & 0x3;
  1142. break;
  1143. case 0x5:
  1144. channel = (sys_addr >> 9) & 0x3;
  1145. break;
  1146. }
  1147. }
  1148. return channel;
  1149. }
  1150. /*
  1151. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1152. * Interleaving Modes.
  1153. */
  1154. static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1155. bool hi_range_sel, u8 intlv_en)
  1156. {
  1157. u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  1158. if (dct_ganging_enabled(pvt))
  1159. return 0;
  1160. if (hi_range_sel)
  1161. return dct_sel_high;
  1162. /*
  1163. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1164. */
  1165. if (dct_interleave_enabled(pvt)) {
  1166. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1167. /* return DCT select function: 0=DCT0, 1=DCT1 */
  1168. if (!intlv_addr)
  1169. return sys_addr >> 6 & 1;
  1170. if (intlv_addr & 0x2) {
  1171. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  1172. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
  1173. return ((sys_addr >> shift) & 1) ^ temp;
  1174. }
  1175. if (intlv_addr & 0x4) {
  1176. u8 shift = intlv_addr & 0x1 ? 9 : 8;
  1177. return (sys_addr >> shift) & 1;
  1178. }
  1179. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  1180. }
  1181. if (dct_high_range_enabled(pvt))
  1182. return ~dct_sel_high & 1;
  1183. return 0;
  1184. }
  1185. /* Convert the sys_addr to the normalized DCT address */
  1186. static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
  1187. u64 sys_addr, bool hi_rng,
  1188. u32 dct_sel_base_addr)
  1189. {
  1190. u64 chan_off;
  1191. u64 dram_base = get_dram_base(pvt, range);
  1192. u64 hole_off = f10_dhar_offset(pvt);
  1193. u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1194. if (hi_rng) {
  1195. /*
  1196. * if
  1197. * base address of high range is below 4Gb
  1198. * (bits [47:27] at [31:11])
  1199. * DRAM address space on this DCT is hoisted above 4Gb &&
  1200. * sys_addr > 4Gb
  1201. *
  1202. * remove hole offset from sys_addr
  1203. * else
  1204. * remove high range offset from sys_addr
  1205. */
  1206. if ((!(dct_sel_base_addr >> 16) ||
  1207. dct_sel_base_addr < dhar_base(pvt)) &&
  1208. dhar_valid(pvt) &&
  1209. (sys_addr >= BIT_64(32)))
  1210. chan_off = hole_off;
  1211. else
  1212. chan_off = dct_sel_base_off;
  1213. } else {
  1214. /*
  1215. * if
  1216. * we have a valid hole &&
  1217. * sys_addr > 4Gb
  1218. *
  1219. * remove hole
  1220. * else
  1221. * remove dram base to normalize to DCT address
  1222. */
  1223. if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
  1224. chan_off = hole_off;
  1225. else
  1226. chan_off = dram_base;
  1227. }
  1228. return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
  1229. }
  1230. /*
  1231. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1232. * spare row
  1233. */
  1234. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1235. {
  1236. int tmp_cs;
  1237. if (online_spare_swap_done(pvt, dct) &&
  1238. csrow == online_spare_bad_dramcs(pvt, dct)) {
  1239. for_each_chip_select(tmp_cs, dct, pvt) {
  1240. if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
  1241. csrow = tmp_cs;
  1242. break;
  1243. }
  1244. }
  1245. }
  1246. return csrow;
  1247. }
  1248. /*
  1249. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1250. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1251. *
  1252. * Return:
  1253. * -EINVAL: NOT FOUND
  1254. * 0..csrow = Chip-Select Row
  1255. */
  1256. static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
  1257. {
  1258. struct mem_ctl_info *mci;
  1259. struct amd64_pvt *pvt;
  1260. u64 cs_base, cs_mask;
  1261. int cs_found = -EINVAL;
  1262. int csrow;
  1263. mci = edac_mc_find(nid);
  1264. if (!mci)
  1265. return cs_found;
  1266. pvt = mci->pvt_info;
  1267. edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1268. for_each_chip_select(csrow, dct, pvt) {
  1269. if (!csrow_enabled(csrow, dct, pvt))
  1270. continue;
  1271. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1272. edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1273. csrow, cs_base, cs_mask);
  1274. cs_mask = ~cs_mask;
  1275. edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
  1276. (in_addr & cs_mask), (cs_base & cs_mask));
  1277. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1278. if (pvt->fam == 0x15 && pvt->model >= 0x30) {
  1279. cs_found = csrow;
  1280. break;
  1281. }
  1282. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1283. edac_dbg(1, " MATCH csrow=%d\n", cs_found);
  1284. break;
  1285. }
  1286. }
  1287. return cs_found;
  1288. }
  1289. /*
  1290. * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
  1291. * swapped with a region located at the bottom of memory so that the GPU can use
  1292. * the interleaved region and thus two channels.
  1293. */
  1294. static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
  1295. {
  1296. u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
  1297. if (pvt->fam == 0x10) {
  1298. /* only revC3 and revE have that feature */
  1299. if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
  1300. return sys_addr;
  1301. }
  1302. amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
  1303. if (!(swap_reg & 0x1))
  1304. return sys_addr;
  1305. swap_base = (swap_reg >> 3) & 0x7f;
  1306. swap_limit = (swap_reg >> 11) & 0x7f;
  1307. rgn_size = (swap_reg >> 20) & 0x7f;
  1308. tmp_addr = sys_addr >> 27;
  1309. if (!(sys_addr >> 34) &&
  1310. (((tmp_addr >= swap_base) &&
  1311. (tmp_addr <= swap_limit)) ||
  1312. (tmp_addr < rgn_size)))
  1313. return sys_addr ^ (u64)swap_base << 27;
  1314. return sys_addr;
  1315. }
  1316. /* For a given @dram_range, check if @sys_addr falls within it. */
  1317. static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1318. u64 sys_addr, int *chan_sel)
  1319. {
  1320. int cs_found = -EINVAL;
  1321. u64 chan_addr;
  1322. u32 dct_sel_base;
  1323. u8 channel;
  1324. bool high_range = false;
  1325. u8 node_id = dram_dst_node(pvt, range);
  1326. u8 intlv_en = dram_intlv_en(pvt, range);
  1327. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1328. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1329. range, sys_addr, get_dram_limit(pvt, range));
  1330. if (dhar_valid(pvt) &&
  1331. dhar_base(pvt) <= sys_addr &&
  1332. sys_addr < BIT_64(32)) {
  1333. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1334. sys_addr);
  1335. return -EINVAL;
  1336. }
  1337. if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1338. return -EINVAL;
  1339. sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
  1340. dct_sel_base = dct_sel_baseaddr(pvt);
  1341. /*
  1342. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1343. * select between DCT0 and DCT1.
  1344. */
  1345. if (dct_high_range_enabled(pvt) &&
  1346. !dct_ganging_enabled(pvt) &&
  1347. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1348. high_range = true;
  1349. channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1350. chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
  1351. high_range, dct_sel_base);
  1352. /* Remove node interleaving, see F1x120 */
  1353. if (intlv_en)
  1354. chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
  1355. (chan_addr & 0xfff);
  1356. /* remove channel interleave */
  1357. if (dct_interleave_enabled(pvt) &&
  1358. !dct_high_range_enabled(pvt) &&
  1359. !dct_ganging_enabled(pvt)) {
  1360. if (dct_sel_interleave_addr(pvt) != 1) {
  1361. if (dct_sel_interleave_addr(pvt) == 0x3)
  1362. /* hash 9 */
  1363. chan_addr = ((chan_addr >> 10) << 9) |
  1364. (chan_addr & 0x1ff);
  1365. else
  1366. /* A[6] or hash 6 */
  1367. chan_addr = ((chan_addr >> 7) << 6) |
  1368. (chan_addr & 0x3f);
  1369. } else
  1370. /* A[12] */
  1371. chan_addr = ((chan_addr >> 13) << 12) |
  1372. (chan_addr & 0xfff);
  1373. }
  1374. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1375. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
  1376. if (cs_found >= 0)
  1377. *chan_sel = channel;
  1378. return cs_found;
  1379. }
  1380. static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1381. u64 sys_addr, int *chan_sel)
  1382. {
  1383. int cs_found = -EINVAL;
  1384. int num_dcts_intlv = 0;
  1385. u64 chan_addr, chan_offset;
  1386. u64 dct_base, dct_limit;
  1387. u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
  1388. u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
  1389. u64 dhar_offset = f10_dhar_offset(pvt);
  1390. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1391. u8 node_id = dram_dst_node(pvt, range);
  1392. u8 intlv_en = dram_intlv_en(pvt, range);
  1393. amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
  1394. amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
  1395. dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
  1396. dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
  1397. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1398. range, sys_addr, get_dram_limit(pvt, range));
  1399. if (!(get_dram_base(pvt, range) <= sys_addr) &&
  1400. !(get_dram_limit(pvt, range) >= sys_addr))
  1401. return -EINVAL;
  1402. if (dhar_valid(pvt) &&
  1403. dhar_base(pvt) <= sys_addr &&
  1404. sys_addr < BIT_64(32)) {
  1405. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1406. sys_addr);
  1407. return -EINVAL;
  1408. }
  1409. /* Verify sys_addr is within DCT Range. */
  1410. dct_base = (u64) dct_sel_baseaddr(pvt);
  1411. dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
  1412. if (!(dct_cont_base_reg & BIT(0)) &&
  1413. !(dct_base <= (sys_addr >> 27) &&
  1414. dct_limit >= (sys_addr >> 27)))
  1415. return -EINVAL;
  1416. /* Verify number of dct's that participate in channel interleaving. */
  1417. num_dcts_intlv = (int) hweight8(intlv_en);
  1418. if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
  1419. return -EINVAL;
  1420. if (pvt->model >= 0x60)
  1421. channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
  1422. else
  1423. channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
  1424. num_dcts_intlv, dct_sel);
  1425. /* Verify we stay within the MAX number of channels allowed */
  1426. if (channel > 3)
  1427. return -EINVAL;
  1428. leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
  1429. /* Get normalized DCT addr */
  1430. if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
  1431. chan_offset = dhar_offset;
  1432. else
  1433. chan_offset = dct_base << 27;
  1434. chan_addr = sys_addr - chan_offset;
  1435. /* remove channel interleave */
  1436. if (num_dcts_intlv == 2) {
  1437. if (intlv_addr == 0x4)
  1438. chan_addr = ((chan_addr >> 9) << 8) |
  1439. (chan_addr & 0xff);
  1440. else if (intlv_addr == 0x5)
  1441. chan_addr = ((chan_addr >> 10) << 9) |
  1442. (chan_addr & 0x1ff);
  1443. else
  1444. return -EINVAL;
  1445. } else if (num_dcts_intlv == 4) {
  1446. if (intlv_addr == 0x4)
  1447. chan_addr = ((chan_addr >> 10) << 8) |
  1448. (chan_addr & 0xff);
  1449. else if (intlv_addr == 0x5)
  1450. chan_addr = ((chan_addr >> 11) << 9) |
  1451. (chan_addr & 0x1ff);
  1452. else
  1453. return -EINVAL;
  1454. }
  1455. if (dct_offset_en) {
  1456. amd64_read_pci_cfg(pvt->F1,
  1457. DRAM_CONT_HIGH_OFF + (int) channel * 4,
  1458. &tmp);
  1459. chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
  1460. }
  1461. f15h_select_dct(pvt, channel);
  1462. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1463. /*
  1464. * Find Chip select:
  1465. * if channel = 3, then alias it to 1. This is because, in F15 M30h,
  1466. * there is support for 4 DCT's, but only 2 are currently functional.
  1467. * They are DCT0 and DCT3. But we have read all registers of DCT3 into
  1468. * pvt->csels[1]. So we need to use '1' here to get correct info.
  1469. * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
  1470. */
  1471. alias_channel = (channel == 3) ? 1 : channel;
  1472. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
  1473. if (cs_found >= 0)
  1474. *chan_sel = alias_channel;
  1475. return cs_found;
  1476. }
  1477. static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
  1478. u64 sys_addr,
  1479. int *chan_sel)
  1480. {
  1481. int cs_found = -EINVAL;
  1482. unsigned range;
  1483. for (range = 0; range < DRAM_RANGES; range++) {
  1484. if (!dram_rw(pvt, range))
  1485. continue;
  1486. if (pvt->fam == 0x15 && pvt->model >= 0x30)
  1487. cs_found = f15_m30h_match_to_this_node(pvt, range,
  1488. sys_addr,
  1489. chan_sel);
  1490. else if ((get_dram_base(pvt, range) <= sys_addr) &&
  1491. (get_dram_limit(pvt, range) >= sys_addr)) {
  1492. cs_found = f1x_match_to_this_node(pvt, range,
  1493. sys_addr, chan_sel);
  1494. if (cs_found >= 0)
  1495. break;
  1496. }
  1497. }
  1498. return cs_found;
  1499. }
  1500. /*
  1501. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1502. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1503. *
  1504. * The @sys_addr is usually an error address received from the hardware
  1505. * (MCX_ADDR).
  1506. */
  1507. static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  1508. struct err_info *err)
  1509. {
  1510. struct amd64_pvt *pvt = mci->pvt_info;
  1511. error_address_to_page_and_offset(sys_addr, err);
  1512. err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
  1513. if (err->csrow < 0) {
  1514. err->err_code = ERR_CSROW;
  1515. return;
  1516. }
  1517. /*
  1518. * We need the syndromes for channel detection only when we're
  1519. * ganged. Otherwise @chan should already contain the channel at
  1520. * this point.
  1521. */
  1522. if (dct_ganging_enabled(pvt))
  1523. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  1524. }
  1525. /*
  1526. * debug routine to display the memory sizes of all logical DIMMs and its
  1527. * CSROWs
  1528. */
  1529. static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
  1530. {
  1531. int dimm, size0, size1;
  1532. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1533. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1534. if (pvt->fam == 0xf) {
  1535. /* K8 families < revF not supported yet */
  1536. if (pvt->ext_model < K8_REV_F)
  1537. return;
  1538. else
  1539. WARN_ON(ctrl != 0);
  1540. }
  1541. if (pvt->fam == 0x10) {
  1542. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
  1543. : pvt->dbam0;
  1544. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
  1545. pvt->csels[1].csbases :
  1546. pvt->csels[0].csbases;
  1547. } else if (ctrl) {
  1548. dbam = pvt->dbam0;
  1549. dcsb = pvt->csels[1].csbases;
  1550. }
  1551. edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1552. ctrl, dbam);
  1553. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1554. /* Dump memory sizes for DIMM and its CSROWs */
  1555. for (dimm = 0; dimm < 4; dimm++) {
  1556. size0 = 0;
  1557. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1558. /* For f15m60h, need multiplier for LRDIMM cs_size
  1559. * calculation. We pass 'dimm' value to the dbam_to_cs
  1560. * mapper so we can find the multiplier from the
  1561. * corresponding DCSM.
  1562. */
  1563. size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1564. DBAM_DIMM(dimm, dbam),
  1565. dimm);
  1566. size1 = 0;
  1567. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1568. size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1569. DBAM_DIMM(dimm, dbam),
  1570. dimm);
  1571. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1572. dimm * 2, size0,
  1573. dimm * 2 + 1, size1);
  1574. }
  1575. }
  1576. static struct amd64_family_type family_types[] = {
  1577. [K8_CPUS] = {
  1578. .ctl_name = "K8",
  1579. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1580. .f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  1581. .ops = {
  1582. .early_channel_count = k8_early_channel_count,
  1583. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1584. .dbam_to_cs = k8_dbam_to_chip_select,
  1585. }
  1586. },
  1587. [F10_CPUS] = {
  1588. .ctl_name = "F10h",
  1589. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1590. .f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  1591. .ops = {
  1592. .early_channel_count = f1x_early_channel_count,
  1593. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1594. .dbam_to_cs = f10_dbam_to_chip_select,
  1595. }
  1596. },
  1597. [F15_CPUS] = {
  1598. .ctl_name = "F15h",
  1599. .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
  1600. .f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
  1601. .ops = {
  1602. .early_channel_count = f1x_early_channel_count,
  1603. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1604. .dbam_to_cs = f15_dbam_to_chip_select,
  1605. }
  1606. },
  1607. [F15_M30H_CPUS] = {
  1608. .ctl_name = "F15h_M30h",
  1609. .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
  1610. .f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
  1611. .ops = {
  1612. .early_channel_count = f1x_early_channel_count,
  1613. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1614. .dbam_to_cs = f16_dbam_to_chip_select,
  1615. }
  1616. },
  1617. [F15_M60H_CPUS] = {
  1618. .ctl_name = "F15h_M60h",
  1619. .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
  1620. .f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
  1621. .ops = {
  1622. .early_channel_count = f1x_early_channel_count,
  1623. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1624. .dbam_to_cs = f15_m60h_dbam_to_chip_select,
  1625. }
  1626. },
  1627. [F16_CPUS] = {
  1628. .ctl_name = "F16h",
  1629. .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
  1630. .f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
  1631. .ops = {
  1632. .early_channel_count = f1x_early_channel_count,
  1633. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1634. .dbam_to_cs = f16_dbam_to_chip_select,
  1635. }
  1636. },
  1637. [F16_M30H_CPUS] = {
  1638. .ctl_name = "F16h_M30h",
  1639. .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
  1640. .f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
  1641. .ops = {
  1642. .early_channel_count = f1x_early_channel_count,
  1643. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1644. .dbam_to_cs = f16_dbam_to_chip_select,
  1645. }
  1646. },
  1647. };
  1648. /*
  1649. * These are tables of eigenvectors (one per line) which can be used for the
  1650. * construction of the syndrome tables. The modified syndrome search algorithm
  1651. * uses those to find the symbol in error and thus the DIMM.
  1652. *
  1653. * Algorithm courtesy of Ross LaFetra from AMD.
  1654. */
  1655. static const u16 x4_vectors[] = {
  1656. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1657. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1658. 0x0001, 0x0002, 0x0004, 0x0008,
  1659. 0x1013, 0x3032, 0x4044, 0x8088,
  1660. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1661. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1662. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1663. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1664. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1665. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1666. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1667. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1668. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1669. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1670. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1671. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1672. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1673. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1674. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1675. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1676. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1677. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1678. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1679. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1680. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1681. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1682. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1683. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1684. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1685. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1686. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1687. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1688. 0x4807, 0xc40e, 0x130c, 0x3208,
  1689. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1690. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1691. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1692. };
  1693. static const u16 x8_vectors[] = {
  1694. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1695. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1696. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1697. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1698. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1699. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1700. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1701. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1702. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1703. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1704. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1705. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1706. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1707. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1708. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1709. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1710. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1711. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1712. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1713. };
  1714. static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
  1715. unsigned v_dim)
  1716. {
  1717. unsigned int i, err_sym;
  1718. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1719. u16 s = syndrome;
  1720. unsigned v_idx = err_sym * v_dim;
  1721. unsigned v_end = (err_sym + 1) * v_dim;
  1722. /* walk over all 16 bits of the syndrome */
  1723. for (i = 1; i < (1U << 16); i <<= 1) {
  1724. /* if bit is set in that eigenvector... */
  1725. if (v_idx < v_end && vectors[v_idx] & i) {
  1726. u16 ev_comp = vectors[v_idx++];
  1727. /* ... and bit set in the modified syndrome, */
  1728. if (s & i) {
  1729. /* remove it. */
  1730. s ^= ev_comp;
  1731. if (!s)
  1732. return err_sym;
  1733. }
  1734. } else if (s & i)
  1735. /* can't get to zero, move to next symbol */
  1736. break;
  1737. }
  1738. }
  1739. edac_dbg(0, "syndrome(%x) not found\n", syndrome);
  1740. return -1;
  1741. }
  1742. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1743. {
  1744. if (sym_size == 4)
  1745. switch (err_sym) {
  1746. case 0x20:
  1747. case 0x21:
  1748. return 0;
  1749. break;
  1750. case 0x22:
  1751. case 0x23:
  1752. return 1;
  1753. break;
  1754. default:
  1755. return err_sym >> 4;
  1756. break;
  1757. }
  1758. /* x8 symbols */
  1759. else
  1760. switch (err_sym) {
  1761. /* imaginary bits not in a DIMM */
  1762. case 0x10:
  1763. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1764. err_sym);
  1765. return -1;
  1766. break;
  1767. case 0x11:
  1768. return 0;
  1769. break;
  1770. case 0x12:
  1771. return 1;
  1772. break;
  1773. default:
  1774. return err_sym >> 3;
  1775. break;
  1776. }
  1777. return -1;
  1778. }
  1779. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1780. {
  1781. struct amd64_pvt *pvt = mci->pvt_info;
  1782. int err_sym = -1;
  1783. if (pvt->ecc_sym_sz == 8)
  1784. err_sym = decode_syndrome(syndrome, x8_vectors,
  1785. ARRAY_SIZE(x8_vectors),
  1786. pvt->ecc_sym_sz);
  1787. else if (pvt->ecc_sym_sz == 4)
  1788. err_sym = decode_syndrome(syndrome, x4_vectors,
  1789. ARRAY_SIZE(x4_vectors),
  1790. pvt->ecc_sym_sz);
  1791. else {
  1792. amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
  1793. return err_sym;
  1794. }
  1795. return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
  1796. }
  1797. static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
  1798. u8 ecc_type)
  1799. {
  1800. enum hw_event_mc_err_type err_type;
  1801. const char *string;
  1802. if (ecc_type == 2)
  1803. err_type = HW_EVENT_ERR_CORRECTED;
  1804. else if (ecc_type == 1)
  1805. err_type = HW_EVENT_ERR_UNCORRECTED;
  1806. else {
  1807. WARN(1, "Something is rotten in the state of Denmark.\n");
  1808. return;
  1809. }
  1810. switch (err->err_code) {
  1811. case DECODE_OK:
  1812. string = "";
  1813. break;
  1814. case ERR_NODE:
  1815. string = "Failed to map error addr to a node";
  1816. break;
  1817. case ERR_CSROW:
  1818. string = "Failed to map error addr to a csrow";
  1819. break;
  1820. case ERR_CHANNEL:
  1821. string = "unknown syndrome - possible error reporting race";
  1822. break;
  1823. default:
  1824. string = "WTF error";
  1825. break;
  1826. }
  1827. edac_mc_handle_error(err_type, mci, 1,
  1828. err->page, err->offset, err->syndrome,
  1829. err->csrow, err->channel, -1,
  1830. string, "");
  1831. }
  1832. static inline void decode_bus_error(int node_id, struct mce *m)
  1833. {
  1834. struct mem_ctl_info *mci;
  1835. struct amd64_pvt *pvt;
  1836. u8 ecc_type = (m->status >> 45) & 0x3;
  1837. u8 xec = XEC(m->status, 0x1f);
  1838. u16 ec = EC(m->status);
  1839. u64 sys_addr;
  1840. struct err_info err;
  1841. mci = edac_mc_find(node_id);
  1842. if (!mci)
  1843. return;
  1844. pvt = mci->pvt_info;
  1845. /* Bail out early if this was an 'observed' error */
  1846. if (PP(ec) == NBSL_PP_OBS)
  1847. return;
  1848. /* Do only ECC errors */
  1849. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1850. return;
  1851. memset(&err, 0, sizeof(err));
  1852. sys_addr = get_error_address(pvt, m);
  1853. if (ecc_type == 2)
  1854. err.syndrome = extract_syndrome(m->status);
  1855. pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
  1856. __log_bus_error(mci, &err, ecc_type);
  1857. }
  1858. /*
  1859. * Use pvt->F3 which contains the F3 CPU PCI device to get the related
  1860. * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
  1861. */
  1862. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f2_id)
  1863. {
  1864. /* Reserve the ADDRESS MAP Device */
  1865. pvt->F1 = pci_get_related_function(pvt->F3->vendor, f1_id, pvt->F3);
  1866. if (!pvt->F1) {
  1867. amd64_err("error address map device not found: "
  1868. "vendor %x device 0x%x (broken BIOS?)\n",
  1869. PCI_VENDOR_ID_AMD, f1_id);
  1870. return -ENODEV;
  1871. }
  1872. /* Reserve the DCT Device */
  1873. pvt->F2 = pci_get_related_function(pvt->F3->vendor, f2_id, pvt->F3);
  1874. if (!pvt->F2) {
  1875. pci_dev_put(pvt->F1);
  1876. pvt->F1 = NULL;
  1877. amd64_err("error F2 device not found: "
  1878. "vendor %x device 0x%x (broken BIOS?)\n",
  1879. PCI_VENDOR_ID_AMD, f2_id);
  1880. return -ENODEV;
  1881. }
  1882. edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
  1883. edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
  1884. edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
  1885. return 0;
  1886. }
  1887. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1888. {
  1889. pci_dev_put(pvt->F1);
  1890. pci_dev_put(pvt->F2);
  1891. }
  1892. /*
  1893. * Retrieve the hardware registers of the memory controller (this includes the
  1894. * 'Address Map' and 'Misc' device regs)
  1895. */
  1896. static void read_mc_regs(struct amd64_pvt *pvt)
  1897. {
  1898. unsigned range;
  1899. u64 msr_val;
  1900. u32 tmp;
  1901. /*
  1902. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1903. * those are Read-As-Zero
  1904. */
  1905. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1906. edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1907. /* check first whether TOP_MEM2 is enabled */
  1908. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1909. if (msr_val & (1U << 21)) {
  1910. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1911. edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1912. } else
  1913. edac_dbg(0, " TOP_MEM2 disabled\n");
  1914. amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
  1915. read_dram_ctl_register(pvt);
  1916. for (range = 0; range < DRAM_RANGES; range++) {
  1917. u8 rw;
  1918. /* read settings for this DRAM range */
  1919. read_dram_base_limit_regs(pvt, range);
  1920. rw = dram_rw(pvt, range);
  1921. if (!rw)
  1922. continue;
  1923. edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  1924. range,
  1925. get_dram_base(pvt, range),
  1926. get_dram_limit(pvt, range));
  1927. edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  1928. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  1929. (rw & 0x1) ? "R" : "-",
  1930. (rw & 0x2) ? "W" : "-",
  1931. dram_intlv_sel(pvt, range),
  1932. dram_dst_node(pvt, range));
  1933. }
  1934. read_dct_base_mask(pvt);
  1935. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  1936. amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
  1937. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1938. amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
  1939. amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
  1940. if (!dct_ganging_enabled(pvt)) {
  1941. amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
  1942. amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
  1943. }
  1944. pvt->ecc_sym_sz = 4;
  1945. determine_memory_type(pvt);
  1946. edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
  1947. if (pvt->fam >= 0x10) {
  1948. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1949. /* F16h has only DCT0, so no need to read dbam1 */
  1950. if (pvt->fam != 0x16)
  1951. amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
  1952. /* F10h, revD and later can do x8 ECC too */
  1953. if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
  1954. pvt->ecc_sym_sz = 8;
  1955. }
  1956. dump_misc_regs(pvt);
  1957. }
  1958. /*
  1959. * NOTE: CPU Revision Dependent code
  1960. *
  1961. * Input:
  1962. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  1963. * k8 private pointer to -->
  1964. * DRAM Bank Address mapping register
  1965. * node_id
  1966. * DCL register where dual_channel_active is
  1967. *
  1968. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1969. *
  1970. * Bits: CSROWs
  1971. * 0-3 CSROWs 0 and 1
  1972. * 4-7 CSROWs 2 and 3
  1973. * 8-11 CSROWs 4 and 5
  1974. * 12-15 CSROWs 6 and 7
  1975. *
  1976. * Values range from: 0 to 15
  1977. * The meaning of the values depends on CPU revision and dual-channel state,
  1978. * see relevant BKDG more info.
  1979. *
  1980. * The memory controller provides for total of only 8 CSROWs in its current
  1981. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1982. * single channel or two (2) DIMMs in dual channel mode.
  1983. *
  1984. * The following code logic collapses the various tables for CSROW based on CPU
  1985. * revision.
  1986. *
  1987. * Returns:
  1988. * The number of PAGE_SIZE pages on the specified CSROW number it
  1989. * encompasses
  1990. *
  1991. */
  1992. static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
  1993. {
  1994. u32 cs_mode, nr_pages;
  1995. u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
  1996. /*
  1997. * The math on this doesn't look right on the surface because x/2*4 can
  1998. * be simplified to x*2 but this expression makes use of the fact that
  1999. * it is integral math where 1/2=0. This intermediate value becomes the
  2000. * number of bits to shift the DBAM register to extract the proper CSROW
  2001. * field.
  2002. */
  2003. cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
  2004. nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
  2005. << (20 - PAGE_SHIFT);
  2006. edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
  2007. csrow_nr, dct, cs_mode);
  2008. edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
  2009. return nr_pages;
  2010. }
  2011. /*
  2012. * Initialize the array of csrow attribute instances, based on the values
  2013. * from pci config hardware registers.
  2014. */
  2015. static int init_csrows(struct mem_ctl_info *mci)
  2016. {
  2017. struct amd64_pvt *pvt = mci->pvt_info;
  2018. struct csrow_info *csrow;
  2019. struct dimm_info *dimm;
  2020. enum edac_type edac_mode;
  2021. int i, j, empty = 1;
  2022. int nr_pages = 0;
  2023. u32 val;
  2024. amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
  2025. pvt->nbcfg = val;
  2026. edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  2027. pvt->mc_node_id, val,
  2028. !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
  2029. /*
  2030. * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
  2031. */
  2032. for_each_chip_select(i, 0, pvt) {
  2033. bool row_dct0 = !!csrow_enabled(i, 0, pvt);
  2034. bool row_dct1 = false;
  2035. if (pvt->fam != 0xf)
  2036. row_dct1 = !!csrow_enabled(i, 1, pvt);
  2037. if (!row_dct0 && !row_dct1)
  2038. continue;
  2039. csrow = mci->csrows[i];
  2040. empty = 0;
  2041. edac_dbg(1, "MC node: %d, csrow: %d\n",
  2042. pvt->mc_node_id, i);
  2043. if (row_dct0) {
  2044. nr_pages = get_csrow_nr_pages(pvt, 0, i);
  2045. csrow->channels[0]->dimm->nr_pages = nr_pages;
  2046. }
  2047. /* K8 has only one DCT */
  2048. if (pvt->fam != 0xf && row_dct1) {
  2049. int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
  2050. csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
  2051. nr_pages += row_dct1_pages;
  2052. }
  2053. edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
  2054. /*
  2055. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  2056. */
  2057. if (pvt->nbcfg & NBCFG_ECC_ENABLE)
  2058. edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
  2059. EDAC_S4ECD4ED : EDAC_SECDED;
  2060. else
  2061. edac_mode = EDAC_NONE;
  2062. for (j = 0; j < pvt->channel_count; j++) {
  2063. dimm = csrow->channels[j]->dimm;
  2064. dimm->mtype = pvt->dram_type;
  2065. dimm->edac_mode = edac_mode;
  2066. }
  2067. }
  2068. return empty;
  2069. }
  2070. /* get all cores on this DCT */
  2071. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
  2072. {
  2073. int cpu;
  2074. for_each_online_cpu(cpu)
  2075. if (amd_get_nb_id(cpu) == nid)
  2076. cpumask_set_cpu(cpu, mask);
  2077. }
  2078. /* check MCG_CTL on all the cpus on this node */
  2079. static bool nb_mce_bank_enabled_on_node(u16 nid)
  2080. {
  2081. cpumask_var_t mask;
  2082. int cpu, nbe;
  2083. bool ret = false;
  2084. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  2085. amd64_warn("%s: Error allocating mask\n", __func__);
  2086. return false;
  2087. }
  2088. get_cpus_on_this_dct_cpumask(mask, nid);
  2089. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  2090. for_each_cpu(cpu, mask) {
  2091. struct msr *reg = per_cpu_ptr(msrs, cpu);
  2092. nbe = reg->l & MSR_MCGCTL_NBE;
  2093. edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  2094. cpu, reg->q,
  2095. (nbe ? "enabled" : "disabled"));
  2096. if (!nbe)
  2097. goto out;
  2098. }
  2099. ret = true;
  2100. out:
  2101. free_cpumask_var(mask);
  2102. return ret;
  2103. }
  2104. static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
  2105. {
  2106. cpumask_var_t cmask;
  2107. int cpu;
  2108. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  2109. amd64_warn("%s: error allocating mask\n", __func__);
  2110. return false;
  2111. }
  2112. get_cpus_on_this_dct_cpumask(cmask, nid);
  2113. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2114. for_each_cpu(cpu, cmask) {
  2115. struct msr *reg = per_cpu_ptr(msrs, cpu);
  2116. if (on) {
  2117. if (reg->l & MSR_MCGCTL_NBE)
  2118. s->flags.nb_mce_enable = 1;
  2119. reg->l |= MSR_MCGCTL_NBE;
  2120. } else {
  2121. /*
  2122. * Turn off NB MCE reporting only when it was off before
  2123. */
  2124. if (!s->flags.nb_mce_enable)
  2125. reg->l &= ~MSR_MCGCTL_NBE;
  2126. }
  2127. }
  2128. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2129. free_cpumask_var(cmask);
  2130. return 0;
  2131. }
  2132. static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  2133. struct pci_dev *F3)
  2134. {
  2135. bool ret = true;
  2136. u32 value, mask = 0x3; /* UECC/CECC enable */
  2137. if (toggle_ecc_err_reporting(s, nid, ON)) {
  2138. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  2139. return false;
  2140. }
  2141. amd64_read_pci_cfg(F3, NBCTL, &value);
  2142. s->old_nbctl = value & mask;
  2143. s->nbctl_valid = true;
  2144. value |= mask;
  2145. amd64_write_pci_cfg(F3, NBCTL, value);
  2146. amd64_read_pci_cfg(F3, NBCFG, &value);
  2147. edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  2148. nid, value, !!(value & NBCFG_ECC_ENABLE));
  2149. if (!(value & NBCFG_ECC_ENABLE)) {
  2150. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  2151. s->flags.nb_ecc_prev = 0;
  2152. /* Attempt to turn on DRAM ECC Enable */
  2153. value |= NBCFG_ECC_ENABLE;
  2154. amd64_write_pci_cfg(F3, NBCFG, value);
  2155. amd64_read_pci_cfg(F3, NBCFG, &value);
  2156. if (!(value & NBCFG_ECC_ENABLE)) {
  2157. amd64_warn("Hardware rejected DRAM ECC enable,"
  2158. "check memory DIMM configuration.\n");
  2159. ret = false;
  2160. } else {
  2161. amd64_info("Hardware accepted DRAM ECC Enable\n");
  2162. }
  2163. } else {
  2164. s->flags.nb_ecc_prev = 1;
  2165. }
  2166. edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  2167. nid, value, !!(value & NBCFG_ECC_ENABLE));
  2168. return ret;
  2169. }
  2170. static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  2171. struct pci_dev *F3)
  2172. {
  2173. u32 value, mask = 0x3; /* UECC/CECC enable */
  2174. if (!s->nbctl_valid)
  2175. return;
  2176. amd64_read_pci_cfg(F3, NBCTL, &value);
  2177. value &= ~mask;
  2178. value |= s->old_nbctl;
  2179. amd64_write_pci_cfg(F3, NBCTL, value);
  2180. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  2181. if (!s->flags.nb_ecc_prev) {
  2182. amd64_read_pci_cfg(F3, NBCFG, &value);
  2183. value &= ~NBCFG_ECC_ENABLE;
  2184. amd64_write_pci_cfg(F3, NBCFG, value);
  2185. }
  2186. /* restore the NB Enable MCGCTL bit */
  2187. if (toggle_ecc_err_reporting(s, nid, OFF))
  2188. amd64_warn("Error restoring NB MCGCTL settings!\n");
  2189. }
  2190. /*
  2191. * EDAC requires that the BIOS have ECC enabled before
  2192. * taking over the processing of ECC errors. A command line
  2193. * option allows to force-enable hardware ECC later in
  2194. * enable_ecc_error_reporting().
  2195. */
  2196. static const char *ecc_msg =
  2197. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  2198. " Either enable ECC checking or force module loading by setting "
  2199. "'ecc_enable_override'.\n"
  2200. " (Note that use of the override may cause unknown side effects.)\n";
  2201. static bool ecc_enabled(struct pci_dev *F3, u16 nid)
  2202. {
  2203. u32 value;
  2204. u8 ecc_en = 0;
  2205. bool nb_mce_en = false;
  2206. amd64_read_pci_cfg(F3, NBCFG, &value);
  2207. ecc_en = !!(value & NBCFG_ECC_ENABLE);
  2208. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  2209. nb_mce_en = nb_mce_bank_enabled_on_node(nid);
  2210. if (!nb_mce_en)
  2211. amd64_notice("NB MCE bank disabled, set MSR "
  2212. "0x%08x[4] on node %d to enable.\n",
  2213. MSR_IA32_MCG_CTL, nid);
  2214. if (!ecc_en || !nb_mce_en) {
  2215. amd64_notice("%s", ecc_msg);
  2216. return false;
  2217. }
  2218. return true;
  2219. }
  2220. static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
  2221. struct amd64_family_type *fam)
  2222. {
  2223. struct amd64_pvt *pvt = mci->pvt_info;
  2224. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2225. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2226. if (pvt->nbcap & NBCAP_SECDED)
  2227. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2228. if (pvt->nbcap & NBCAP_CHIPKILL)
  2229. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2230. mci->edac_cap = determine_edac_cap(pvt);
  2231. mci->mod_name = EDAC_MOD_STR;
  2232. mci->mod_ver = EDAC_AMD64_VERSION;
  2233. mci->ctl_name = fam->ctl_name;
  2234. mci->dev_name = pci_name(pvt->F2);
  2235. mci->ctl_page_to_phys = NULL;
  2236. /* memory scrubber interface */
  2237. mci->set_sdram_scrub_rate = set_scrub_rate;
  2238. mci->get_sdram_scrub_rate = get_scrub_rate;
  2239. }
  2240. /*
  2241. * returns a pointer to the family descriptor on success, NULL otherwise.
  2242. */
  2243. static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
  2244. {
  2245. struct amd64_family_type *fam_type = NULL;
  2246. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2247. pvt->stepping = boot_cpu_data.x86_stepping;
  2248. pvt->model = boot_cpu_data.x86_model;
  2249. pvt->fam = boot_cpu_data.x86;
  2250. switch (pvt->fam) {
  2251. case 0xf:
  2252. fam_type = &family_types[K8_CPUS];
  2253. pvt->ops = &family_types[K8_CPUS].ops;
  2254. break;
  2255. case 0x10:
  2256. fam_type = &family_types[F10_CPUS];
  2257. pvt->ops = &family_types[F10_CPUS].ops;
  2258. break;
  2259. case 0x15:
  2260. if (pvt->model == 0x30) {
  2261. fam_type = &family_types[F15_M30H_CPUS];
  2262. pvt->ops = &family_types[F15_M30H_CPUS].ops;
  2263. break;
  2264. } else if (pvt->model == 0x60) {
  2265. fam_type = &family_types[F15_M60H_CPUS];
  2266. pvt->ops = &family_types[F15_M60H_CPUS].ops;
  2267. break;
  2268. }
  2269. fam_type = &family_types[F15_CPUS];
  2270. pvt->ops = &family_types[F15_CPUS].ops;
  2271. break;
  2272. case 0x16:
  2273. if (pvt->model == 0x30) {
  2274. fam_type = &family_types[F16_M30H_CPUS];
  2275. pvt->ops = &family_types[F16_M30H_CPUS].ops;
  2276. break;
  2277. }
  2278. fam_type = &family_types[F16_CPUS];
  2279. pvt->ops = &family_types[F16_CPUS].ops;
  2280. break;
  2281. default:
  2282. amd64_err("Unsupported family!\n");
  2283. return NULL;
  2284. }
  2285. amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
  2286. (pvt->fam == 0xf ?
  2287. (pvt->ext_model >= K8_REV_F ? "revF or later "
  2288. : "revE or earlier ")
  2289. : ""), pvt->mc_node_id);
  2290. return fam_type;
  2291. }
  2292. static const struct attribute_group *amd64_edac_attr_groups[] = {
  2293. #ifdef CONFIG_EDAC_DEBUG
  2294. &amd64_edac_dbg_group,
  2295. #endif
  2296. #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
  2297. &amd64_edac_inj_group,
  2298. #endif
  2299. NULL
  2300. };
  2301. static int init_one_instance(unsigned int nid)
  2302. {
  2303. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2304. struct amd64_family_type *fam_type = NULL;
  2305. struct mem_ctl_info *mci = NULL;
  2306. struct edac_mc_layer layers[2];
  2307. struct amd64_pvt *pvt = NULL;
  2308. int err = 0, ret;
  2309. ret = -ENOMEM;
  2310. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2311. if (!pvt)
  2312. goto err_ret;
  2313. pvt->mc_node_id = nid;
  2314. pvt->F3 = F3;
  2315. ret = -EINVAL;
  2316. fam_type = per_family_init(pvt);
  2317. if (!fam_type)
  2318. goto err_free;
  2319. ret = -ENODEV;
  2320. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f2_id);
  2321. if (err)
  2322. goto err_free;
  2323. read_mc_regs(pvt);
  2324. /*
  2325. * We need to determine how many memory channels there are. Then use
  2326. * that information for calculating the size of the dynamic instance
  2327. * tables in the 'mci' structure.
  2328. */
  2329. ret = -EINVAL;
  2330. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2331. if (pvt->channel_count < 0)
  2332. goto err_siblings;
  2333. ret = -ENOMEM;
  2334. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  2335. layers[0].size = pvt->csels[0].b_cnt;
  2336. layers[0].is_virt_csrow = true;
  2337. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  2338. /*
  2339. * Always allocate two channels since we can have setups with DIMMs on
  2340. * only one channel. Also, this simplifies handling later for the price
  2341. * of a couple of KBs tops.
  2342. */
  2343. layers[1].size = 2;
  2344. layers[1].is_virt_csrow = false;
  2345. mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
  2346. if (!mci)
  2347. goto err_siblings;
  2348. mci->pvt_info = pvt;
  2349. mci->pdev = &pvt->F3->dev;
  2350. setup_mci_misc_attrs(mci, fam_type);
  2351. if (init_csrows(mci))
  2352. mci->edac_cap = EDAC_FLAG_NONE;
  2353. ret = -ENODEV;
  2354. if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
  2355. edac_dbg(1, "failed edac_mc_add_mc()\n");
  2356. goto err_add_mc;
  2357. }
  2358. /* register stuff with EDAC MCE */
  2359. if (report_gart_errors)
  2360. amd_report_gart_errors(true);
  2361. amd_register_ecc_decoder(decode_bus_error);
  2362. return 0;
  2363. err_add_mc:
  2364. edac_mc_free(mci);
  2365. err_siblings:
  2366. free_mc_sibling_devs(pvt);
  2367. err_free:
  2368. kfree(pvt);
  2369. err_ret:
  2370. return ret;
  2371. }
  2372. static int probe_one_instance(unsigned int nid)
  2373. {
  2374. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2375. struct ecc_settings *s;
  2376. int ret;
  2377. ret = -ENOMEM;
  2378. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2379. if (!s)
  2380. goto err_out;
  2381. ecc_stngs[nid] = s;
  2382. if (!ecc_enabled(F3, nid)) {
  2383. ret = -ENODEV;
  2384. if (!ecc_enable_override)
  2385. goto err_enable;
  2386. amd64_warn("Forcing ECC on!\n");
  2387. if (!enable_ecc_error_reporting(s, nid, F3))
  2388. goto err_enable;
  2389. }
  2390. ret = init_one_instance(nid);
  2391. if (ret < 0) {
  2392. amd64_err("Error probing instance: %d\n", nid);
  2393. restore_ecc_error_reporting(s, nid, F3);
  2394. }
  2395. return ret;
  2396. err_enable:
  2397. kfree(s);
  2398. ecc_stngs[nid] = NULL;
  2399. err_out:
  2400. return ret;
  2401. }
  2402. static void remove_one_instance(unsigned int nid)
  2403. {
  2404. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2405. struct ecc_settings *s = ecc_stngs[nid];
  2406. struct mem_ctl_info *mci;
  2407. struct amd64_pvt *pvt;
  2408. mci = find_mci_by_dev(&F3->dev);
  2409. WARN_ON(!mci);
  2410. /* Remove from EDAC CORE tracking list */
  2411. mci = edac_mc_del_mc(&F3->dev);
  2412. if (!mci)
  2413. return;
  2414. pvt = mci->pvt_info;
  2415. restore_ecc_error_reporting(s, nid, F3);
  2416. free_mc_sibling_devs(pvt);
  2417. /* unregister from EDAC MCE */
  2418. amd_report_gart_errors(false);
  2419. amd_unregister_ecc_decoder(decode_bus_error);
  2420. kfree(ecc_stngs[nid]);
  2421. ecc_stngs[nid] = NULL;
  2422. /* Free the EDAC CORE resources */
  2423. mci->pvt_info = NULL;
  2424. kfree(pvt);
  2425. edac_mc_free(mci);
  2426. }
  2427. static void setup_pci_device(void)
  2428. {
  2429. struct mem_ctl_info *mci;
  2430. struct amd64_pvt *pvt;
  2431. if (pci_ctl)
  2432. return;
  2433. mci = edac_mc_find(0);
  2434. if (!mci)
  2435. return;
  2436. pvt = mci->pvt_info;
  2437. pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2438. if (!pci_ctl) {
  2439. pr_warn("%s(): Unable to create PCI control\n", __func__);
  2440. pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
  2441. }
  2442. }
  2443. static const struct x86_cpu_id amd64_cpuids[] = {
  2444. { X86_VENDOR_AMD, 0xF, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
  2445. { X86_VENDOR_AMD, 0x10, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
  2446. { X86_VENDOR_AMD, 0x15, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
  2447. { X86_VENDOR_AMD, 0x16, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
  2448. { }
  2449. };
  2450. MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);
  2451. static int __init amd64_edac_init(void)
  2452. {
  2453. int err = -ENODEV;
  2454. int i;
  2455. if (!x86_match_cpu(amd64_cpuids))
  2456. return -ENODEV;
  2457. if (amd_cache_northbridges() < 0)
  2458. return -ENODEV;
  2459. opstate_init();
  2460. err = -ENOMEM;
  2461. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2462. if (!ecc_stngs)
  2463. goto err_free;
  2464. msrs = msrs_alloc();
  2465. if (!msrs)
  2466. goto err_free;
  2467. for (i = 0; i < amd_nb_num(); i++) {
  2468. err = probe_one_instance(i);
  2469. if (err) {
  2470. /* unwind properly */
  2471. while (--i >= 0)
  2472. remove_one_instance(i);
  2473. goto err_pci;
  2474. }
  2475. }
  2476. setup_pci_device();
  2477. #ifdef CONFIG_X86_32
  2478. amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
  2479. #endif
  2480. printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
  2481. return 0;
  2482. err_pci:
  2483. msrs_free(msrs);
  2484. msrs = NULL;
  2485. err_free:
  2486. kfree(ecc_stngs);
  2487. ecc_stngs = NULL;
  2488. return err;
  2489. }
  2490. static void __exit amd64_edac_exit(void)
  2491. {
  2492. int i;
  2493. if (pci_ctl)
  2494. edac_pci_release_generic_ctl(pci_ctl);
  2495. for (i = 0; i < amd_nb_num(); i++)
  2496. remove_one_instance(i);
  2497. kfree(ecc_stngs);
  2498. ecc_stngs = NULL;
  2499. msrs_free(msrs);
  2500. msrs = NULL;
  2501. }
  2502. module_init(amd64_edac_init);
  2503. module_exit(amd64_edac_exit);
  2504. MODULE_LICENSE("GPL");
  2505. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2506. "Dave Peterson, Thayne Harbaugh");
  2507. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2508. EDAC_AMD64_VERSION);
  2509. module_param(edac_op_state, int, 0444);
  2510. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");