process.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657
  1. /*
  2. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation, version 2.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11. * NON INFRINGEMENT. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/sched.h>
  15. #include <linux/preempt.h>
  16. #include <linux/module.h>
  17. #include <linux/fs.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/elfcore.h>
  20. #include <linux/tick.h>
  21. #include <linux/init.h>
  22. #include <linux/mm.h>
  23. #include <linux/compat.h>
  24. #include <linux/nmi.h>
  25. #include <linux/syscalls.h>
  26. #include <linux/kernel.h>
  27. #include <linux/tracehook.h>
  28. #include <linux/signal.h>
  29. #include <linux/delay.h>
  30. #include <linux/context_tracking.h>
  31. #include <asm/stack.h>
  32. #include <asm/switch_to.h>
  33. #include <asm/homecache.h>
  34. #include <asm/syscalls.h>
  35. #include <asm/traps.h>
  36. #include <asm/setup.h>
  37. #include <asm/uaccess.h>
  38. #ifdef CONFIG_HARDWALL
  39. #include <asm/hardwall.h>
  40. #endif
  41. #include <arch/chip.h>
  42. #include <arch/abi.h>
  43. #include <arch/sim_def.h>
  44. /*
  45. * Use the (x86) "idle=poll" option to prefer low latency when leaving the
  46. * idle loop over low power while in the idle loop, e.g. if we have
  47. * one thread per core and we want to get threads out of futex waits fast.
  48. */
  49. static int __init idle_setup(char *str)
  50. {
  51. if (!str)
  52. return -EINVAL;
  53. if (!strcmp(str, "poll")) {
  54. pr_info("using polling idle threads\n");
  55. cpu_idle_poll_ctrl(true);
  56. return 0;
  57. } else if (!strcmp(str, "halt")) {
  58. return 0;
  59. }
  60. return -1;
  61. }
  62. early_param("idle", idle_setup);
  63. void arch_cpu_idle(void)
  64. {
  65. __this_cpu_write(irq_stat.idle_timestamp, jiffies);
  66. _cpu_idle();
  67. }
  68. /*
  69. * Release a thread_info structure
  70. */
  71. void arch_release_thread_stack(unsigned long *stack)
  72. {
  73. struct thread_info *info = (void *)stack;
  74. struct single_step_state *step_state = info->step_state;
  75. if (step_state) {
  76. /*
  77. * FIXME: we don't munmap step_state->buffer
  78. * because the mm_struct for this process (info->task->mm)
  79. * has already been zeroed in exit_mm(). Keeping a
  80. * reference to it here seems like a bad move, so this
  81. * means we can't munmap() the buffer, and therefore if we
  82. * ptrace multiple threads in a process, we will slowly
  83. * leak user memory. (Note that as soon as the last
  84. * thread in a process dies, we will reclaim all user
  85. * memory including single-step buffers in the usual way.)
  86. * We should either assign a kernel VA to this buffer
  87. * somehow, or we should associate the buffer(s) with the
  88. * mm itself so we can clean them up that way.
  89. */
  90. kfree(step_state);
  91. }
  92. }
  93. static void save_arch_state(struct thread_struct *t);
  94. int copy_thread(unsigned long clone_flags, unsigned long sp,
  95. unsigned long arg, struct task_struct *p)
  96. {
  97. struct pt_regs *childregs = task_pt_regs(p);
  98. unsigned long ksp;
  99. unsigned long *callee_regs;
  100. /*
  101. * Set up the stack and stack pointer appropriately for the
  102. * new child to find itself woken up in __switch_to().
  103. * The callee-saved registers must be on the stack to be read;
  104. * the new task will then jump to assembly support to handle
  105. * calling schedule_tail(), etc., and (for userspace tasks)
  106. * returning to the context set up in the pt_regs.
  107. */
  108. ksp = (unsigned long) childregs;
  109. ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */
  110. ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
  111. ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
  112. callee_regs = (unsigned long *)ksp;
  113. ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */
  114. ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
  115. p->thread.ksp = ksp;
  116. /* Record the pid of the task that created this one. */
  117. p->thread.creator_pid = current->pid;
  118. if (unlikely(p->flags & PF_KTHREAD)) {
  119. /* kernel thread */
  120. memset(childregs, 0, sizeof(struct pt_regs));
  121. memset(&callee_regs[2], 0,
  122. (CALLEE_SAVED_REGS_COUNT - 2) * sizeof(unsigned long));
  123. callee_regs[0] = sp; /* r30 = function */
  124. callee_regs[1] = arg; /* r31 = arg */
  125. p->thread.pc = (unsigned long) ret_from_kernel_thread;
  126. return 0;
  127. }
  128. /*
  129. * Start new thread in ret_from_fork so it schedules properly
  130. * and then return from interrupt like the parent.
  131. */
  132. p->thread.pc = (unsigned long) ret_from_fork;
  133. /*
  134. * Do not clone step state from the parent; each thread
  135. * must make its own lazily.
  136. */
  137. task_thread_info(p)->step_state = NULL;
  138. #ifdef __tilegx__
  139. /*
  140. * Do not clone unalign jit fixup from the parent; each thread
  141. * must allocate its own on demand.
  142. */
  143. task_thread_info(p)->unalign_jit_base = NULL;
  144. #endif
  145. /*
  146. * Copy the registers onto the kernel stack so the
  147. * return-from-interrupt code will reload it into registers.
  148. */
  149. *childregs = *current_pt_regs();
  150. childregs->regs[0] = 0; /* return value is zero */
  151. if (sp)
  152. childregs->sp = sp; /* override with new user stack pointer */
  153. memcpy(callee_regs, &childregs->regs[CALLEE_SAVED_FIRST_REG],
  154. CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
  155. /* Save user stack top pointer so we can ID the stack vm area later. */
  156. p->thread.usp0 = childregs->sp;
  157. /*
  158. * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
  159. * which is passed in as arg #5 to sys_clone().
  160. */
  161. if (clone_flags & CLONE_SETTLS)
  162. childregs->tp = childregs->regs[4];
  163. #if CHIP_HAS_TILE_DMA()
  164. /*
  165. * No DMA in the new thread. We model this on the fact that
  166. * fork() clears the pending signals, alarms, and aio for the child.
  167. */
  168. memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
  169. memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
  170. #endif
  171. /* New thread has its miscellaneous processor state bits clear. */
  172. p->thread.proc_status = 0;
  173. #ifdef CONFIG_HARDWALL
  174. /* New thread does not own any networks. */
  175. memset(&p->thread.hardwall[0], 0,
  176. sizeof(struct hardwall_task) * HARDWALL_TYPES);
  177. #endif
  178. /*
  179. * Start the new thread with the current architecture state
  180. * (user interrupt masks, etc.).
  181. */
  182. save_arch_state(&p->thread);
  183. return 0;
  184. }
  185. int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
  186. {
  187. task_thread_info(tsk)->align_ctl = val;
  188. return 0;
  189. }
  190. int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
  191. {
  192. return put_user(task_thread_info(tsk)->align_ctl,
  193. (unsigned int __user *)adr);
  194. }
  195. static struct task_struct corrupt_current = { .comm = "<corrupt>" };
  196. /*
  197. * Return "current" if it looks plausible, or else a pointer to a dummy.
  198. * This can be helpful if we are just trying to emit a clean panic.
  199. */
  200. struct task_struct *validate_current(void)
  201. {
  202. struct task_struct *tsk = current;
  203. if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
  204. (high_memory && (void *)tsk > high_memory) ||
  205. ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
  206. pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
  207. tsk = &corrupt_current;
  208. }
  209. return tsk;
  210. }
  211. /* Take and return the pointer to the previous task, for schedule_tail(). */
  212. struct task_struct *sim_notify_fork(struct task_struct *prev)
  213. {
  214. struct task_struct *tsk = current;
  215. __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
  216. (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
  217. __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
  218. (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
  219. return prev;
  220. }
  221. int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
  222. {
  223. struct pt_regs *ptregs = task_pt_regs(tsk);
  224. elf_core_copy_regs(regs, ptregs);
  225. return 1;
  226. }
  227. #if CHIP_HAS_TILE_DMA()
  228. /* Allow user processes to access the DMA SPRs */
  229. void grant_dma_mpls(void)
  230. {
  231. #if CONFIG_KERNEL_PL == 2
  232. __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
  233. __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
  234. #else
  235. __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
  236. __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
  237. #endif
  238. }
  239. /* Forbid user processes from accessing the DMA SPRs */
  240. void restrict_dma_mpls(void)
  241. {
  242. #if CONFIG_KERNEL_PL == 2
  243. __insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
  244. __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
  245. #else
  246. __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
  247. __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
  248. #endif
  249. }
  250. /* Pause the DMA engine, then save off its state registers. */
  251. static void save_tile_dma_state(struct tile_dma_state *dma)
  252. {
  253. unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
  254. unsigned long post_suspend_state;
  255. /* If we're running, suspend the engine. */
  256. if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
  257. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
  258. /*
  259. * Wait for the engine to idle, then save regs. Note that we
  260. * want to record the "running" bit from before suspension,
  261. * and the "done" bit from after, so that we can properly
  262. * distinguish a case where the user suspended the engine from
  263. * the case where the kernel suspended as part of the context
  264. * swap.
  265. */
  266. do {
  267. post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
  268. } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
  269. dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
  270. dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
  271. dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
  272. dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
  273. dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
  274. dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
  275. dma->byte = __insn_mfspr(SPR_DMA_BYTE);
  276. dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
  277. (post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
  278. }
  279. /* Restart a DMA that was running before we were context-switched out. */
  280. static void restore_tile_dma_state(struct thread_struct *t)
  281. {
  282. const struct tile_dma_state *dma = &t->tile_dma_state;
  283. /*
  284. * The only way to restore the done bit is to run a zero
  285. * length transaction.
  286. */
  287. if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
  288. !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
  289. __insn_mtspr(SPR_DMA_BYTE, 0);
  290. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
  291. while (__insn_mfspr(SPR_DMA_USER_STATUS) &
  292. SPR_DMA_STATUS__BUSY_MASK)
  293. ;
  294. }
  295. __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
  296. __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
  297. __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
  298. __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
  299. __insn_mtspr(SPR_DMA_STRIDE, dma->strides);
  300. __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
  301. __insn_mtspr(SPR_DMA_BYTE, dma->byte);
  302. /*
  303. * Restart the engine if we were running and not done.
  304. * Clear a pending async DMA fault that we were waiting on return
  305. * to user space to execute, since we expect the DMA engine
  306. * to regenerate those faults for us now. Note that we don't
  307. * try to clear the TIF_ASYNC_TLB flag, since it's relatively
  308. * harmless if set, and it covers both DMA and the SN processor.
  309. */
  310. if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
  311. t->dma_async_tlb.fault_num = 0;
  312. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
  313. }
  314. }
  315. #endif
  316. static void save_arch_state(struct thread_struct *t)
  317. {
  318. #if CHIP_HAS_SPLIT_INTR_MASK()
  319. t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
  320. ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
  321. #else
  322. t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
  323. #endif
  324. t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
  325. t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
  326. t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
  327. t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
  328. t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
  329. t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
  330. t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
  331. t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
  332. #if !CHIP_HAS_FIXED_INTVEC_BASE()
  333. t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
  334. #endif
  335. t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
  336. #if CHIP_HAS_DSTREAM_PF()
  337. t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
  338. #endif
  339. }
  340. static void restore_arch_state(const struct thread_struct *t)
  341. {
  342. #if CHIP_HAS_SPLIT_INTR_MASK()
  343. __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
  344. __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
  345. #else
  346. __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
  347. #endif
  348. __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
  349. __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
  350. __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
  351. __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
  352. __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
  353. __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
  354. __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
  355. __insn_mtspr(SPR_PROC_STATUS, t->proc_status);
  356. #if !CHIP_HAS_FIXED_INTVEC_BASE()
  357. __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
  358. #endif
  359. __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
  360. #if CHIP_HAS_DSTREAM_PF()
  361. __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
  362. #endif
  363. }
  364. void _prepare_arch_switch(struct task_struct *next)
  365. {
  366. #if CHIP_HAS_TILE_DMA()
  367. struct tile_dma_state *dma = &current->thread.tile_dma_state;
  368. if (dma->enabled)
  369. save_tile_dma_state(dma);
  370. #endif
  371. }
  372. struct task_struct *__sched _switch_to(struct task_struct *prev,
  373. struct task_struct *next)
  374. {
  375. /* DMA state is already saved; save off other arch state. */
  376. save_arch_state(&prev->thread);
  377. #if CHIP_HAS_TILE_DMA()
  378. /*
  379. * Restore DMA in new task if desired.
  380. * Note that it is only safe to restart here since interrupts
  381. * are disabled, so we can't take any DMATLB miss or access
  382. * interrupts before we have finished switching stacks.
  383. */
  384. if (next->thread.tile_dma_state.enabled) {
  385. restore_tile_dma_state(&next->thread);
  386. grant_dma_mpls();
  387. } else {
  388. restrict_dma_mpls();
  389. }
  390. #endif
  391. /* Restore other arch state. */
  392. restore_arch_state(&next->thread);
  393. #ifdef CONFIG_HARDWALL
  394. /* Enable or disable access to the network registers appropriately. */
  395. hardwall_switch_tasks(prev, next);
  396. #endif
  397. /* Notify the simulator of task exit. */
  398. if (unlikely(prev->state == TASK_DEAD))
  399. __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_EXIT |
  400. (prev->pid << _SIM_CONTROL_OPERATOR_BITS));
  401. /*
  402. * Switch kernel SP, PC, and callee-saved registers.
  403. * In the context of the new task, return the old task pointer
  404. * (i.e. the task that actually called __switch_to).
  405. * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
  406. */
  407. return __switch_to(prev, next, next_current_ksp0(next));
  408. }
  409. /*
  410. * This routine is called on return from interrupt if any of the
  411. * TIF_ALLWORK_MASK flags are set in thread_info->flags. It is
  412. * entered with interrupts disabled so we don't miss an event that
  413. * modified the thread_info flags. We loop until all the tested flags
  414. * are clear. Note that the function is called on certain conditions
  415. * that are not listed in the loop condition here (e.g. SINGLESTEP)
  416. * which guarantees we will do those things once, and redo them if any
  417. * of the other work items is re-done, but won't continue looping if
  418. * all the other work is done.
  419. */
  420. void prepare_exit_to_usermode(struct pt_regs *regs, u32 thread_info_flags)
  421. {
  422. if (WARN_ON(!user_mode(regs)))
  423. return;
  424. do {
  425. local_irq_enable();
  426. if (thread_info_flags & _TIF_NEED_RESCHED)
  427. schedule();
  428. #if CHIP_HAS_TILE_DMA()
  429. if (thread_info_flags & _TIF_ASYNC_TLB)
  430. do_async_page_fault(regs);
  431. #endif
  432. if (thread_info_flags & _TIF_SIGPENDING)
  433. do_signal(regs);
  434. if (thread_info_flags & _TIF_NOTIFY_RESUME) {
  435. clear_thread_flag(TIF_NOTIFY_RESUME);
  436. tracehook_notify_resume(regs);
  437. }
  438. local_irq_disable();
  439. thread_info_flags = READ_ONCE(current_thread_info()->flags);
  440. } while (thread_info_flags & _TIF_WORK_MASK);
  441. if (thread_info_flags & _TIF_SINGLESTEP) {
  442. single_step_once(regs);
  443. #ifndef __tilegx__
  444. /*
  445. * FIXME: on tilepro, since we enable interrupts in
  446. * this routine, it's possible that we miss a signal
  447. * or other asynchronous event.
  448. */
  449. local_irq_disable();
  450. #endif
  451. }
  452. user_enter();
  453. }
  454. unsigned long get_wchan(struct task_struct *p)
  455. {
  456. struct KBacktraceIterator kbt;
  457. if (!p || p == current || p->state == TASK_RUNNING)
  458. return 0;
  459. for (KBacktraceIterator_init(&kbt, p, NULL);
  460. !KBacktraceIterator_end(&kbt);
  461. KBacktraceIterator_next(&kbt)) {
  462. if (!in_sched_functions(kbt.it.pc))
  463. return kbt.it.pc;
  464. }
  465. return 0;
  466. }
  467. /* Flush thread state. */
  468. void flush_thread(void)
  469. {
  470. /* Nothing */
  471. }
  472. /*
  473. * Free current thread data structures etc..
  474. */
  475. void exit_thread(struct task_struct *tsk)
  476. {
  477. #ifdef CONFIG_HARDWALL
  478. /*
  479. * Remove the task from the list of tasks that are associated
  480. * with any live hardwalls. (If the task that is exiting held
  481. * the last reference to a hardwall fd, it would already have
  482. * been released and deactivated at this point.)
  483. */
  484. hardwall_deactivate_all(tsk);
  485. #endif
  486. }
  487. void tile_show_regs(struct pt_regs *regs)
  488. {
  489. int i;
  490. #ifdef __tilegx__
  491. for (i = 0; i < 17; i++)
  492. pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
  493. i, regs->regs[i], i+18, regs->regs[i+18],
  494. i+36, regs->regs[i+36]);
  495. pr_err(" r17: "REGFMT" r35: "REGFMT" tp : "REGFMT"\n",
  496. regs->regs[17], regs->regs[35], regs->tp);
  497. pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
  498. #else
  499. for (i = 0; i < 13; i++)
  500. pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
  501. " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
  502. i, regs->regs[i], i+14, regs->regs[i+14],
  503. i+27, regs->regs[i+27], i+40, regs->regs[i+40]);
  504. pr_err(" r13: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
  505. regs->regs[13], regs->tp, regs->sp, regs->lr);
  506. #endif
  507. pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld flags:%s%s%s%s\n",
  508. regs->pc, regs->ex1, regs->faultnum,
  509. is_compat_task() ? " compat" : "",
  510. (regs->flags & PT_FLAGS_DISABLE_IRQ) ? " noirq" : "",
  511. !(regs->flags & PT_FLAGS_CALLER_SAVES) ? " nocallersave" : "",
  512. (regs->flags & PT_FLAGS_RESTORE_REGS) ? " restoreregs" : "");
  513. }
  514. void show_regs(struct pt_regs *regs)
  515. {
  516. struct KBacktraceIterator kbt;
  517. show_regs_print_info(KERN_DEFAULT);
  518. tile_show_regs(regs);
  519. KBacktraceIterator_init(&kbt, NULL, regs);
  520. tile_show_stack(&kbt);
  521. }
  522. #ifdef __tilegx__
  523. void nmi_raise_cpu_backtrace(struct cpumask *in_mask)
  524. {
  525. struct cpumask mask;
  526. HV_Coord tile;
  527. unsigned int timeout;
  528. int cpu;
  529. HV_NMI_Info info[NR_CPUS];
  530. /* Tentatively dump stack on remote tiles via NMI. */
  531. timeout = 100;
  532. cpumask_copy(&mask, in_mask);
  533. while (!cpumask_empty(&mask) && timeout) {
  534. for_each_cpu(cpu, &mask) {
  535. tile.x = cpu_x(cpu);
  536. tile.y = cpu_y(cpu);
  537. info[cpu] = hv_send_nmi(tile, TILE_NMI_DUMP_STACK, 0);
  538. if (info[cpu].result == HV_NMI_RESULT_OK)
  539. cpumask_clear_cpu(cpu, &mask);
  540. }
  541. mdelay(10);
  542. touch_softlockup_watchdog();
  543. timeout--;
  544. }
  545. /* Warn about cpus stuck in ICS. */
  546. if (!cpumask_empty(&mask)) {
  547. for_each_cpu(cpu, &mask) {
  548. /* Clear the bit as if nmi_cpu_backtrace() ran. */
  549. cpumask_clear_cpu(cpu, in_mask);
  550. switch (info[cpu].result) {
  551. case HV_NMI_RESULT_FAIL_ICS:
  552. pr_warn("Skipping stack dump of cpu %d in ICS at pc %#llx\n",
  553. cpu, info[cpu].pc);
  554. break;
  555. case HV_NMI_RESULT_FAIL_HV:
  556. pr_warn("Skipping stack dump of cpu %d in hypervisor\n",
  557. cpu);
  558. break;
  559. case HV_ENOSYS:
  560. WARN_ONCE(1, "Hypervisor too old to allow remote stack dumps.\n");
  561. break;
  562. default: /* should not happen */
  563. pr_warn("Skipping stack dump of cpu %d [%d,%#llx]\n",
  564. cpu, info[cpu].result, info[cpu].pc);
  565. break;
  566. }
  567. }
  568. }
  569. }
  570. void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
  571. {
  572. nmi_trigger_cpumask_backtrace(mask, exclude_self,
  573. nmi_raise_cpu_backtrace);
  574. }
  575. #endif /* __tilegx_ */