123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428 |
- /*
- * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
- #define pr_fmt(fmt) "powernv: " fmt
- #include <linux/kernel.h>
- #include <linux/cpu.h>
- #include <linux/cpumask.h>
- #include <linux/device.h>
- #include <linux/gfp.h>
- #include <linux/smp.h>
- #include <linux/stop_machine.h>
- #include <asm/cputhreads.h>
- #include <asm/kvm_ppc.h>
- #include <asm/machdep.h>
- #include <asm/opal.h>
- #include <asm/smp.h>
- #include "subcore.h"
- #include "powernv.h"
- /*
- * Split/unsplit procedure:
- *
- * A core can be in one of three states, unsplit, 2-way split, and 4-way split.
- *
- * The mapping to subcores_per_core is simple:
- *
- * State | subcores_per_core
- * ------------|------------------
- * Unsplit | 1
- * 2-way split | 2
- * 4-way split | 4
- *
- * The core is split along thread boundaries, the mapping between subcores and
- * threads is as follows:
- *
- * Unsplit:
- * ----------------------------
- * Subcore | 0 |
- * ----------------------------
- * Thread | 0 1 2 3 4 5 6 7 |
- * ----------------------------
- *
- * 2-way split:
- * -------------------------------------
- * Subcore | 0 | 1 |
- * -------------------------------------
- * Thread | 0 1 2 3 | 4 5 6 7 |
- * -------------------------------------
- *
- * 4-way split:
- * -----------------------------------------
- * Subcore | 0 | 1 | 2 | 3 |
- * -----------------------------------------
- * Thread | 0 1 | 2 3 | 4 5 | 6 7 |
- * -----------------------------------------
- *
- *
- * Transitions
- * -----------
- *
- * It is not possible to transition between either of the split states, the
- * core must first be unsplit. The legal transitions are:
- *
- * ----------- ---------------
- * | | <----> | 2-way split |
- * | | ---------------
- * | Unsplit |
- * | | ---------------
- * | | <----> | 4-way split |
- * ----------- ---------------
- *
- * Unsplitting
- * -----------
- *
- * Unsplitting is the simpler procedure. It requires thread 0 to request the
- * unsplit while all other threads NAP.
- *
- * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells
- * the hardware that if all threads except 0 are napping, the hardware should
- * unsplit the core.
- *
- * Non-zero threads are sent to a NAP loop, they don't exit the loop until they
- * see the core unsplit.
- *
- * Core 0 spins waiting for the hardware to see all the other threads napping
- * and perform the unsplit.
- *
- * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them
- * out of NAP. They will then see the core unsplit and exit the NAP loop.
- *
- * Splitting
- * ---------
- *
- * The basic splitting procedure is fairly straight forward. However it is
- * complicated by the fact that after the split occurs, the newly created
- * subcores are not in a fully initialised state.
- *
- * Most notably the subcores do not have the correct value for SDR1, which
- * means they must not be running in virtual mode when the split occurs. The
- * subcores have separate timebases SPRs but these are pre-synchronised by
- * opal.
- *
- * To begin with secondary threads are sent to an assembly routine. There they
- * switch to real mode, so they are immune to the uninitialised SDR1 value.
- * Once in real mode they indicate that they are in real mode, and spin waiting
- * to see the core split.
- *
- * Thread 0 waits to see that all secondaries are in real mode, and then begins
- * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which
- * prevents the hardware from unsplitting. Then it sets the appropriate HID bit
- * to request the split, and spins waiting to see that the split has happened.
- *
- * Concurrently the secondaries will notice the split. When they do they set up
- * their SPRs, notably SDR1, and then they can return to virtual mode and exit
- * the procedure.
- */
- /* Initialised at boot by subcore_init() */
- static int subcores_per_core;
- /*
- * Used to communicate to offline cpus that we want them to pop out of the
- * offline loop and do a split or unsplit.
- *
- * 0 - no split happening
- * 1 - unsplit in progress
- * 2 - split to 2 in progress
- * 4 - split to 4 in progress
- */
- static int new_split_mode;
- static cpumask_var_t cpu_offline_mask;
- struct split_state {
- u8 step;
- u8 master;
- };
- static DEFINE_PER_CPU(struct split_state, split_state);
- static void wait_for_sync_step(int step)
- {
- int i, cpu = smp_processor_id();
- for (i = cpu + 1; i < cpu + threads_per_core; i++)
- while(per_cpu(split_state, i).step < step)
- barrier();
- /* Order the wait loop vs any subsequent loads/stores. */
- mb();
- }
- static void update_hid_in_slw(u64 hid0)
- {
- u64 idle_states = pnv_get_supported_cpuidle_states();
- if (idle_states & OPAL_PM_WINKLE_ENABLED) {
- /* OPAL call to patch slw with the new HID0 value */
- u64 cpu_pir = hard_smp_processor_id();
- opal_slw_set_reg(cpu_pir, SPRN_HID0, hid0);
- }
- }
- static void unsplit_core(void)
- {
- u64 hid0, mask;
- int i, cpu;
- mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
- cpu = smp_processor_id();
- if (cpu_thread_in_core(cpu) != 0) {
- while (mfspr(SPRN_HID0) & mask)
- power7_nap(0);
- per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT;
- return;
- }
- hid0 = mfspr(SPRN_HID0);
- hid0 &= ~HID0_POWER8_DYNLPARDIS;
- update_power8_hid0(hid0);
- update_hid_in_slw(hid0);
- while (mfspr(SPRN_HID0) & mask)
- cpu_relax();
- /* Wake secondaries out of NAP */
- for (i = cpu + 1; i < cpu + threads_per_core; i++)
- smp_send_reschedule(i);
- wait_for_sync_step(SYNC_STEP_UNSPLIT);
- }
- static void split_core(int new_mode)
- {
- struct { u64 value; u64 mask; } split_parms[2] = {
- { HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE },
- { HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE }
- };
- int i, cpu;
- u64 hid0;
- /* Convert new_mode (2 or 4) into an index into our parms array */
- i = (new_mode >> 1) - 1;
- BUG_ON(i < 0 || i > 1);
- cpu = smp_processor_id();
- if (cpu_thread_in_core(cpu) != 0) {
- split_core_secondary_loop(&per_cpu(split_state, cpu).step);
- return;
- }
- wait_for_sync_step(SYNC_STEP_REAL_MODE);
- /* Write new mode */
- hid0 = mfspr(SPRN_HID0);
- hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value;
- update_power8_hid0(hid0);
- update_hid_in_slw(hid0);
- /* Wait for it to happen */
- while (!(mfspr(SPRN_HID0) & split_parms[i].mask))
- cpu_relax();
- }
- static void cpu_do_split(int new_mode)
- {
- /*
- * At boot subcores_per_core will be 0, so we will always unsplit at
- * boot. In the usual case where the core is already unsplit it's a
- * nop, and this just ensures the kernel's notion of the mode is
- * consistent with the hardware.
- */
- if (subcores_per_core != 1)
- unsplit_core();
- if (new_mode != 1)
- split_core(new_mode);
- mb();
- per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED;
- }
- bool cpu_core_split_required(void)
- {
- smp_rmb();
- if (!new_split_mode)
- return false;
- cpu_do_split(new_split_mode);
- return true;
- }
- void update_subcore_sibling_mask(void)
- {
- int cpu;
- /*
- * sibling mask for the first cpu. Left shift this by required bits
- * to get sibling mask for the rest of the cpus.
- */
- int sibling_mask_first_cpu = (1 << threads_per_subcore) - 1;
- for_each_possible_cpu(cpu) {
- int tid = cpu_thread_in_core(cpu);
- int offset = (tid / threads_per_subcore) * threads_per_subcore;
- int mask = sibling_mask_first_cpu << offset;
- paca[cpu].subcore_sibling_mask = mask;
- }
- }
- static int cpu_update_split_mode(void *data)
- {
- int cpu, new_mode = *(int *)data;
- if (this_cpu_ptr(&split_state)->master) {
- new_split_mode = new_mode;
- smp_wmb();
- cpumask_andnot(cpu_offline_mask, cpu_present_mask,
- cpu_online_mask);
- /* This should work even though the cpu is offline */
- for_each_cpu(cpu, cpu_offline_mask)
- smp_send_reschedule(cpu);
- }
- cpu_do_split(new_mode);
- if (this_cpu_ptr(&split_state)->master) {
- /* Wait for all cpus to finish before we touch subcores_per_core */
- for_each_present_cpu(cpu) {
- if (cpu >= setup_max_cpus)
- break;
- while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED)
- barrier();
- }
- new_split_mode = 0;
- /* Make the new mode public */
- subcores_per_core = new_mode;
- threads_per_subcore = threads_per_core / subcores_per_core;
- update_subcore_sibling_mask();
- /* Make sure the new mode is written before we exit */
- mb();
- }
- return 0;
- }
- static int set_subcores_per_core(int new_mode)
- {
- struct split_state *state;
- int cpu;
- if (kvm_hv_mode_active()) {
- pr_err("Unable to change split core mode while KVM active.\n");
- return -EBUSY;
- }
- /*
- * We are only called at boot, or from the sysfs write. If that ever
- * changes we'll need a lock here.
- */
- BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3);
- for_each_present_cpu(cpu) {
- state = &per_cpu(split_state, cpu);
- state->step = SYNC_STEP_INITIAL;
- state->master = 0;
- }
- get_online_cpus();
- /* This cpu will update the globals before exiting stop machine */
- this_cpu_ptr(&split_state)->master = 1;
- /* Ensure state is consistent before we call the other cpus */
- mb();
- stop_machine(cpu_update_split_mode, &new_mode, cpu_online_mask);
- put_online_cpus();
- return 0;
- }
- static ssize_t __used store_subcores_per_core(struct device *dev,
- struct device_attribute *attr, const char *buf,
- size_t count)
- {
- unsigned long val;
- int rc;
- /* We are serialised by the attribute lock */
- rc = sscanf(buf, "%lx", &val);
- if (rc != 1)
- return -EINVAL;
- switch (val) {
- case 1:
- case 2:
- case 4:
- if (subcores_per_core == val)
- /* Nothing to do */
- goto out;
- break;
- default:
- return -EINVAL;
- }
- rc = set_subcores_per_core(val);
- if (rc)
- return rc;
- out:
- return count;
- }
- static ssize_t show_subcores_per_core(struct device *dev,
- struct device_attribute *attr, char *buf)
- {
- return sprintf(buf, "%x\n", subcores_per_core);
- }
- static DEVICE_ATTR(subcores_per_core, 0644,
- show_subcores_per_core, store_subcores_per_core);
- static int subcore_init(void)
- {
- if (!cpu_has_feature(CPU_FTR_SUBCORE))
- return 0;
- /*
- * We need all threads in a core to be present to split/unsplit so
- * continue only if max_cpus are aligned to threads_per_core.
- */
- if (setup_max_cpus % threads_per_core)
- return 0;
- BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL));
- set_subcores_per_core(1);
- return device_create_file(cpu_subsys.dev_root,
- &dev_attr_subcores_per_core);
- }
- machine_device_initcall(powernv, subcore_init);
|