123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- #include <linux/types.h>
- #include <linux/i8253.h>
- #include <linux/interrupt.h>
- #include <linux/irq.h>
- #include <linux/smp.h>
- #include <linux/time.h>
- #include <linux/clockchips.h>
- #include <asm/sni.h>
- #include <asm/time.h>
- #define SNI_CLOCK_TICK_RATE 3686400
- #define SNI_COUNTER2_DIV 64
- #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
- static int a20r_set_periodic(struct clock_event_device *evt)
- {
- *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
- wmb();
- *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV;
- wmb();
- *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
- wmb();
- *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
- wmb();
- *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV;
- wmb();
- *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
- wmb();
- return 0;
- }
- static struct clock_event_device a20r_clockevent_device = {
- .name = "a20r-timer",
- .features = CLOCK_EVT_FEAT_PERIODIC,
- /* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
- .rating = 300,
- .irq = SNI_A20R_IRQ_TIMER,
- .set_state_periodic = a20r_set_periodic,
- };
- static irqreturn_t a20r_interrupt(int irq, void *dev_id)
- {
- struct clock_event_device *cd = dev_id;
- *(volatile u8 *)A20R_PT_TIM0_ACK = 0;
- wmb();
- cd->event_handler(cd);
- return IRQ_HANDLED;
- }
- static struct irqaction a20r_irqaction = {
- .handler = a20r_interrupt,
- .flags = IRQF_PERCPU | IRQF_TIMER,
- .name = "a20r-timer",
- };
- /*
- * a20r platform uses 2 counters to divide the input frequency.
- * Counter 2 output is connected to Counter 0 & 1 input.
- */
- static void __init sni_a20r_timer_setup(void)
- {
- struct clock_event_device *cd = &a20r_clockevent_device;
- struct irqaction *action = &a20r_irqaction;
- unsigned int cpu = smp_processor_id();
- cd->cpumask = cpumask_of(cpu);
- clockevents_register_device(cd);
- action->dev_id = cd;
- setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
- }
- #define SNI_8254_TICK_RATE 1193182UL
- #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
- static __init unsigned long dosample(void)
- {
- u32 ct0, ct1;
- volatile u8 msb;
- /* Start the counter. */
- outb_p(0x34, 0x43);
- outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
- outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
- /* Get initial counter invariant */
- ct0 = read_c0_count();
- /* Latch and spin until top byte of counter0 is zero */
- do {
- outb(0x00, 0x43);
- (void) inb(0x40);
- msb = inb(0x40);
- ct1 = read_c0_count();
- } while (msb);
- /* Stop the counter. */
- outb(0x38, 0x43);
- /*
- * Return the difference, this is how far the r4k counter increments
- * for every 1/HZ seconds. We round off the nearest 1 MHz of master
- * clock (= 1000000 / HZ / 2).
- */
- /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
- return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
- }
- /*
- * Here we need to calibrate the cycle counter to at least be close.
- */
- void __init plat_time_init(void)
- {
- unsigned long r4k_ticks[3];
- unsigned long r4k_tick;
- /*
- * Figure out the r4k offset, the algorithm is very simple and works in
- * _all_ cases as long as the 8254 counter register itself works ok (as
- * an interrupt driving timer it does not because of bug, this is why
- * we are using the onchip r4k counter/compare register to serve this
- * purpose, but for r4k_offset calculation it will work ok for us).
- * There are other very complicated ways of performing this calculation
- * but this one works just fine so I am not going to futz around. ;-)
- */
- printk(KERN_INFO "Calibrating system timer... ");
- dosample(); /* Prime cache. */
- dosample(); /* Prime cache. */
- /* Zero is NOT an option. */
- do {
- r4k_ticks[0] = dosample();
- } while (!r4k_ticks[0]);
- do {
- r4k_ticks[1] = dosample();
- } while (!r4k_ticks[1]);
- if (r4k_ticks[0] != r4k_ticks[1]) {
- printk("warning: timer counts differ, retrying... ");
- r4k_ticks[2] = dosample();
- if (r4k_ticks[2] == r4k_ticks[0]
- || r4k_ticks[2] == r4k_ticks[1])
- r4k_tick = r4k_ticks[2];
- else {
- printk("disagreement, using average... ");
- r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
- + r4k_ticks[2]) / 3;
- }
- } else
- r4k_tick = r4k_ticks[0];
- printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
- (int) (r4k_tick / (500000 / HZ)),
- (int) (r4k_tick % (500000 / HZ)));
- mips_hpt_frequency = r4k_tick * HZ;
- switch (sni_brd_type) {
- case SNI_BRD_10:
- case SNI_BRD_10NEW:
- case SNI_BRD_TOWER_OASIC:
- case SNI_BRD_MINITOWER:
- sni_a20r_timer_setup();
- break;
- }
- setup_pit_timer();
- }
- void read_persistent_clock(struct timespec *ts)
- {
- ts->tv_sec = -1;
- ts->tv_nsec = 0;
- }
|