123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 |
- /*
- * Copyright 2003-2013 Broadcom Corporation.
- * All Rights Reserved.
- *
- * This software is available to you under a choice of one of two
- * licenses. You may choose to be licensed under the terms of the GNU
- * General Public License (GPL) Version 2, available from the file
- * COPYING in the main directory of this source tree, or the Broadcom
- * license below:
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
- * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
- * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #include <asm/asm.h>
- #include <asm/asm-offsets.h>
- #include <asm/cpu.h>
- #include <asm/cacheops.h>
- #include <asm/regdef.h>
- #include <asm/mipsregs.h>
- #include <asm/stackframe.h>
- #include <asm/asmmacro.h>
- #include <asm/addrspace.h>
- #include <asm/netlogic/common.h>
- #include <asm/netlogic/xlp-hal/iomap.h>
- #include <asm/netlogic/xlp-hal/xlp.h>
- #include <asm/netlogic/xlp-hal/sys.h>
- #include <asm/netlogic/xlp-hal/cpucontrol.h>
- #define SYS_CPU_COHERENT_BASE CKSEG1ADDR(XLP_DEFAULT_IO_BASE) + \
- XLP_IO_SYS_OFFSET(0) + XLP_IO_PCI_HDRSZ + \
- SYS_CPU_NONCOHERENT_MODE * 4
- /* Enable XLP features and workarounds in the LSU */
- .macro xlp_config_lsu
- li t0, LSU_DEFEATURE
- mfcr t1, t0
- lui t2, 0x4080 /* Enable Unaligned Access, L2HPE */
- or t1, t1, t2
- mtcr t1, t0
- li t0, ICU_DEFEATURE
- mfcr t1, t0
- ori t1, 0x1000 /* Enable Icache partitioning */
- mtcr t1, t0
- li t0, SCHED_DEFEATURE
- lui t1, 0x0100 /* Disable BRU accepting ALU ops */
- mtcr t1, t0
- .endm
- /*
- * Allow access to physical mem >64G by enabling ELPA in PAGEGRAIN
- * register. This is needed before going to C code since the SP can
- * in this region. Called from all HW threads.
- */
- .macro xlp_early_mmu_init
- mfc0 t0, CP0_PAGEMASK, 1
- li t1, (1 << 29) /* ELPA bit */
- or t0, t1
- mtc0 t0, CP0_PAGEMASK, 1
- .endm
- /*
- * L1D cache has to be flushed before enabling threads in XLP.
- * On XLP8xx/XLP3xx, we do a low level flush using processor control
- * registers. On XLPII CPUs, usual cache instructions work.
- */
- .macro xlp_flush_l1_dcache
- mfc0 t0, CP0_PRID
- andi t0, t0, PRID_IMP_MASK
- slt t1, t0, 0x1200
- beqz t1, 15f
- nop
- /* XLP8xx low level cache flush */
- li t0, LSU_DEBUG_DATA0
- li t1, LSU_DEBUG_ADDR
- li t2, 0 /* index */
- li t3, 0x1000 /* loop count */
- 11:
- sll v0, t2, 5
- mtcr zero, t0
- ori v1, v0, 0x3 /* way0 | write_enable | write_active */
- mtcr v1, t1
- 12:
- mfcr v1, t1
- andi v1, 0x1 /* wait for write_active == 0 */
- bnez v1, 12b
- nop
- mtcr zero, t0
- ori v1, v0, 0x7 /* way1 | write_enable | write_active */
- mtcr v1, t1
- 13:
- mfcr v1, t1
- andi v1, 0x1 /* wait for write_active == 0 */
- bnez v1, 13b
- nop
- addi t2, 1
- bne t3, t2, 11b
- nop
- b 17f
- nop
- /* XLPII CPUs, Invalidate all 64k of L1 D-cache */
- 15:
- li t0, 0x80000000
- li t1, 0x80010000
- 16: cache Index_Writeback_Inv_D, 0(t0)
- addiu t0, t0, 32
- bne t0, t1, 16b
- nop
- 17:
- .endm
- /*
- * nlm_reset_entry will be copied to the reset entry point for
- * XLR and XLP. The XLP cores start here when they are woken up. This
- * is also the NMI entry point.
- *
- * We use scratch reg 6/7 to save k0/k1 and check for NMI first.
- *
- * The data corresponding to reset/NMI is stored at RESET_DATA_PHYS
- * location, this will have the thread mask (used when core is woken up)
- * and the current NMI handler in case we reached here for an NMI.
- *
- * When a core or thread is newly woken up, it marks itself ready and
- * loops in a 'wait'. When the CPU really needs waking up, we send an NMI
- * IPI to it, with the NMI handler set to prom_boot_secondary_cpus
- */
- .set noreorder
- .set noat
- .set arch=xlr /* for mfcr/mtcr, XLR is sufficient */
- FEXPORT(nlm_reset_entry)
- dmtc0 k0, $22, 6
- dmtc0 k1, $22, 7
- mfc0 k0, CP0_STATUS
- li k1, 0x80000
- and k1, k0, k1
- beqz k1, 1f /* go to real reset entry */
- nop
- li k1, CKSEG1ADDR(RESET_DATA_PHYS) /* NMI */
- ld k0, BOOT_NMI_HANDLER(k1)
- jr k0
- nop
- 1: /* Entry point on core wakeup */
- mfc0 t0, CP0_PRID /* processor ID */
- andi t0, PRID_IMP_MASK
- li t1, 0x1500 /* XLP 9xx */
- beq t0, t1, 2f /* does not need to set coherent */
- nop
- li t1, 0x1300 /* XLP 5xx */
- beq t0, t1, 2f /* does not need to set coherent */
- nop
- /* set bit in SYS coherent register for the core */
- mfc0 t0, CP0_EBASE
- mfc0 t1, CP0_EBASE
- srl t1, 5
- andi t1, 0x3 /* t1 <- node */
- li t2, 0x40000
- mul t3, t2, t1 /* t3 = node * 0x40000 */
- srl t0, t0, 2
- and t0, t0, 0x7 /* t0 <- core */
- li t1, 0x1
- sll t0, t1, t0
- nor t0, t0, zero /* t0 <- ~(1 << core) */
- li t2, SYS_CPU_COHERENT_BASE
- add t2, t2, t3 /* t2 <- SYS offset for node */
- lw t1, 0(t2)
- and t1, t1, t0
- sw t1, 0(t2)
- /* read back to ensure complete */
- lw t1, 0(t2)
- sync
- 2:
- /* Configure LSU on Non-0 Cores. */
- xlp_config_lsu
- /* FALL THROUGH */
- /*
- * Wake up sibling threads from the initial thread in a core.
- */
- EXPORT(nlm_boot_siblings)
- /* core L1D flush before enable threads */
- xlp_flush_l1_dcache
- /* save ra and sp, will be used later (only for boot cpu) */
- dmtc0 ra, $22, 6
- dmtc0 sp, $22, 7
- /* Enable hw threads by writing to MAP_THREADMODE of the core */
- li t0, CKSEG1ADDR(RESET_DATA_PHYS)
- lw t1, BOOT_THREAD_MODE(t0) /* t1 <- thread mode */
- li t0, ((CPU_BLOCKID_MAP << 8) | MAP_THREADMODE)
- mfcr t2, t0
- or t2, t2, t1
- mtcr t2, t0
- /*
- * The new hardware thread starts at the next instruction
- * For all the cases other than core 0 thread 0, we will
- * jump to the secondary wait function.
- * NOTE: All GPR contents are lost after the mtcr above!
- */
- mfc0 v0, CP0_EBASE
- andi v0, 0x3ff /* v0 <- node/core */
- /*
- * Errata: to avoid potential live lock, setup IFU_BRUB_RESERVE
- * when running 4 threads per core
- */
- andi v1, v0, 0x3 /* v1 <- thread id */
- bnez v1, 2f
- nop
- /* thread 0 of each core. */
- li t0, CKSEG1ADDR(RESET_DATA_PHYS)
- lw t1, BOOT_THREAD_MODE(t0) /* t1 <- thread mode */
- subu t1, 0x3 /* 4-thread per core mode? */
- bnez t1, 2f
- nop
- li t0, IFU_BRUB_RESERVE
- li t1, 0x55
- mtcr t1, t0
- _ehb
- 2:
- beqz v0, 4f /* boot cpu (cpuid == 0)? */
- nop
- /* setup status reg */
- move t1, zero
- #ifdef CONFIG_64BIT
- ori t1, ST0_KX
- #endif
- mtc0 t1, CP0_STATUS
- xlp_early_mmu_init
- /* mark CPU ready */
- li t3, CKSEG1ADDR(RESET_DATA_PHYS)
- ADDIU t1, t3, BOOT_CPU_READY
- sll v1, v0, 2
- PTR_ADDU t1, v1
- li t2, 1
- sw t2, 0(t1)
- /* Wait until NMI hits */
- 3: wait
- b 3b
- nop
- /*
- * For the boot CPU, we have to restore ra and sp and return, rest
- * of the registers will be restored by the caller
- */
- 4:
- dmfc0 ra, $22, 6
- dmfc0 sp, $22, 7
- jr ra
- nop
- EXPORT(nlm_reset_entry_end)
- LEAF(nlm_init_boot_cpu)
- #ifdef CONFIG_CPU_XLP
- xlp_config_lsu
- xlp_early_mmu_init
- #endif
- jr ra
- nop
- END(nlm_init_boot_cpu)
|