123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348 |
- /*
- * IEEE754 floating point arithmetic
- * double precision: MADDF.f (Fused Multiply Add)
- * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
- *
- * MIPS floating point support
- * Copyright (C) 2015 Imagination Technologies, Ltd.
- * Author: Markos Chandras <markos.chandras@imgtec.com>
- *
- * This program is free software; you can distribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation; version 2 of the License.
- */
- #include "ieee754dp.h"
- /* 128 bits shift right logical with rounding. */
- void srl128(u64 *hptr, u64 *lptr, int count)
- {
- u64 low;
- if (count >= 128) {
- *lptr = *hptr != 0 || *lptr != 0;
- *hptr = 0;
- } else if (count >= 64) {
- if (count == 64) {
- *lptr = *hptr | (*lptr != 0);
- } else {
- low = *lptr;
- *lptr = *hptr >> (count - 64);
- *lptr |= (*hptr << (128 - count)) != 0 || low != 0;
- }
- *hptr = 0;
- } else {
- low = *lptr;
- *lptr = low >> count | *hptr << (64 - count);
- *lptr |= (low << (64 - count)) != 0;
- *hptr = *hptr >> count;
- }
- }
- static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x,
- union ieee754dp y, enum maddf_flags flags)
- {
- int re;
- int rs;
- unsigned lxm;
- unsigned hxm;
- unsigned lym;
- unsigned hym;
- u64 lrm;
- u64 hrm;
- u64 lzm;
- u64 hzm;
- u64 t;
- u64 at;
- int s;
- COMPXDP;
- COMPYDP;
- COMPZDP;
- EXPLODEXDP;
- EXPLODEYDP;
- EXPLODEZDP;
- FLUSHXDP;
- FLUSHYDP;
- FLUSHZDP;
- ieee754_clearcx();
- /*
- * Handle the cases when at least one of x, y or z is a NaN.
- * Order of precedence is sNaN, qNaN and z, x, y.
- */
- if (zc == IEEE754_CLASS_SNAN)
- return ieee754dp_nanxcpt(z);
- if (xc == IEEE754_CLASS_SNAN)
- return ieee754dp_nanxcpt(x);
- if (yc == IEEE754_CLASS_SNAN)
- return ieee754dp_nanxcpt(y);
- if (zc == IEEE754_CLASS_QNAN)
- return z;
- if (xc == IEEE754_CLASS_QNAN)
- return x;
- if (yc == IEEE754_CLASS_QNAN)
- return y;
- if (zc == IEEE754_CLASS_DNORM)
- DPDNORMZ;
- /* ZERO z cases are handled separately below */
- switch (CLPAIR(xc, yc)) {
- /*
- * Infinity handling
- */
- case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
- case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
- ieee754_setcx(IEEE754_INVALID_OPERATION);
- return ieee754dp_indef();
- case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
- case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
- case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
- case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
- case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
- if ((zc == IEEE754_CLASS_INF) &&
- ((!(flags & MADDF_NEGATE_PRODUCT) && (zs != (xs ^ ys))) ||
- ((flags & MADDF_NEGATE_PRODUCT) && (zs == (xs ^ ys))))) {
- /*
- * Cases of addition of infinities with opposite signs
- * or subtraction of infinities with same signs.
- */
- ieee754_setcx(IEEE754_INVALID_OPERATION);
- return ieee754dp_indef();
- }
- /*
- * z is here either not an infinity, or an infinity having the
- * same sign as product (x*y) (in case of MADDF.D instruction)
- * or product -(x*y) (in MSUBF.D case). The result must be an
- * infinity, and its sign is determined only by the value of
- * (flags & MADDF_NEGATE_PRODUCT) and the signs of x and y.
- */
- if (flags & MADDF_NEGATE_PRODUCT)
- return ieee754dp_inf(1 ^ (xs ^ ys));
- else
- return ieee754dp_inf(xs ^ ys);
- case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
- case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
- case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
- case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
- case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
- if (zc == IEEE754_CLASS_INF)
- return ieee754dp_inf(zs);
- if (zc == IEEE754_CLASS_ZERO) {
- /* Handle cases +0 + (-0) and similar ones. */
- if ((!(flags & MADDF_NEGATE_PRODUCT)
- && (zs == (xs ^ ys))) ||
- ((flags & MADDF_NEGATE_PRODUCT)
- && (zs != (xs ^ ys))))
- /*
- * Cases of addition of zeros of equal signs
- * or subtraction of zeroes of opposite signs.
- * The sign of the resulting zero is in any
- * such case determined only by the sign of z.
- */
- return z;
- return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
- }
- /* x*y is here 0, and z is not 0, so just return z */
- return z;
- case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
- DPDNORMX;
- case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
- if (zc == IEEE754_CLASS_INF)
- return ieee754dp_inf(zs);
- DPDNORMY;
- break;
- case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
- if (zc == IEEE754_CLASS_INF)
- return ieee754dp_inf(zs);
- DPDNORMX;
- break;
- case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
- if (zc == IEEE754_CLASS_INF)
- return ieee754dp_inf(zs);
- /* fall through to real computations */
- }
- /* Finally get to do some computation */
- /*
- * Do the multiplication bit first
- *
- * rm = xm * ym, re = xe + ye basically
- *
- * At this point xm and ym should have been normalized.
- */
- assert(xm & DP_HIDDEN_BIT);
- assert(ym & DP_HIDDEN_BIT);
- re = xe + ye;
- rs = xs ^ ys;
- if (flags & MADDF_NEGATE_PRODUCT)
- rs ^= 1;
- /* shunt to top of word */
- xm <<= 64 - (DP_FBITS + 1);
- ym <<= 64 - (DP_FBITS + 1);
- /*
- * Multiply 64 bits xm and ym to give 128 bits result in hrm:lrm.
- */
- /* 32 * 32 => 64 */
- #define DPXMULT(x, y) ((u64)(x) * (u64)y)
- lxm = xm;
- hxm = xm >> 32;
- lym = ym;
- hym = ym >> 32;
- lrm = DPXMULT(lxm, lym);
- hrm = DPXMULT(hxm, hym);
- t = DPXMULT(lxm, hym);
- at = lrm + (t << 32);
- hrm += at < lrm;
- lrm = at;
- hrm = hrm + (t >> 32);
- t = DPXMULT(hxm, lym);
- at = lrm + (t << 32);
- hrm += at < lrm;
- lrm = at;
- hrm = hrm + (t >> 32);
- /* Put explicit bit at bit 126 if necessary */
- if ((int64_t)hrm < 0) {
- lrm = (hrm << 63) | (lrm >> 1);
- hrm = hrm >> 1;
- re++;
- }
- assert(hrm & (1 << 62));
- if (zc == IEEE754_CLASS_ZERO) {
- /*
- * Move explicit bit from bit 126 to bit 55 since the
- * ieee754dp_format code expects the mantissa to be
- * 56 bits wide (53 + 3 rounding bits).
- */
- srl128(&hrm, &lrm, (126 - 55));
- return ieee754dp_format(rs, re, lrm);
- }
- /* Move explicit bit from bit 52 to bit 126 */
- lzm = 0;
- hzm = zm << 10;
- assert(hzm & (1 << 62));
- /* Make the exponents the same */
- if (ze > re) {
- /*
- * Have to shift y fraction right to align.
- */
- s = ze - re;
- srl128(&hrm, &lrm, s);
- re += s;
- } else if (re > ze) {
- /*
- * Have to shift x fraction right to align.
- */
- s = re - ze;
- srl128(&hzm, &lzm, s);
- ze += s;
- }
- assert(ze == re);
- assert(ze <= DP_EMAX);
- /* Do the addition */
- if (zs == rs) {
- /*
- * Generate 128 bit result by adding two 127 bit numbers
- * leaving result in hzm:lzm, zs and ze.
- */
- hzm = hzm + hrm + (lzm > (lzm + lrm));
- lzm = lzm + lrm;
- if ((int64_t)hzm < 0) { /* carry out */
- srl128(&hzm, &lzm, 1);
- ze++;
- }
- } else {
- if (hzm > hrm || (hzm == hrm && lzm >= lrm)) {
- hzm = hzm - hrm - (lzm < lrm);
- lzm = lzm - lrm;
- } else {
- hzm = hrm - hzm - (lrm < lzm);
- lzm = lrm - lzm;
- zs = rs;
- }
- if (lzm == 0 && hzm == 0)
- return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
- /*
- * Put explicit bit at bit 126 if necessary.
- */
- if (hzm == 0) {
- /* left shift by 63 or 64 bits */
- if ((int64_t)lzm < 0) {
- /* MSB of lzm is the explicit bit */
- hzm = lzm >> 1;
- lzm = lzm << 63;
- ze -= 63;
- } else {
- hzm = lzm;
- lzm = 0;
- ze -= 64;
- }
- }
- t = 0;
- while ((hzm >> (62 - t)) == 0)
- t++;
- assert(t <= 62);
- if (t) {
- hzm = hzm << t | lzm >> (64 - t);
- lzm = lzm << t;
- ze -= t;
- }
- }
- /*
- * Move explicit bit from bit 126 to bit 55 since the
- * ieee754dp_format code expects the mantissa to be
- * 56 bits wide (53 + 3 rounding bits).
- */
- srl128(&hzm, &lzm, (126 - 55));
- return ieee754dp_format(zs, ze, lzm);
- }
- union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x,
- union ieee754dp y)
- {
- return _dp_maddf(z, x, y, 0);
- }
- union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x,
- union ieee754dp y)
- {
- return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
- }
|