123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270 |
- /*
- * linux/arch/arm/mm/fault-armv.c
- *
- * Copyright (C) 1995 Linus Torvalds
- * Modifications for ARM processor (c) 1995-2002 Russell King
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #include <linux/sched.h>
- #include <linux/kernel.h>
- #include <linux/mm.h>
- #include <linux/bitops.h>
- #include <linux/vmalloc.h>
- #include <linux/init.h>
- #include <linux/pagemap.h>
- #include <linux/gfp.h>
- #include <asm/bugs.h>
- #include <asm/cacheflush.h>
- #include <asm/cachetype.h>
- #include <asm/pgtable.h>
- #include <asm/tlbflush.h>
- #include "mm.h"
- static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
- #if __LINUX_ARM_ARCH__ < 6
- /*
- * We take the easy way out of this problem - we make the
- * PTE uncacheable. However, we leave the write buffer on.
- *
- * Note that the pte lock held when calling update_mmu_cache must also
- * guard the pte (somewhere else in the same mm) that we modify here.
- * Therefore those configurations which might call adjust_pte (those
- * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
- */
- static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
- unsigned long pfn, pte_t *ptep)
- {
- pte_t entry = *ptep;
- int ret;
- /*
- * If this page is present, it's actually being shared.
- */
- ret = pte_present(entry);
- /*
- * If this page isn't present, or is already setup to
- * fault (ie, is old), we can safely ignore any issues.
- */
- if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
- flush_cache_page(vma, address, pfn);
- outer_flush_range((pfn << PAGE_SHIFT),
- (pfn << PAGE_SHIFT) + PAGE_SIZE);
- pte_val(entry) &= ~L_PTE_MT_MASK;
- pte_val(entry) |= shared_pte_mask;
- set_pte_at(vma->vm_mm, address, ptep, entry);
- flush_tlb_page(vma, address);
- }
- return ret;
- }
- #if USE_SPLIT_PTE_PTLOCKS
- /*
- * If we are using split PTE locks, then we need to take the page
- * lock here. Otherwise we are using shared mm->page_table_lock
- * which is already locked, thus cannot take it.
- */
- static inline void do_pte_lock(spinlock_t *ptl)
- {
- /*
- * Use nested version here to indicate that we are already
- * holding one similar spinlock.
- */
- spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
- }
- static inline void do_pte_unlock(spinlock_t *ptl)
- {
- spin_unlock(ptl);
- }
- #else /* !USE_SPLIT_PTE_PTLOCKS */
- static inline void do_pte_lock(spinlock_t *ptl) {}
- static inline void do_pte_unlock(spinlock_t *ptl) {}
- #endif /* USE_SPLIT_PTE_PTLOCKS */
- static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
- unsigned long pfn)
- {
- spinlock_t *ptl;
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- int ret;
- pgd = pgd_offset(vma->vm_mm, address);
- if (pgd_none_or_clear_bad(pgd))
- return 0;
- pud = pud_offset(pgd, address);
- if (pud_none_or_clear_bad(pud))
- return 0;
- pmd = pmd_offset(pud, address);
- if (pmd_none_or_clear_bad(pmd))
- return 0;
- /*
- * This is called while another page table is mapped, so we
- * must use the nested version. This also means we need to
- * open-code the spin-locking.
- */
- ptl = pte_lockptr(vma->vm_mm, pmd);
- pte = pte_offset_map(pmd, address);
- do_pte_lock(ptl);
- ret = do_adjust_pte(vma, address, pfn, pte);
- do_pte_unlock(ptl);
- pte_unmap(pte);
- return ret;
- }
- static void
- make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
- unsigned long addr, pte_t *ptep, unsigned long pfn)
- {
- struct mm_struct *mm = vma->vm_mm;
- struct vm_area_struct *mpnt;
- unsigned long offset;
- pgoff_t pgoff;
- int aliases = 0;
- pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
- /*
- * If we have any shared mappings that are in the same mm
- * space, then we need to handle them specially to maintain
- * cache coherency.
- */
- flush_dcache_mmap_lock(mapping);
- vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
- /*
- * If this VMA is not in our MM, we can ignore it.
- * Note that we intentionally mask out the VMA
- * that we are fixing up.
- */
- if (mpnt->vm_mm != mm || mpnt == vma)
- continue;
- if (!(mpnt->vm_flags & VM_MAYSHARE))
- continue;
- offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
- aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
- }
- flush_dcache_mmap_unlock(mapping);
- if (aliases)
- do_adjust_pte(vma, addr, pfn, ptep);
- }
- /*
- * Take care of architecture specific things when placing a new PTE into
- * a page table, or changing an existing PTE. Basically, there are two
- * things that we need to take care of:
- *
- * 1. If PG_dcache_clean is not set for the page, we need to ensure
- * that any cache entries for the kernels virtual memory
- * range are written back to the page.
- * 2. If we have multiple shared mappings of the same space in
- * an object, we need to deal with the cache aliasing issues.
- *
- * Note that the pte lock will be held.
- */
- void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
- pte_t *ptep)
- {
- unsigned long pfn = pte_pfn(*ptep);
- struct address_space *mapping;
- struct page *page;
- if (!pfn_valid(pfn))
- return;
- /*
- * The zero page is never written to, so never has any dirty
- * cache lines, and therefore never needs to be flushed.
- */
- page = pfn_to_page(pfn);
- if (page == ZERO_PAGE(0))
- return;
- mapping = page_mapping(page);
- if (!test_and_set_bit(PG_dcache_clean, &page->flags))
- __flush_dcache_page(mapping, page);
- if (mapping) {
- if (cache_is_vivt())
- make_coherent(mapping, vma, addr, ptep, pfn);
- else if (vma->vm_flags & VM_EXEC)
- __flush_icache_all();
- }
- }
- #endif /* __LINUX_ARM_ARCH__ < 6 */
- /*
- * Check whether the write buffer has physical address aliasing
- * issues. If it has, we need to avoid them for the case where
- * we have several shared mappings of the same object in user
- * space.
- */
- static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
- {
- register unsigned long zero = 0, one = 1, val;
- local_irq_disable();
- mb();
- *p1 = one;
- mb();
- *p2 = zero;
- mb();
- val = *p1;
- mb();
- local_irq_enable();
- return val != zero;
- }
- void __init check_writebuffer_bugs(void)
- {
- struct page *page;
- const char *reason;
- unsigned long v = 1;
- pr_info("CPU: Testing write buffer coherency: ");
- page = alloc_page(GFP_KERNEL);
- if (page) {
- unsigned long *p1, *p2;
- pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
- L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
- p1 = vmap(&page, 1, VM_IOREMAP, prot);
- p2 = vmap(&page, 1, VM_IOREMAP, prot);
- if (p1 && p2) {
- v = check_writebuffer(p1, p2);
- reason = "enabling work-around";
- } else {
- reason = "unable to map memory\n";
- }
- vunmap(p1);
- vunmap(p2);
- put_page(page);
- } else {
- reason = "unable to grab page\n";
- }
- if (v) {
- pr_cont("failed, %s\n", reason);
- shared_pte_mask = L_PTE_MT_UNCACHED;
- } else {
- pr_cont("ok\n");
- }
- }
|